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ABSTRACT
The sensitivity of the estimates of both the "state" variable and the other explanatory variables to the
econometric method employed in dynamic panel models is investigated in the context of recent empirical
studies of growth rate convergence using panel data from the Penn World Tables. Models with country
specific intercept effects and models with country specific trends are estimated. Although the investigation
has as its primary purpose the assessment of alternative estimators, all of the results reported support the
conventional interpretation of the coefficient of the lagged dependent variable in terms of growth
convergence conditional on savings and population growth rates; however, the rather different estimates
of this coefficient obtained when different estimation techniques are used is illustrated.in particular, I
show that the use of fixed-effects panel models biases the results towards finding relitively rapid
convergence and that, when more appropriate maximum-likelihood estimates, unconditional on the initial
observations, are employed, very slow convergence is implied. Biases in the estimates of the coefficient of
the "state" variable for all of the usual methods of panel data analysis imply biased estimates of the
coefficients of any other variables included if these are correlated with the "state" variable, which is
typically the case. Thus, the significance and possibly the sign of any other explanatory variables may be
seriously affected. Consequently, the conclusions of many recent studies of the determinants of growth
employing dynamic panel models may largely reflect the econometric methods employed.

This paper draws extensively from "Growth Rate Convergence, Fact or Artifact? An Essay in
Panel Data Econometrics," prepared for the Sixth Conference on Panel Data Econometrics, Amsterdam,
28-29 June 1996. The research on which it is based was supported by the Maryland Agricultural
Experiment Station, Project A-53. The paper will appear as MAES Paper No.

My interest in the question of how the econometric approach might have influenced recent
findings with respect to the convergence hypothesis was stimulated by reading Islam (1995a). Although I
wound up going directly to the Penn World Tables for the data underlying the analyses presented here, I
began by working with the series Islam was kind enough to supply and for which I am greatly indebted to
him.
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assistance in straightening out the GAUSS programs which I wrote to obtain the results reported here.
Suh also checked and double checked all derivations and verified that my programs accurately reflected
the formulae derived and carried out further analyses for this revision in connection with the differenced
model.
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1. Introduction

One of the most important implications of the classic papers of Solow (1956) and Swan (1956) is

that the lower the starting level of real per capita GDP, relative to the long run or steady state position, the

faster is the growth rate. The Solow-Swan model assumes a constant-returns-to-scale production function

with two inputs, capital and labor, and substitution between inputs, a constant savings rate, and constant

rate of growth of population and neutral technical change, all exogenously ven. Convergence of

economies starting out at different levels of per capita income to the same steady-state rate of growth

reflects the diminishing returns to capital implied by the production function assumed: economies starting

out with lower levels of real per capita GDP relative to the long run or steady state position have less

capital per worker and therefore higher rates of return to capital. I will refer to this as the standard Barro-

Baurnol (BB) sense of the meaning of convergence. There is a good deal of current discussion regarding

the appropriate definition of "convergence." My purpose here is not to question this notion of

convergence but rather to show that estimates of the coefficient of the lagged dependent variable in a

dynamic panel model which has been used to study this phenomenon is extremely sensitive to the method

of estimation employed. Because the steady states of the Solow-Swan model depend on the savings rate,

the rate of growth of population, and the rate of technical progress, many have argued that these factors

need to be held constant in attempting to test the hypothesis of growth rate convergence. Convergence is,

in this sense, conditional. Convergence may also be conditional on other factors such as the accumulation

of human capital or investment in infrastructure or, indeed other unobserved factors which are trending at

different rates in different countries or regions.2

The problem of BB-convergence in the standard neoclassical model is treated both theoretically

and empirically in the recent text by Barro and Sala-i-Martin (1995) and empirically in a recent paper by

Barnard and Durlauf (1995) give a nice discussion emphasizing the restrictiveness of the approach,

going back to the earlier work of Barro (1991) and Baumol (1986), on which my analysis of econometric

methods is based (see also Quah, 1996), and which is the most prevalent. Other recent contributions

include Islam (1995b), Casselli, Esquivel, and Lefort (1996), and the fine survey by de la Fuente (1997).
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Islam (1995a). Bernard and Durlauf (1996) provide a useful framework for understanding the time-series

and cross-sectional tests of the BB-convergence hypothesis and its relation to alternative definitions. Quah

(1996) discusses the problem of convergence in more general form and distinguishes several different

varieties. He argues that "Simply because panel data techniques happen to apply to data with extensive

cross-section and time-series variation does not mean they are at once similarly appropriate for analyzing

convergence.' While I do not fault Quah's conclusion, current discussions do emphasize panel data and

methods and derive strong conclusions regarding BB-convergence and the significance of other

determinants of growth from such data. It is therefore appropriate to consider how these conclusions,

within the context of BB-convergence, are affected by the econometric methods employed.

Perhaps even more important than the problem of convergence is the question of the

determinants of growth. The World Bank Project on Economic Growth lists 15 published papers and 15

working papers almost all of which involve dynamic panel data analysis or cross-section analysis with a

state variable or initial condition.3 Although the focus of these papers is not convergence but the effects of

the other variables included, if the coefficient of the state variable in the statistical analysis is

inconsistently estimated, in this sense "biased," then the coefficient of any variable correlated with the

state variable will also be biased. Hence, quite misleading conclusions may be drawn concerning the

significance, sign and relative magnitude of other factors included in the analysis, conclusions which may

significantly affect the policy implications of the analysis.

Section 2 examines recent empirical investigations of BB-convergence and the rate of

convergence and argues that most are flawed by failure to allow for the inconsistencies of single cross-

section or panel studies in a dynamic context.4 In a dynamic context a single cross-section is best viewed

2 When population growth is endogenously determined, this implication of convergence, conditional or
otherwise, of the neoclassical model of economic growth does not necessarily follow; see Nerlove and Raut
(1996).
3 See http//www.worldbank.org/html/prdmg/grthweb.
This point is also made by Caselli, et al. (1996) in a study which came to my attention after Nerlove

(1996b) was written. A recent study by Lee, et al (1996) arrives at similar conclusions but proposes a
number of alternatives different from those investigated here. In particular, 1 believe that their formulation
of what they call the unconditional likelihood function is quite different from that proposed here because
they include deterministic trends in their model and cannot therefore directly formulate the likelihood
unconditional on the initial observations (see footnote 11).
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as a panel with time dimension 1. I do not attempt here a general review of the effects of the methods used

in more general studies of the determinants of growth, but elsewhere I have examined the effects on the

estimated coefficients of the Barro-Lee (1993) estimates of the stock of human capita1.5

In section 3, I discuss four common methods of estimating the coefficient of the "state" variable

interpreted in terms of the rate of convergence (and thus testing for convergence), show that these four

methods yield estimates which satisfy an inequality derived by Trognon and Sevestre (1996). One broad

class of estimates with which I do not deal here are those based on the Generalized Method of Moments

and due to Chamberlain (1984), the so-called 11,--matrix method, or derived from his work (Holtz-Eakin,

Newey and Rosen, 1988; Arellano and Bond, 1991).6 These methods are not only somewhat difficult to

implement but the resulting estimates are, by construction, insensitive to the way in which initial values of

the "state" variable have presumably been generated. Below I argue that, if the process generating the data

in the sample period is stationary, or can be made so by suitable transformation of the data, the initial

values of the state variable convey a great deal of information about that process since they reflect how it

has operated in the past. Thus conditioning on those initial conditions is clearly an undesirable feature

especially when the time-dimension of the panel is short.

