
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Likelihood Inference for
Dynamic Panel Models

by
Marc Nerlove

WP 98-16

Waite Library
Dept. of Applied Economics
University of Minnesota
1994 Buford Ave - 232 ClaOff
St. Paul, MN 55108-6040 USA

Department of Agricultural and Resource Economics

The University of Maryland, College Park



37p75
D3V

- i‘

files/papers97/ParisfLikelihoodPanel.doc FINAL REVISION 03.31.98 © Marc Neriove 1998
To be published in L'Annales d'Economie et de Statistique de l'INSEE in late 1998.

Comments welcome.

Likelihood Inference for Dynamic Panel Models

Marc Nerlove
Department of Agricultural and Resource Economics

University of Maryland
Tel: (301) 405-1388 Fax: (301) 314-9032

e-mail: mnerlove@arec.unid.edu
homepage: http:thvww.arec.umd.eduirnnerlove/mnerlove.htm

ABSTRACT

Ole likelihood principle is applied to the problem of inference in dynamic panel models. The
principle states that the likelihood function contains "...all the information which the data provide
concerning the relative merits of..." alternative parametric hypotheses. The usual asymptotic theory of
maximum likelihood is based on a quadratic approximation to the likelihood function in the nearby
neighborhood of a local maximum of the function. One needs to look at the entire function more broadly
in order to ascertain the true significance of the data for the hypotheses under consideration, not only
because of the possibilities of multiple local maxima and boundary solutions, but also because the data are

typically differentially informative with respect to different regions of the parameter space. In order to
handle cases in which the likelihood function depends on more than two parameters, The devices of

"concentrating" and of "slicing" or sectioning the function in the direction of a hyperplane or surface

reflecting the variation of all but two of the parameters are introduced. The likelihood functions for two

basic dynamic panel models: (1) a model involving individual-specific effects which reflect the influence

of latent time-persistent variables; (2) a model involving individual-specific time trends which reflect the

nonstationarity introduced by trending latent variables, are derived. The methods are applied to the

analysis of cross-country economic growth. The findings demonstrate the power and feasibility of general

methods of likelihood inference, especially to reveal problems of inference and areas of ignorancej

*This paper was prepared for the Seventh Conference on Panel Data Econometrics, 19-20 June

1997, Paris. The research on which it is based was supported by the Maryland Agricultural

Experiment Station, Project A-53. The paper will appear as MAES Paper No.
I am indebted to G. S. Maddala for his comments. to two anonymous referees for theirs, and to

Anke Meyer for numerous helpful suggestions and for her wise expository counsel. Jinkyo Suh

provided able computational assistance.
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What has now appeared is that the mathematical concept of probability is ... inadequate to express our

mental confidence or diffidence in making ... inferences, and that the mathematical quantity which usually

appears to be appropriate for measuring our order of preference among different possible populations does

not in fact obey the laws of probability. To distinguish it from probability, I have used the term

"Likelihood" to designate this quantity: since both the words "likelihood" and "probability" are loosely used

in common speech to cover both kinds of relationship.
R. A. Fisher, Statistical Methods for Research Workers, 1925.

Within the framework of a statistical model, all the information which the data provide concerning the

relative merits of two hypotheses is contained in the likelihood ratio of those hypotheses on the data. ...For a

continuum of hypotheses. this principle asserts that the likelihood function contains all the necessary

information.
A. W. F. Edwards, Likelihood. 1972.

You are living on a Plane. What you style Flatland is the vast level

surface of what I may call a fluid, or in, the top of which you and your

countrymen move about, without rising above or falling below it.

I am not a plane Figure, but a Solid. You call me a Circle; but in

reality I am not a Circle, but an infinite number of Circles, of size

varying from a Point to a Circle of thirteen inches in diameter,
one placed on the top of the other. When I cut through your plane as

I am now doing, I make in your plane a section which you, very rightly,

call a Circle. For even a Sphere—which is my proper name in my own

country—if he manifest himself at all to an inhabitant of Flatland

must needs manifest himself as a Circle.
E. A. Abbott, Flatland, 1884.

It was six men of Indostan
To learning much inclined,

Who went to see the Elephant
(Though all of them were blind),

That each by observation
Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

"God bless me! but the Elephant
Is very like a wall!"

The Second, feeling of the tusk,
Cried, "Ho! what have we here

So very round and smooth and sharp?
To me tis mighty clear

This wonder of an Elephant
Is very like a spear!"

The Third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

"I see," quoth he, "the Elephant
Is very like a snake!',

The Fourth reached out an eager hand,
And felt about the knee.