In section 3(1), I present a new method of maximum.-likelihood estimation based on the density of

the observations unconditional on the initial or starting values of the dependent variable. I argue more

generally for methods of inference which look at more than just the maximum of the likelihood function,

on the basis of the likelihood principle of Fisher (1922; 1925). This approach fully takes into account

what information the initial conditions contain about how the process has operated in the past and is thus

of special relevance to short time-dimension ("shallow") panels. I extend this method to the case of

5 See the appendix to Nerlove(1996b).
6 For an extensive exposition of these methods and a very general formulation see Crepon and Mairesse,

1996. The method is based on a series of transformations of the basic equation (1); the resulting equation

is then estimated as a cross-section regression on the original explanatory variables in all periods. Caselli,

et al., use a variant which is an application of the GMM method applied to the first differences of the

series. They then use the stock or state variables as instruments. This implies that they are predetermined

and therefore conditions on their values. If indeed the process, originally or in first-difference form is

stationary, their procedure does therefore discard the information in the initial observations about it,

which is just what unconditional MI, seeks to avoid. Since conditional ML should give estimates with the
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country-specific trends. These make the underlying processes being investigated nonstationary, but simple

forms of nonstationarity can be removed by differencing the data.

Finally, in section 4, I apply all six methods to two panel data sets drawn from the Penn World

Tables, for both a model with country-specific intercept effects and one with country-specific trends. The

results show clearly how misleading the standard estimates can be in assessing growth rate convergence

and in the estimation of the significance and magnitude of other variables included. The contrast between

the conditional and the unconditional ML estimates for a small cross-section dimension and their

similarity for a large cross-section dimension is illustrated, as is the importance of looking at the

likelihood function itself more broadly. I also show that the usual procedures for doing feasible GLS or for

obtaining starting values for ML are seriously flawed and likely to yield negative estimates of the random

time persistent cross-sectional effects. The results also show that biases in the estimate of the coefficient of

the lagged value of the dependent variable are transmitted to the estimates of other coefficients in the

model, making inferences about the determinants of growth problematic unless appropriate econometric

methods are used.

Section 5 concludes.

2. Recent Empirical Investigations of Convergence and the Rate of Convergence

Let y, = per capita output, lc, = the capital-labor ratio, s = the savings rate, 8= the depreciation

rate of capital, and n = the exogenous rate of population growth and labor force. All of these variables

may differ over time as indicated by their subscript t, but also, in a cross-country context, they are certain

to differ from one country to another in a fashion which persists over time. An additional subscript is

introduced in the sections which follow this one to indicate that fact. lithe production function is Cobb

Douglas, y, = Atka , where A, reflects other than conventional factors of production affecting growth

and where a, the elasticity of per capita output with respect to the capital-labor ratio, is often interpreted

in terms of capital's share as implied by payment of capital at its marginal product. Under these

circumstances it can easily be shown using a simple partial adjustment model that

same desirable properties as GMM and is very easy to compute under these circumstances, it is not clear

to me why Caselli, et al., and others have avoided its use.
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- r
(1) logy, - 

a(1 y)  
[logs - log(n + 5)1 + 

1  
log 4 + y logy,.

1-a 1-a

The speed of convergence to equilibrium is inversely proportional to y. With growth convergence 0 <y <1.

In equilibrium, per capita GDP depends only on the parameters n, s, and the time path of A. In an

empirical context, these differ from time to time and country to country. Clearly the extent of convergence

is conditional on s, n, 8 and the time path of A. In empirical investigations, changing n and s and

sometimes a measure of changing A have been introduced. Below I examine models in which A is

assumed to be constant although differing from one country to another and an alternative formulation in

which A, can be represented by a simple linear trend which plausibly also differs from country to country.

Equation (1) has been widely used to examine the hypothesis of growth convergence (Mankiw,

et al 1992, p.410; Barro and Sala-i-Martin, 1995, Chapter 12: Islam, 1995, p. 1133; Lee, et al. 1996,

Casseli, et al. 1996). In empirical work, y, is replaced by real per capita GDP; when varying s and n are

taken into account, $ is replaced by an average savings rate over the period t4 to t, and n is replaced by

the growth rate of population over the period t-1 to t. It is usual to use rates averaged over several years;

following Islam (1995), I have used quinquennial averages. The restriction on the coefficients of In(s) and

ln(n+8), which arises from the constant-returns-to-scale assumption implies that In(s) and In(n+8) can be

collapsed into a single variable. Testing the growth convergence hypothesis, in this context, revolves

largely around the coefficient y of the lagged level of per capita real GDP. If this is positive but much less

than one, the implication is that on average countries with low initial values are growing faster than those

with high initial values and is therefore evidence of convergence. Whereas if this coefficient is close to

one, perhaps even slightly larger than one, the implication is that initial values have little or no effect or

even a perverse one on subsequent growth; such a finding is therefore evidence against the neoclassical

theory which implies convergence. For example, if y = 0.9, convergence to within 90% of final

equilibrium occurs only in 22 periods, which, given quinquennial data, implies 110 years! Similarly, 0.8

requires 53 years, 0.7 32 years, while 0.2 requires only 7 years and 0.1 is within 90% in 5 years.'

.1 Derivation of the model and the calculations behind this statement are given in Nerlove(1996, pp. 5 —8

and Appendix Table 2).
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The estimates of y for the levels model presented below using cross-country quinquennial data

are generally in excess of 0.7 no matter what econometric procedure is employed, but vary over a wide

range depending on the method, 0.7 to 0.98.But for the differenced model, many estimates of y are much

smaller, in the vicinity of 0.5.8 It is apparent that, for all practical purposes, coefficients in excess of 0.7

represent negli ible convergence, since, with unchanging s, n, and A, it would take more than a

generation to achieve 90% of equilibrium real per capita GDP. Most recent work attempts to test whether

y = 1; however, this is a test for unit root in log yk. Even under the best of circumstances testing for a unit

root is problematic (see Diebold and Nerlove, 1990). Here the problems are compounded by the short time

dimension of the typical panel. Basing a test on the size of y rather than equality with 1 finesses a host of

problems of the sort discussed extensively in Diebold and Nerlove.9

Tests based on a single cross-section (which can be viewed as a panel of time dimension 1) or on

pooled cross-section time series (panel) data generally have yielded contradictory results: Pooled panel

data studies tend to reject the hypothesis of BB-convergence (relatively high y's), even after controlling for

population growth rates, savings rates and other variables. Dynamic fixed-effects models are of course not

possible for a single cross-section, but recent work (Islam, 1995a) using a dynamic fixed-effects panel

model yields results supporting convergence. There are serious problems with tests such as these which

rely on the estimated coefficients of the lagged, or initial value, of the dependent variable in dynamic

panel models, or in the special case of a single cross-section, which arise from two sources of bias. In this

paper, I show that some of these findings are probably statistical artifacts arising from biases in the

econometric methods employed. This demonstrates the sensitivity of the conclusions drawn about y to the

econometric method employed, irrespective of the validity of the relationship estimated.

The first source of bias are omitted variables, especially infrastructure and investments over time

in infrastructure, and the natural resource base available to each country in cross-sectional or panel

8 Using a GMM estimator Caselli, et al., obtain an estimate of about 0.51 - 0.53, i.e., much more rapid

convergence and close to the estimates obtained for the 94-country sample using either conditional or
unconditional ML. My estimates for the 22-country sample are much higher, however.
9 Barnard and Durlauf (1995) use cointegration techniques on rather longer time series for 15 OECD

countries to test alternative time-series definitions of convergence and contrast the results with the
standard BB-formulation.
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studies. Systematic differences in these across countries or regions will systematically bias the

conclusions. Because such variables are likely to be correlated with savings or investment rates in

conventional or in human capital and with population growth rates it is not altogether clear what the net

effect of omitting them on the coefficient of the initial value will be in a single cross-section. But in a

pooled model it is clear that, to the extent such differences are persistent, they will be highly correlated

with the initial value and therefore omitting them will bias the coefficient of that variable upwards

towards one and thus towards rejecting convergence. This source of bias has been well-known since the

early paper by Balestra and Nerlove (1966) and is well-supported by the Monte Carlo studies reported in

Nerlove (1971). In this light, it is not surprising that pooled panel data. or single cross-sections, which are

a special case of panels with T = 1, even with inclusion of additional variables, often reject convergence.