"What most this wondrous beast is like
Is mighty plain," quoth he;

"'Tis clear enough the Elephant
Is very like a tree!"

The Fifth, who chanced to touch the ear,

Said: "E'en the blindest man
Can tell what this resembles most;

Deny the fact who can
This marvel of an Elephant

Is very like a fan!"

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope,

"I see," quoth he, "the Elephant
Is very like a rope!',

And so these men of Indostan
Disputed loud and long,

Each in his own opinion
Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!

Moral:So oft in theologic wars.
The disputants, I ween,

Rail on in utter ignorance
Of what each other mean,

And prate about an Elephant
Not one of them has seen!

John Godfrey Saxe, "The Blind Men and the Elephant: A Hindoo Tale," 1880
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Preface

This paper applies the likelihood principle of Fisher (1921, 1922. 1925 and 1932),

Barnard (1949, 1951, 1966, 1967 and Barnard. Jenkins and Winsten, 1962) and Birnbaum

(1962) to the problem of inference in dynamic panel models.' Beginning with Chamberlain

(1984) an extensive literature on non-likelihood methods for estimation an inference about

dynamic panel models has emerged, much of it surveyed in Sevestre and Trognon (1996) and by

Baltagi (1996, Chapter 8, pp. 125 - 148). I do not propose to survey this literature here or to

compare the alternative estimates suggested with the results of likelihood inference, althoug
h

such comparison would no doubt be highly useful.

In section 1, I develop the principle that the likelihood function contains "...all the

information which the data provide concerning the relative merits of..." alternative parame
tric

hypotheses. The usual asymptotic theory of maximum likelihood is shown to be based on a

quadratic approximation to the likelihood function in the nearby neighborhood of a local

maximum of the function. I argue that one needs to look at the entire function more broadly in

order to ascertain the true significance of the data for the hypotheses under consideration, not

only because of the possibilities of multiple local maxima and boundary solutions, but also

because the data are typically differentially informative with respect to different regions of the

parameter space. In order to handle cases in which the likelihood function depends on more tha
n

two parameters, I introduce the devices of "concentrating" and of "slicing" or sectioning the

function in the direction of a hyperplane or surface reflecting the variation of all but two of the

parameters.

In section 2, I derive the likelihood functions for two basic dynamic panel models: (1) a

model involving individual-specific effects which reflect the influence of latent time-persistent

variables; (2) a model involving individual-specific time trends which reflect the nonstationarit
y

introduced by trending latent variables. In developing the likelihood functions for these two

leading cases, I argue for reduction of models of type (2) to stationary models of type (1) by

differencing. In this case, however it is necessary to modify the likelihood functions to reflect th
e

effects of differencing on the unobserved residual variation. The differenced model now has a

different interpretation from the original models of type (1) in that the individual-specific effects

now represent individual-specific trend slopes. I further argue that in stationary cases. which

include both levels models and differenced models, the initial observations of the dependent

variables contain useful information on the process which must have generated those

observations in the past, before the panel was observed, and that this information depends

positively on their variance and on the number individuals in the panel, and is thus of particular

importance for "shallow" panels.2

Although likelihood and inference from likelihood resembles Laplace's method of inverse proba
bility

(Laplace, 1774 - 1814), which provides the principal basis for the Bayesian approach to inferen
ce, Fisher

(1932) was a great pains to distinguish the two, and, indeed, was sharply critical of the use of p
rior

distributions, especially of the use of "non-informative" priors to represent ignorance.

Maddala (1971) discusses a similar problem, pooling cross-section and time-series data, from a

Bayesian point of view. The analysis with diffuse priors is similar a number of respects to that presented

here based on the likelihood principle. Some of Maddala's results are discussed below. As is the case
 with

much of the literature in this area, however, those about likelihood or maximum likelihood are ba
sed on a

likelihood function which conditions on the initial observations. Breusch's (1987) remarkable result,
 for

example, about the convergence of iterated Generalized Least Squares to the ML estimates holds onl
y for

the case in which the likelihood function is conditional on the initial observations in the dyna
mic case.
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Finally, in section 3, to assess the feasibility and power of likelihood methods for inference about
dynamic panel models. I use data on 94 countries for the period 1960 - 1985, and a subsample of 22
OECD countries, from the Penn World Tables 5.6, publicly available from the NBER web site. The 22-
country sample consists of primarily European countries, all highly developed and tied together by a
network of trading relations; the 94-country sample is much more heterogeneous, consisting of the
aforementioned 22 plus 72 additional countries ranging from Mozambique and Haiti to the "Asian
Tigers." This is the same data set which has been used in dozens of previous studies.