Second, since there are likely to be many sources of cross country or cross region differences,

many of which cannot be observed or directly accounted for, it is natural to try to represent these by fixed

effects in a panel context. But, as is well-known from the Monte Carlo investigations reported in Nerlove

(1971) and demonstrated analytically by Nickell (1981), inclusion of fixed effects in a dynamic model

biases the coefficient of the initial value of the dependent variable included as an explanatory variable

downwards, towards zero and therefore towards support for the convergence hypothesis. This may account

for Islam's (1995a) recent findings.

Alternative estimates based on more appropriate random-effects models, such as two-stage

feasible Generalized Least Squares or maximum likelihood conditional on the initial observations are

also biased in small samples and inconsistent in large, or in the case of Instrumental Variable estimates

have poor sampling properties or are difficult to implement. For example, the papers by Knight, Loayza

and Villanueva(1993), Loayza (1994), and Islam (1995a) employ a method, among others, proposed by

Chamberlain (1984), generally referred to as the II-matrix approach.1° The alternative of unconditional

lc See also Crepon and Mairesse (1996).
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maximum likelihood suggested in Nerlove and Balestra (1996) is implemented for the first time in this

paper."

Even if one has little interest in the question of convergence, or its rate. per se, the question of

whether the coefficient of the state variable, lagged dependent or initial value, is biased in the sense of

being inconsistent is an important one since biases in this coefficient will affect the estimates of the

coefficients of other variables correlated with it and their levels of significance. To the extent such

estimates are important in the formulation of policies to promote growth, the matter is indeed a serious

one.12

In the remainder of this paper. I investigate the sensitivity of the coefficient of the lagged

dependent or state variable to the econometric method employed as well as the sensitivity of the estimates

of the coefficients of other variables included. All of the results reported, except those for pooled panel

data, support the growth convergence hypothesis conditional on savings and population growth rates but

illustrate the rather different estimates of the rates of convergence, and of the coefficients of other

explanatory variables, obtained when different estimation techniques are used. In addition, a technique for

examining the shape of sections of a high-dimensional likelihood function is developed which reveals

interesting and somewhat unexpected relationships among the various estimates.

3. Alternative Methods for Estimation°

A good summary of the current state of knowledge about the properties of various estimators in

dynamic panel models is contained in Sevestre and Trognon (1992, 2nd. ed. 1996). Trognon (1978) was the first

I Lee, et al. (1996) also estimate from what they maintain is an unconditional likelihood function, but
inasmuch as they do not transform to stationarity (their relationship includes both a constant and a linear
trend), I do not think their formulation of the likelihood function is based on the unconditional density of
the dependent variable as proposed here. In fact, they estimate from a likelihood based on the conditional
density of the dependent variable given the initial value. The relation between conditional and
unconditional likelihood is discussed at length in Nerlove(1997).
12 For example in (1) the parameter a could be derived from the coefficient of the variable
log s - log (n+8) as coefficient/(coefficient +1-y), so there is a double source of bias. Indeed, a number of
authors accept or reject statistical formulations based on the estimated value of a which should
approximate capital's share.
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to show the possible inconsistency of maximum likelihood conditional on the initial individual observations.

Nickell (1981) shows the inconsistency of the estimates of the fixed-effects in a dynamic panel model. Kiviet

(1995) derives exact results for the bias of leading estimators. In this section, following Sevestre and Trognon,

review the leading estimators and their properties for dynamic panel models. I will assume a random effects

model for the disturbance for the reasons set forth in Nerlove and Ballestia (1996) and because fixed effects can

be viewed as a special case from the standpoint of estimation.

For simplicity, in this section I restrict attention to the simple model containing one exogenous variable

xi, and one lagged value of the dependent variable yk_i as explanatory. Extension to the case in which more than

one exogenous explanatory variable is included presents no serious difficulty.

(2) y1,= a + f3xa + yy + ,u, + eir i=1,...N. t=1....T.

Taking deviations from overall means eliminates the constant a. The usual assumptions are made about the

properties of the 1.Li and the

(i) Eoij = =0, all i and t,

(ii) E(,) = 0 , all j and t,

{

a
2

i = i

(11i) E(-114 j ) =
0 i # j,

(iv)
I .2 t = S, i = j,.

geiteft)= 0 otherwise .

Both and are assumed to be uncorrelated with xi, for all i and t. While this assumption is far from

innocuous, for example, if savings rates or population growth is not independent of per capita income or

unobserved factors which affect it, I adopt it here, not only because it is conventional but because one has to cut

off somewhere. Clearly, however, yit.i cannot be assumed to be uncorrelated with 1.ti. It is clear, therefore, that

13 1 rely extensively in this section on the excellent discussion of Sevestre and Trognon. Chapter 7 in

Matyas and Sevestre (1996, pp.120-144). Additional alternatives, more appropriate when longer time
series are available, are treated by Lee, et al. (1996) and are not discussed or implemented here.
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OLS applied to (2) ignoring the component nature of the disturbances u, = + c , which I call the pooled

regression, Ain yield inconsistent estimates. In particular. if y> 0, ypooted is-biased" upwards. So, just as in the

case of ordinary serial correlation, Ppowed is also "biased" and the OLS residuals understate the amount of serial

correlation, which in this case is measured by the intraclass correlation coefficient p. This parameter measures

the extent of unobserved or latent time-invariant. individual-specific, variation relative to the total unobserved

variation in the sample. . It is extremely important in understanding the nature of the variation, both

observed and unobserved, in the panel.

(a) Inconsistency of the pooled-sample OLS estimates of the dynamic error-components model.

Since the panel has two dimensions, it is possible to consider asymptotic behavior as N —> 00, T —> oc, or

both. Generally speaking it is easier to increase the cross-section dimension of a panel, so the most relevant

asymptotics are as N co. This is called semi-asymptotics in the panel data literature. It is not necessary to

assume tyl < 1 as long as T is fixed, but the way in which the initial values of the dependent variable, no , are

assumed to be generated is crucial. To see why, write (2) as

1-1 1-1

(3) = rtY,0  pi + v ,where v =Erie„, .
J.0 1—y J=0

Equation (3) expresses y, as the sum of four terms: the first, ytyio , depends on the initial values; the second on

lagged values of the exogenous variable; the third on the individual, time-invariant, component of residual

variance; and the fourth on la ed values of the remaining component. This last term is an autoregressive

process with initial values yip =0 and vi, = rvit_ + e,,. It need not be assumed to be stationary as long as T

is fixed. It does not =Ice sense in this context to assume that the yk are uncorrelated with either the 4; or the

lagged values of the xi's. On the other hand, sio is a random variable %Nth mean 0 and variance ac2

independently and identically distributed for all i. Thus, the initial observation can be written as a function of

lagged x's, the and c:

(4) y10 =f(x10,x1_ 1 ,...,,u1, 10).

Clearly, if the individual effects 1.ti are assumed to be fixed and the lagged x's to be given, the no are also fixed

and uncorrelated with the disturbances in (3), t =1,...,T. But, if the individual effects are considered to be
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random. as Nerlove and Balestra (1996) have argued they should be, the initial observations are not exogenous

since they are correlated with them, as they are part of the disturbance term, namely the third and fourth terms

of (3).

It is common in the literature on panel data to assume that the yo are i.i.d. random variables which are

characterized by their second moments and correlations with the individual effects and not necessarily generated

by the same process which generates the rest of the yi's. The properties of various estimators depend on the

process generating them. One possibility is to try to model and estimate this process together with the dynamic

panel model (2).

(b) Inconsistency of the OLS Estimators of the Dummy Variable, or Fixed-Effects, Model.

The ordinary least squares estimates of both the coefficient of the lagged dependent variable and the

exogenous variable are inconsistent in the fixed effects model. As is well-known, the fixed effects model is

equivalent to taking deviations from individual (country) means and then estimating an ordinary OLS

regression:

(5)

Although o'. =0,

(6)

where

Vit eit . •

p lirn I vg
-
2 

(0y Y. — 57. Xe. )(-1)s N 00 —7, _ ,,t-i 1,-1 a

1 T —1—Ty + y T 2
# U.= — 

T2 r)2 

Thus, the OLS estimates of both I3 and in the fixed effects model are inconsistent, although as T-400, the

inconsistency disappears. But for finite, typically small T, it remains. (See Nickell, 1981, p.1424). For T = 10

and y = 0.5, for example, the "bias" of the OLS estimate of y, say c, is proportional to -0.16, the factor of

proportionality being the OLS estimate of the variance of c from the within regression. It is always negative.

implying that the bias of the OLS estimate of p, say b, is therefore upward. This conclusion holds regardless of

whether one assumes the true model is fixed- or random-effects.
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Althou the inconsistency will be small when T is moderate to large, small values of T are typically

the case. Nonetheless, Nerlove (1971) suggested using the fixed effects model to estimate p for FGLS, in contrast

to the earlier suggestion of Balestra and Nerlove (1966), hereinafter BN, of a consistent instrumental variable

approach. BN also suggested but did not implement a method based on estimating p from the pooled and fixed

effects regressions. Rejection of instrumental variables by Nerlove (1971) was based on the instability of the

results in Monte Carlo trials. Since the OLS estimates of the parameters from pooled or fixed-effects regressions

are inconsistent, the estimates of p based on this regression will not be either, hence, the FGLS estimates

computed using them will not generally be consistent. In the results reported here, an estimate of p is deriv

from the estimates of residual variance from both the fixed-effects and the pooled regressions, as suggest by B

and N (1966), and is not consistent

Many authors (e.g., Greene, 1993. pp. 475-477, Judge, et al.. pp. 484-488). hereinafter GJ, suggest

basing an estimate of p on the cross-section regression of the overall means and either the pooled or fixed-effects

regression. This suggestion, unfortunately often leads to negative estimates of p and =warranted rejection of the

model. These estimates are also inconsistent The GJ suggestion is, unfortunately, utilized in most computer

packages for implementing FGLS for panel data or obtaining starting values for ML, and often leads to the

adoption of badly biased fixed-effects OLS when a negative estimate of p is obtained.

The GJ suggestion is to regress the group means of the independent variable on the group means of the

dependent variables:

(7) :y—i. = cx + + WI , where wi = + .

2

The variance of wi is cr„ + . The purely cross-sectional variation of the individual means gives us
T

information on both the slope and the overall constant in the regression This is often called the between

groups regression In many panel data problems purely cross-sectional variation may dominate, but this

variation may not give us much information about the true value of the slope of the independent variable if the

regression also contains a lagged value of the dependent variable. The residual SS/N = RSSB/N from this

regression estimates a +
E2
. But it will not be a very good estimate if the regression is estimated by OLS,

T
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since (7) will tend to fit too well if cross-section variation dominates the data." ap2 is then estimated as

2
, -p-, where an estimate of a; can be obtained from the fixed-effects regression. If T is large, the

estimated value of a2 is not likely to be negative no matter how well the between groups regression fits. But if

T is small, and particularly if the regression contains a lagged value of the dependent variable on the n -hand

side. the chances of obtaining a negative, and therefore =acceptable. estimate of p are high irrespective of the

validity of the mode1.15

(c) Generalized Least Squares and Feasible GLS

The means or between regression and the fixed-effects regression both contain information about the

parameters of the model: The means regression  reflects purely cross-sectional variation; whereas the fixed-effects

regression reflects the individual variation over time. GLS combines these two types of information with weights

which depend on the characteristic roots of = o-2 Q. The individual means themselves are weighted by the

reciprocal of the square root of = 1 - p+ Tp, while the deviations from these means are weighted by the

reciprocal of the square root of Ti = 1-p. A representative transformed observation is

112— -112,
Yit= Yi.+ kYit = 1, N, t = 1 . , T .

For example, when a lagged value of the dependent variable is included as one of the explanatory

variables, its mean may be very close to the mean of the =lagged variable; then the fit of (7) may be

nearly perfect. The estimated residual variance may be close to zero in this case. In general, if there is a

lot of associated cross-sectional variation, the residual of this relationship may be very small. If combined

with the estimate of ac2 obtained from the within regression, the implied estimate of ai,,2 may well turn out

to be negative (see Greene, pp. 474-476). But this does not imply that the model is rnisspecified. Bales=

and Nerlove (1966, p.607) suggest estimating o-02 from the fixed-effects model as the "variance" of the

implied constant terms: a = y - 
2

, where /3 is the OLS estimate of p in
N

that regression. This suggestion is the one implemented in Nerlove(1971). Alternatively, if a regression

with dummy variables for each individual, overall constant suppressed, has been estimated, it suffices to

compute the variance, sum of squared deviations from the mean value divided by N, to estimate

15 In footnote 21, section 5,! compare three different estimates of p based on the above OLS regressions: (1)

the original suggestion of Balestra and Nerlove (1966); (2) an estimate based only on the fixed-effects regression

(Nerlove, 1971); and the suggestion of Judge (1988) and Greene (1993), which is the basis for most computer

packages doing panel econometrics. The first, and earliest, suggestion generally yields results closer to the

maximum likelihood estimates than the others. The second yields estimates which are generally considerably

higher. The last yields results which are far too low and often found to be negative, although not in the results

reported here. I have presented estimates of p obtained by all three methods and compared them with estimates

of p obtained from conditional and from unconditional maximum likelihood below in the Table in the footnote.
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T'hus y iit s a weighted combination (weighted by the reciprocals of the square roots of the characteristic roots of

c2) of individual means of the original observations 71. and deviations from individual means (yif — 71). The

other variables are similarly transformed to xi: and y: (-1) . GLS amounts to running the OLS regression:

(8)
* (2.

Yit = + fir: + • ± 
v.

v, is the transformed disturbance. Note that the constant has a different interpretation.

Let 02=//.,.....( -1/2/1-1/2, )2 be the relative wei t of the between variation to the within variation.

Note that this weight tends to 0 from above as T co , i.e., the within information dominates. For T small,

02< 1, so that the between variation is allowed top . a grazier role. When the intraclass correlation, p, is close

to one, the unobserved, residual cross-section variation is large relative to the unobserved individual

1
variation. 02 = - 

1
-, is smaller for fixed T than when p is small. Between information-

a -1 + T  P 
1 - p2a E

gets a lower relative weight when p is large than when p is small, which corresponds to the usual weighting of

data from sources with varying degrees of error.

To obtain an estiznate of p for use in a feasible GLS, I prefer to obtain both an estimate of ac2 from a

fixed-effects model and then an estimate of& from the pooled regression, as indicated above. Although this

estimate is not consistent it is never negative and, empirically it gives, at least the appearance of, a ti ter upper

bound to the true value of y than the pooled regression does and a closer approximation to the ML estimate.

(d) Bounds for the Coefficient of the Lagged Dependent Variable.

As Maddala (1971) has pointed out, the GLS estimates with X = 1/02 can be considered members of a

more general class of estimators obtained through different choices of. Let 1, (A) be the estimator of y

obtained by solving the GLS normal equations for an arbitrary value of?.. Sevestre and Trognon (1996, pp.

130433) show that for the case in which 13 =0, the purely autoregressive case, the following inequality holds:

(9)
p lirn 7; (0) < r <piimi(A) < plim (1) <plimi(00)
fixed effects GLS OLS pooled means
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Remarkably, the GLS estimate is inconsistent even when a consistent estimate of p is used to compute FGLS

estimates. The problem is that the lagged dependent variable is correlated even mith the transformed disturbance.

Since plimi,(2) is a continuous function of k. there exists a value k* in the interval [0, 1/02] for

which plirni, (A) = y . Sevestre and Trognon (1983) show that this value is

(10)

.1.* = K(1- p) I {
(1- yT )E(y A)

1° + lq),
(1-- y)o

.,
--

-- r
where K = 

T 1 Ty +y 
 , and p, , and a' are as before.

T(1— y)2

They also show that when 13 0, the estimate ŷ (2) behaves almost the same as in the purely autoregressive

case. Since the 2,..* estimate is consistent when there are no exogenous variables, it remains so when there are.

The trick is to obtain a consistent estimate of?* which can be accomplished by finding an appropriate

instrumental variable for y_i . Even in this case the results depend heavily on the distribution of the estimate of

k*.

In the dynamic error-components model, not only are the OLS pooled regression estimates the fixed-

effect or within estimates, and the between estimates inconsistent, but so are the GLS estimates using the true

value of p. However, the method of instrumental variables may be used to obtain a feasible member of the k-class

of estimates which is consistent (See Sevestrc and Trognon. 1996.) Unfortunately, this estimate may have a very

large variance, as demonstrated in Nerlove (1971).

Nonetheless, the fixed-effects and the pooled regressions may be used to bound the true value of y even

when exogenous regressors are also included. Empirically, I have found that FGLS appears to provide an even

tighter bound, although since FGLS is also based on an inconsistent estimate of p, there is no guarantee that this

is in fact an upper bound.

(e) Maximum Likelihood Conditional on the Initial Value of the Lagged Dependent Variable.

When the likelihood function for the model (2) with u = µi + si, — N(0, ci20) is derived in the usual

way from the product of the densities of yff conditional on x. and yii.i , the joint density is conditional on yio. This

likelihood function can be written in terms of the earlier notation introduced as
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(11) log L(a , f3, 7, 0-2Elyi , • - • , Y NT ;X11)• • •XNT ;Y101• • • YNO)

N (T 1
= —

NT
log 2g — —

NT
log cr
2N

log
2 2 2

N T

2 -fix;; 
.)2

2Y:t--1)2
La 1.1 t=1

where y*, x* and y*.i are the transformed variables. Since

og 77

1
= 

1 — (A, — 1) 1 T
and ri = , logL can be e.xpressed as a ftinction solely of , (72, p, and

y. Trognon (1978) shows that, when the exogenous variable x is generated by a first-order autoregression with

white noise input, wn (0, as.' 1), also assumed in the Monte Carlo experiments reported in Nerlove (1971),

(12) x = + w ,

maximization of the conditional likelihood function (12) yields boundary solutions P = 0 , which, unlike

interior maximum likelihood solutions, are inconsistent, for a considerable, and indeed likely, range of

parameter values. In particular, there is a value of y in (2),

=
(T + 1)2

(T-3)2

such that when y <y* there exists an interior maximum of (11) which yields consistent ML estimates, but that

when y y* there are values of p for which the conditional likelihood function (2) is maximized at the

boundary p =0, i.e., for the OLS estimates of the pooled regression, which we know to be inconsistent The

problem is that when T is small the permissible range of y, the coefficient of the lagged dependent variable is

implausible (e.g., negative or very small). For example, for T =5. y* = -0.11, while for T = 10, y* = 0.34. When

y y*, whether or not an interior maximum with consistent ML estimates occurs depends on the value of p: For

p <p* boundary maxima occur where
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2
= T

+ 1) 

1) fl 

T (y y(1

y

- y5)-
,

Cr 2„
For example, when T = 5,13 = 1.0. y = 0. 75, 5 = 0.5, and = 1.0, y* = -0.11 and the critical value of p is

a 2

p* = 0.31. That means that any true value of the intraclass correlation less than 0.31 is liable to produce a

boundary solution to (11) p =0 and inconsistent estimates of all the parameters. Using these results. Tro

(1978) is able to replicate the Monte Carlo results reported in Nerlove (1971).

LI Ion

Even though ML may yield inconsistent estimates when the nonnegli Ile probability of a boundary

solution is taken into account, it is nonetheless true that the likelihood function summarizes the information

contained in the data about the parameters.' 6 From a conventional. Neyman-Pearson point of view what

matters about the likelihood function is only its maximum and curvature in the neighborhood of the

maximum, and all the desirable properties and the assessment of the reliability of the maximum-

likelihood estimates are only asymptotic. That only the maximum and the Hessian at the maximum are all

the matters from a conventional point of view is perhaps not surprising in view of the fact that for the

mean of a normal distribution the quadratic approximation is exact and because of the central limit

theorem in its many forms many estimators, including fvfL estimators in regular cases, tend to normality

in distribution. So the problem of possible inconsistency of the MEd estimates should not concern us unduly

from the standpoint of likelihood inference. It is the whole shape of the likelihood function which

expresses what the data have to say about the model and its parameters which matters." For this reason,

sections of some of the multidimensional likelihood functions are also presented in the next section. When first

16 Although clearly implied in what Fisher wrote in the 1920's (Fisher, 1922 and 1925), the likelihood
principle, which essentially holds that the likelihood function is the sole basis for inference, did not come
into prominence until the 1950's and 1960's, principally through the work of Barnard. Birnbaum, and
Edwards (see the references cited below) written largely in reaction to both the classical Neyman-Pearson
(fre,quentist) and the Bayesian approaches to inference. A good recent discussion is Lindsey (1996).
17 The principle of likelihood inference and its application to dynamic panel models is elaborated in
Nerlove(1997). A maximum at the boundary conveys perfectly valid information about the parameter in
question, just as does a near-plateau solution at which the assymptotic standard errors derived from the
information matrix are huge. More importantly the existence of two or more local maxima at not very
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differences are taken to eliminate a linear deterministic trend, the individual-specific time invariant effects

become differences in the trend slopes. This makes the interpretation of the model in first-difference form

different than that in levels. Moreover, the time- and individual varying disturbance is now likely to be serially

correlated, a fact which needs to be taken into account in the formulation of the unconditional likelihood

function. A parallel set of results for the country-specific trends model is presented below.

Unconditional Likelihood and Unconditional Maximum Likelihood

While it is not guaranteed that a boundary solution to the likelihood equations is obtained, which would

yield ML estimates which are inconsistent, it is apparent, as suggested above, that in panels with a short time

dimension the initial values provide important information about the parameters of the model. and to condition

on them is to neglect this information.

It is not, in fact difficult to obtain the unconditional likelihood function once the marginal

distribution of the initial values is specified. The problem is a correct specification of this distribution. If

ly1 1 or the processes generating the xit are not stationary, it will not, in general be possible to specify the

marginal distribution of the initial observations. I will assume that, possibly after some differencing, both

the yg and the xi, are stationary. The derivation of the unconditional likelihood function in the case in

which deterministic or stochastic trends are included is contained in Nerlove (1997).18

different likelihood values but widely separated values of the parameters, such as I have obtained in the
case of regional Indonesian data, is even more revealing.
18 Adding trend, t, to (2)
(2') y it = a + + rit +A+ ei„ i=1 ,...N , t=1,...T, and slifferencing,
(2") Dy,t = /36a11 + + r, + i=1,...N, t=1,...T,

where A denotes the first-difference operator and xi is the individual-specific trend coefficient, assumed
to have mean zero (enforced by eliminating any overall constant in the differences by deducting the sample
means). Thus, not only is the meaning of p altered, but if c did not contain a unit root to start with it will now;
in particular, if eg is not serially correlated to start with, it will follow a first-order moving average process with
unit root. The variance -covariance matrix of the new disturbances ti+Acit is now block diagonal with blocks:

= cr2

_
1 a b ...b

a I a b . .

b a I a...

...1

2 2 2

2 2 ar -
where a = a; + as ,a - , and b0_2 2cr 
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Under this assumption, the dynamic relationship to be estimated is stationary and lyl< 1.

Consider equation (3)19 with the intercept eliminated, for yo and the infinite past: •

1 
(13) .Y.0 = y 3x11 + + v,0 ,where v„ =  

e;, .20

1=1 
1— 

If (3 = 0, so that the relationship to be estimated is a pure autoregression for each yk, the vector of initial

values yo = (yio, yNo)' has a joint normal distribution with means 0 and variance-covariance matrix

2 2
07

2
CT, \[ P , c721IN = 

eff

 P   )I N . The unconditional likelihood is therefore
(1 — 

r )2 1 _

(14) log L,(7,p,ap2 (7E2 IY11 3•••,YAT ;•••0110 /•••,YNO)

NT—1 
, NT , N N (T — 1)  

log l7og 1,1"— —t 7oga- — —iogg
2 2 2 2

1 N T

27 it-1) —7-er (Yit YY. 2
1=1 (=I

,r2a2

P 
— logk 2  2

Y

1

-20 0-2
2( P 2  
(1 — 7) 1-7

The characteristic roots of A give the necessary transform and Jacobian. This is taken into account in the

formulation of both the conditional and the unconditional likelihood functions. As indicated, however,

differencing is tumecessary when the initial values are conditioning.
19For a particular time period T and the infinite past

1 —
y sr = +E 'A_ +  + v1 ,where v,T ErJeiT-, . Since 1 hrl and

j=0 j=0

ViT jeir_j LS the MA form of a fast-order autoregression with white noise input, equation (13) follows.

j=o

20 If all variables are expressed as deviations from their overall means, there is no need to include an intercept; if

not. IA, should be replaced by a +
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This likelihood function can easily be concentrated: To maximize, express crp,2, ac2,E andl in terms of p and y.

For given p and y in the interval [0,1), concentrate the likelihood function with respect to cr2 . It follows that

RSS * (y ,o)
' where RSS * (7, A - ±(EYi20 /[(1 f 

1—
Pr)2 + 1_ r2 I'* *N(T +1) 1=1 t=1 i=1

Thus. the concentrated LF is

N(T+
1)log2 

N N(T—l)
n--logglogL*(r,p)=— 2 2

N(T 1)  
log
{RSS*(7,/ N  p  1— pl

2 N(T —1) 2 (1-7)2 1—r2

T

(Y2RSSolN(T+1)ZEo,:, -)2 —±y,20 / {(2/ N(T+1))[ P + 1— PlIZSS*)
1=1 t=1 (1 --r)2 1-72

Maximizing L* is quite a bit more complicated than the usual minimization of the sum of squares in the

x---‘N
penultimate term because RSS*, in that term, depends on 2y,70 , as well as on p and y , which enter the

final terms as well. When p# 0, things are more complicated still. But more important than finding the

maximum of L* is its shape above the y-p plane. It is apparent from the results presented below that there may

be significant trade-offs between y and p without large effects on the value of the likelihood.

Various alternative specifications of the likelihood function are considered in the literature are reported

and analyzed in Sevestre and Trognon (1996, pp. 136438).21 Considerable simplification, however, can be

obtained if, following Nerlove (1971), we are willing to assume that xi, follows a well-specified common

stationary time-series model for all individuals i. The first term in (13) is

21 One interesting possibility discussed by Sevestre and Trognon(1996, p. 136438) is to choose y10 a
linear function of some observed individual-specific time-invariant exogenous variables and a disturbance
which is decomposed as the sum of the individual-specific disturbances µ; and a remainder. The first-
order equations for maximizing the likelihood then take on a simple recursive form when p= 0, and
permit other simplification when # 0. But if we knew some individual-specific time-invariant observed
variables influenced behavior why not incorporate them directly in (2) , the equation to be estimated?
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pio = 18E7' . Hence, for any stationary processes xi, ,which may be serially correlated.
i=o

vki variances

(15)

9it Eit-1

/3 fi -it

ei8
2
Cr
2

,r 2 • xt 

— y 2

If we suppose that the variance of the xg is the same for all i. then the random variable

CIO

0„ = 7) /-J

has a well defined variance which is the same for all i and a function of f3, y, and ax2 This then enters the

final term in the unconditional likelihood (14), which now becomes:

(16) log 1,(13,7,o-,2,cr,21y1,

NT N(T-1) 
-
N(T +1)  

log2r- —2 log a2 — —2 - 2 log 77
2

I N T

—TEE(
•

— •Yit leXit lY1t-1)22o- 7=1 1.1

- .11T log( 
)32 a

2
a
2

  -
2 1-y2 (1---7)2 1-r- 162 0_2 a2

a2

2( x + 2  c

1-y2 (1-7) 1-7

y2
E 2

1=1

Concentrating the likelihood function to permit a one or two-dimensional grid search is no longer possible. Nor

is it possible to graph the likelihood surface with respect to variations in all of the parameters. Although "slicing"
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the likelihood function along any hyperplane in the parameter space can reveal the trade-offs between any pair of

parameters. If gradient or search procedures yield and interior maximum. the ML estimates obtained are

consistent as long as the random variables 0, = I fix . have well-defined variances and oovariancels,
j=0

which they will if the xi, are generated by stationary a process. It doesn't really matter what this process is as long

as it is stationary. Besides, since the xit are assumed to be exogenous, we really have no basis on which to model

their determination and are likely to misspecify this part of the model. In this sense we ought to prefer this kind

of "almost full-information" maximum likelihood. Still we have to assume something about the variance of the x

process in order to proceed. I suggest estimating ax2 from the sample data.

To generalize these results to the case in which their are several explanatory variables in addition to the

lagged value of the dependent variable, assume that X follows a stationary VAR process and replace f3x*„ by

x4.43 and fl2cix2 by PE xt,f3 in the above forrnuLa.

4. Empirical Evidence on the Comparative Performance of Different Panel Data Methods

In order to examine the effects of the econometric methods employed on the finding of growth

rate convergence or the lack of it, I initially used data on 94 countries for the period 1960 - 1985, and a

subsample of 22 OECD countries, from the Penn World Tables 5.6, publicly available from the NBER

web site at ftp://nber.harvard.edu/pub/. This is the same data set which has been used in dozens of

previous studies. Following Islam (1995), s and n were computed as quinquennial means over the

preceding 5-year span for the 5 years 1965, 1970, 1975, 1980, 1985; y was taken as the value reported in

that year and in 1960 for the lagged value applicable to 1965. The results of the six methods applied to

these data are reported in Table 1 for the usual undifferenced model. Table 2 reports the results for the

country-specific trends model which requires differencing to reduce the process to stationarity. In this

case, the conditional and unconditional likelihood functions are defined for the first differences of the

original data.

I have listed the regression methods in the order in which the corresponding estimates of y

appear in the inequality of Sevestre and Trognon (equation 9 above). These estimates are followed by the
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maximum likelihood estimates conditional on the initial values yio or yj and the ML estimates

unconditional on the initial values, assuming stationarity of both the processes generating the exogenous

variable and real GDP per capita. In a substantive study of growth rate convergence, it would clearly be

important to include additional explanatory variables such as, for example, the stock of human capital,

also available at the NBER intemet site, infrastructure investment, and so forth. However, my focus here

is on properties of alternative estimators and for this purpose, omission of relevant variables simply

increases the unexplained disturbance variance and thus heightens the contrast among alternative

estimators.

Turning now to the regression estimates presented in Table I (Tables I and 2 appear at the end

of the paper): Consider the first four methods. The estimates of y for the 94-country sample range from a

low of 0.72 (fixed-effects regression) to a high of 0.98 (country means regression) with pooled OLS and

FGLS falling in between.22 For the OECD countries the range is 0.76 to 0.93. The implied speed of

convergence thus ranges from 90% in 35 years to 90% in 570 years. None could be characterized as

evidence of reasonably rapid convergence. All of the estimates of y satisfy the Trognon-Sevestre

inequality, although the regressions contain an exogenous explanatory variable in contrast to the case

22 In the following Table, I present the three estimates of p discussed above as possible candidates for the
transformation involved in FGLS for the 94-country sample and the model in levels. It is argued above
that the Greene-Judge estimate is sharply biased downwards and prone to be negative; similarly, the
argument Nickell gives with reference to the downward bias in the coefficient of the lagged dependent
variable in a fixed-effects regression suggests that the other coefficients will be biased upwards, including
the variance of the estimated fixed effects, Coupled with a downward bias in the estimate of the residual
variance in the fixed-effects regression, this provides an explanation of the extremely high estimates
obtained by the Nerlove (1971) method. It is interesting to note that the Balestra-Nerlove estimate, while
substantially higher than the GJ estimate (it can never be negative) is, nonetheless, not too far out of line
with the estimates of p obtained from the conditional likelihood function for the OECD countries and for
both the conditional and unconditional likelihood functions for the 94-country sample.

Method 94-countries 22-countries
Balestra-

Nerlove(1966) 0.2678 0.4027

Nerlove(1971) 0.7790 0.7038

0-3(1983/88) 0.0983 0.0804
Conditional ML

0.1133 0.4796
Unconditional ML

0.1288 0.7700
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,

considered by Sevestre and Trognon. Pooled OLS and FGLS also stand in the order predicted by the

Sevestre-Trognon results. While it is tempting to infer that FGLS provides a tighter upper bound to the

time value of y than the pooled OLS regression estimate, the temptation should be resisted. The FGLS

estimates are doubly inconsistent: they are based on an inconsistent estimate of p reflecting the

inconsistency of the estimates of the residual variance and the fixed effects depending on which

regressions they are derived from. Not only is the estimated value ofp sensitive to the method of

estimation but the estimate of a, the elasticity of output with respect to capital stock in the production

function is extremely so, reflecting the dependence of the estimated value on the coefficient of the lagged

dependent variable. y. This parameter should estimate approximately (1 - the share of labor in the real

GDP). It is clear that all of the estimates of a are wide of the mark. If therefore one were to infer policy

implications from this parameter, it could be seriously misleading.

The most interesting estimates are those for conditional and unconditional maximum likelihood

presented as methods 5 and 6 in Table 1 and 2 for the level model and the first-difference model,

respectively. For the model in levels and the 22-country OECD sample, these estimates differ quite a bit

from one another, although unconditional ML is not far from the fixed-effects OLS regression, while

conditional MIL yields results close to FGLS using the Balestra-Nerlove (1966) first-round estimate of p.

For the 94-country sample, the conditional and the unconditional ML estimates differ little from one

another. They are close to the pooled OLS regression estimates (a consequence of the fact that the

estimated value of p is small although significantly different from zero), but are both quite different than

any of the inconsistent regression estimates. The estimates of 0 are quite insensitive to the method used,

presumably because the estimates of y are not very different; consequently the implied estimates of a are

similar, albeit different for the two samples. While the results for the first-difference model are quite

different from those for the levels model, the same pattern of relation between conditional and

unconditional estimates emerges.

To understand better the relation between the conditional and the unconditional ML estimates,

consider the log of the ratio of the unconditional to the conditional likelihood, i.e. the marginal density of

Yio:
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log (unconditional / conditional likelihood ) =

N 
/32a2
 pc72 (1 (72

log2z — —log( x2 + +  -)
2 2 1— y (1— y)- 1—y

Let the sample variance of yr° be varyo and let

Then

na2 11 _ ,)0.2
P  + v )•
l-72 (1—y)- 1—y-

log (unconditional / conditional likelihood ) = f (92 ) =

R2 (72 
per2 

47.2

xm, + 
1-r- (1-r)2

+  1_72

N N [N  var Yo 1og27r —
2
log(9- ) 292 1.

The maxima of the two likelihood functions will occur at about the same values of the parameters on which cp

depends when dge) is close to zero, which occurs at Cp2 = varyo. At the unconditional ML estimates for the

levels model, for example, for the 94-country sample, at (p2 = 0.91 and varyo =0.80, while, for the 22-country

sample, Cp2 0.25 and varyo = 0.26.

Table 2 presents parallel results for the first-difference model. Once again the first four estimates of y

fall in the order to be expected from the Trognon-Sevestre inequality, although they are all lower than for the

levels model, in the first three cases much lower, implying much more rapid convergence to equilibrium. The

estimates of all the parameters are much different for the 22-country sample and quite variable. Perhaps the most

interesting findings, however, are for the conditional and unconditional ML estimates. Once the estimates of p

for the 94-country sample are quite close to one another and those for the 22-country sample far apart. but now

there is a remarkable reversal of the magnitudes of p and? as between the 94-country sample and the 22-country

sample: For the former p is about one-half of the estimated value for y, but in the case of the 22-country sample p

is only a small fraction of the estimated value of y.
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Further insight into the nature of the conditional and unconditional likelihood functions for the two

samples can be obtained graphically. Having eliminated the constant term by taking deviations from the overall

means of all variables, we are left with four parameters: p, 7,13 and .32. Figure 1 plots the =conditional

likelihood function for the 94-country sample, levels model. Figure 2 plots the likelihood function for the

22-country sample, levels model. Likelihood functions are plotted in Figures 3 and 4 for the first

difference model, respectively for the 94- and 22-country samples. (Figures appear at the end of the

paper.) I have plotted both three-dimensional likelihood surfaces for pairs of variables and two-

dimensional contours. "Slices" are taken at the likelihood maximizing values for the parameters not

plotted. These plots clearly reveal the implications of the data for the "interactions" between pairs of

parameters. Although there are 1 = 10 possible pairs to consider, I focus on the crucial pairs: p vs. y(
2

and 13 vs. a2 .

Although the likelihood reaches a unique maximum in every case, which is quite well-defined, it

is clear that there are significant trade-offs between each pair of parameters. In the case of the 22 OECD

countries, the unconditional ML estimates are precisely determined. As suggested above, this is because

for small N, the weight of the initial observations and the parameters determining them is more

substantial than for large cross-sectional samples. As indicated above, the likelihood function is sufficient

for the parameters of the model and provides useful insight into what the data tell us about these

parameters quite apart from the values that maximize it.

5. Conclusions

The principal conclusion that can be drawn from this analysis is that, in panel data econometrics,

method matters — a lot. Although, using a highly simplified Solow/Swan model without human capital

stocks or infrastructure, I have found estimates of the adjustment parameter significantly different than

one in every case, indicating convergence. All of the estimates for the model in levels, however, are so

close to one, always greater than 0.7, that convergence to within 90% of equilibrium in less than one

generation is effectively ruled out. This can hardly be called "convergence" in any relevant sense.

Moreover, the estimates range from 0.72 to 0.98, suggesting a convergence range of from 33 to over 500
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years, with most clustering around 0.8. underscoring the importance of choice of econometric method.

When the model is estimated in first-difference form, the estimates of y are much lower, indicating rapid

convergence in the case of the 94-country sample. The method of choice. unconditional ML, yields well-

defined and reasonable estimates in every case. Much of the variation in estimates of the speed of

convergence appears to be due to trade-offs between the crucial parameter p, which measures the

importance of unobserved cross-sectional variation relative to total residual variation, and y, which

measures the speed of adjustment. For this reason, it is especially important to introduce other relevant

variables, such as infrastructure investment and human capital stock, in order to reduce the importance of

unobserved cross-sectional variation..

A second important finding is that the Sevestre-Trognon inequality, proved only for the case

13 = 0, and then only asymptotically, holds for all the examples presented. Indeed, fixed-effects OLS

always yields estimates of the adjustment parameter at the extreme low end of the range of estimates

obtained. The "bias" of fixed-effects models in the estimation of dynamic panel models is apparent. In this

context, the use of such methods biases a test for convergence, or more appropriately rapid convergence,

towards finding it. Fixed-effects models, however, are widely used, in part because they are the basis for

two-round FGLS estimators, and because computer packages for panel data analysis incorporate an

extremely misguided suggestion for estimating p, guaranteed to yield extremely low or even negative

values of this parameter. These packages should be avoided, and, if they are used and do yield a negative

estimate, it should not be concluded that the model is misspecified or that fixed-effects are a preferable

alternative. Fixed-effects OLS remains badly biased in a dynamic context irrespective of whether the

packaged routines fail.

I do find, however, that FGLS, using the Balestra-Nerlove (1966) estimate of p, which can never

be negative, always lie between the fixed-effects OLS estimates and the pooled OLS estimates, which are

known to yield upwardly biased estimates of y. It is not appropriate to conclude that these FGLS estimates,

however, represent a tighter upper bound to the true value of y, since they are doubly inconsistent

estimates and may lie below the true value. This is underscored by the finding that both conditional and
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unconditional MI. yield different estimates of p and 7, sometimes higher and sometimes lower than FGLS.

The interaction between p and 7 is crucial in this regard.

Finally, maximum likelihood, unconditional on the initial observations, assuming them to be

stationary and generated by the same dynamic process we are trying to estimate and assuming the

exogenous variables also to be stationary, is feasible and indeed a viable alternative to conventional

regression methods or conditional ML. Use of such methods will, however, generally involve removal of

the overall means of all variables prior to analysis and omission of a constant term and may also involve

differencing to remove deterministic or stochastic trends. formulation of the unconditional likelihood

function is somewhat more complicated in the case of differenced variables but, as demonstrated, quite

feasible nonetheless. The unconditional and simpler conditional ML method may yield similar results

under certain circumstances, but cannot generally be expected to do so.
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TABLE 1: PARAMETER ESTIMATES FOR THE MODEL DI LEVELS,
ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS 94-COUNTRY SAMPLE 22-COUNTRY SAMPLE

1. Fixed Effects OLS

7

P
Implied a
Residual Variance

2. Feasible GLS
Estimate of p used*

I

0
Implied a
Residual Variance

3. Pooled OLS

I

13
Implied a
Residual Variance

4. Country Means OLS

Y

o
Implied a
Residual Variance

5. Conditional ML

P
Y

13
Implied CC
Residual Variance

6. Unconditional ML

Estimates of crx2 used

P
Y

P
Implied a
Residual Variance

0.7204 (0.0211)

0.1656 (0.0172)

0.3719 (0.0278)
0.0113

0.2675

0.9130 (0.0119)

0.1520 (0.0135)

0.6362 (0.0247)
0.0213

0.9487 (0.0090)

0.1244 (0.0108)

0.7080 (0.0271)
0.0193

0.9817 (0.0112)

0.0919 (0.0138)

0.8339 (0.0704)
0.0047

0.1133 (0.0497)

0.9339 (0.0122)

0.1370 (0.0131)

0.6744 (0.0289)
0.0194 (0.0013)

0.0826

0.1288 (0.0456)

0.9385 (0.0105)

0.1334 (0.0124)

0.6846 (0.0277)
0.0197 (0.0013)

0.7645 (0.0166)

0.1634 (0.0510)

0.4096 (0.0783)
0.0020

0.4027

0.8282 (0.0156)

0.1913 (0.0422)

0.5269 (0.0579)
0.0047

0.8857 (0.0125)

0.1764 (0.0308)

0.6067 (0.0452)
0.0041

0.9320 (0.0148)

0.1493 (0.0343)

0.6870 (0.0593)
0.0580

0.4796 (0.1584)

0.8189 (0.0245)

0.1908 (0.0438)

0.5131 (0.0664)
0.0052 (0.0012)

0.0069

0.7700 (0.0731)

0.8085 (0.0228)

0.1815 (0.0521)

0.4865 (0.0791)
0.0113 (0.0028)

Fi res in parentheses are standard errors.
* Estimated by the method suggested in Balestra and Nerlove (1966).



TABLE 2: PARAMETER ESTIMATES FOR THE MODEL IN FIRST DIFFERENCES,

ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS 94-COUNTRY SAMPLE 22-COUNTRY SAMPLE

1. Fixed Effects OLS

Y

0
Implied a
Residual Variance

2. Feasible GLS .
Estimate of p used

Y

13
Implied a
Residual Variance

3. Pooled OLS

1

13
Implied a
Residual Variance

4. Country Means OLS

I

13
Implied a
Residual Variance

5. Conditional MI,

P
Y

P
Implied a
Residual Variance

6. Unconditional ML

Estimate of ax2 used

P
I

13
Implied a
Residual Variance

0.4007 (0.0375) 0.4544 (0.0611)

0.1199 (0.0187) - 0.0126(0.0637)

0.1667 (0.0246) .0.0237 (0.1209)

0.0077 0.0014

0.4866 0.3628

0.4227 (0.0406) 0.5833 (0.0531)

0.1520 (0.0135) 0.1913 (0.0422)

0.1864(0.0259) 0.1322 (0.1218)

0.0213 0.0047

0.7031 (0.0328) 0.6237 (0.0453)

0.1632 (0.0195) 0.0845 (0.0586)

0.3548 (0.0373) 0.1834 (0.1121)

0.0141 0.0022

0.9178 (0.0471) 0.7215 (0.0572)

0.1719 (0.0339) 0.1174(0.0978)

0.6763 (0.1263) 0.2965 (0.1873)

0.0041 0.0005

0.2267 (0.0664) 0.0126 (0.0405)

0.4540 (0.0651) 0.6187 (0.0490)

0.1368 (0.0208) 0.0815 (0.0601)

0.2004 (0.0358) 0.1762 (0.1159)

0.0122 (0.0009) 0.0021 (0.0003)

0.0597 0.0058

0.2335 (0.0632) 0.0936 (0.0696)

0.4364 (0.0578) 0.7254 (0.0512)

0.1340 (0.0201) 0.1478 (0.0727)

0.1921 (0.0317) 0.3500 (0.1326)

0.0120 (0.0008) 0.0027 (0.0004)

Figures in parentheses are standard errors.
* Estimated by the method suggested in Balestra and Nerlove (1966).
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Estimated values: p = 0.130 (0.0417); y = 0.938 (0.0105);
= 0.134 (0.0124); or2 = 0.0197 (0.0013).
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FIGURE 2: UNCONDITIONAL LZKELIHOOD,22-COUNTRY SAMPLE,
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Estimated values: p = 0.770 (0.0740); y = 0.808 (0.0230);

= 0.180 (0.0520); ar2 = 0.0113 (0.0029).
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FIGURE 3: UNCONDITIONAL LIKELDIOOD, 94-COUNTRY SAMPLE,
FIRST-DIFFERENCE MODEL

Estimated values: p 0.234 (0.0632); y = 0.436 (0.0578);
= 0.134 (0.0201); cr2 = 0.0120 (0.0008).
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Estimated values: p = 0.094 (0.0696); y 0.725 (0.0512);
= 0.148 (0.0727); cr2 0.0027 (0.0004).