In an previous paper (Nerlove. 1996), 1 compared some commonly used methods of estimation in
dynamic panel models with one another and contrasted the results obtained from likelihood methods
which take account of the information contained in the initial observations about the process which must
have generated those observations in the pre-sample period. I showed that many of the earlier findings are
probably statistical artifacts arising from biases in the econometric methods employed. Here I focus
especially on the need to take advantage of the relatively large amount of information contained in the
initial observations and to take account of differing country-specific trends. Using a simple variant of the
Solow-Swan growth model widely used in recent studies of the convergence process, I demonstrate here
that likelihood methods which take account of individual-specific trends and of the information present in
the initial observations leads to acceptance of the convergence hypothesis, with the best-supported value of
conditional convergence in the order of about 90% within 13 or 14 years for a broad sample of 94
countries. The analysis demonstrates the power and feasibility of general methods of likelihood inference,
especially to reveal problems of inference and areas of ignorance.

1. Introduction: The Likelihood Principle

Although clearly implied in what Fisher wrote in the 1920's (1922,1925), the likelihood
principle, which essentially holds that the likelihood function is the sole basis for inference, did not come
into prominence until the 1950's and 1960's, principally through the work of Barnard, Birnbaum, and
Edwards (see the references cited below, Barndorff-Nielsen, 1988, and Lindsey, 1996) written largely in
reaction to both the classical Neyman-Pearson (frequentist) and the Bayesian approaches to inference
(Jeffereys, 1934, 1961; see also Press, 1989).

A statistical model consists of a random vector xeX of observations having a joint distribution

function F(x,0 ), with corresponding density f(x,9), depending on the unknown parameters es®. It is
assumed that F is known. The likelihood function determined by any given outcome x is defined as the

function on 0 equal to cf(x;0) where c is an arbitrary positive constant which may depend on x but does

not depend on B. Two likelihood functions defined on the same parameter space 8, whether arising from

the same "experiment' or from different "experiments," El and E2, are equivalent if their ratio is positive

and independent of 8 for all Oc® except possibly at points at which both functions are zero (so that the

ratio is undefined).

The likelihood principle asserts that for a given experiment E, the evidential meaning of any

outcome x, for inference regarding B is contained entirely in the likelihood function determined by x. All

other aspects of how the data may have been generated are irrelevant, e.g., the sample space, provided, of

course, that the sample space itself doesn't depend on B. It follows that if two "experiments," El and E2,

have pdfs gx,e) and gy,e), respectively, and if for some particular outcomes, x* of Ei and y* of E2,

f(x*,e) = h(x*, y*)g(y*,0), h(x*,y*) > 0, for all Os®,

then these outcomes must result in the same inference about 0.

Birnbaum (1962) derives the likelihood principle from the sufficiency principle and a still more

basic assumption, the so-called conditionality principle. This principle states that if an "experiment"
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involving 0 is chosen from a collection of possible experiments, independently of 0, then any experiment
not chosen is irrelevant to the statistical analysis. The conciitionality principle makes clear the implication
of the likelihood principle that any inference should depend only on the outcome observed and not on any
other outcome we might have observed and thus sharply contrasts the method of likelihood inference from
the Neyman-Pearson, or frequentist, approach, in which inference does depend crucially on a hypothetical
sequence of experiments, the outcome of but one of which is observed. In particular, questions of
unbiasedness, minimum variance, consistency and the like and the whole apparatus of confidence
intervals, significance levels, and power of tests, are ruled out of bounds. While maximum-likelihood
estimation does satisfy the likelihood principle (and thus sufficiency and conditionality), the frequentist
assessment in terms of asymptotic properties is irrelevant. In this paper, I apply the likelihood principle to
the problem of inference about the parameters of dynamic panel models and try to make clear the role of
the maximum of the likelihood function and its Hessian evaluated at the maximum in approximating the
whole of the likelihood function for purposes of inference.

The likelihood principle is clearly incomplete from the standpoint of inference since it nowhere
states how the evidential meaning of the likelihood function is to be determined. To the principle,
therefore, "likelihoodists" generally append the method of support ( a term coined by Jeffereys, 1934). The
support function is defined as the natural logarithm of the likelihood function. Since the likelihood
function incorporates an arbitrary constant, the support function is defined only up to the addition of an
arbitrary constant. Conventionally, this constant is often taken to be the value which makes support at the
maximum equal zero. In multiplicative terms, this is equivalent to normalizing the likelihood function by
dividing it by its value at the maximum. Only relative support for a particular parameter value over
another can be interpreted in any case, so the constant disappears when looking at the difference between
support values of different parameter values. The method of maximum support is the method of maximum
likelihood. But the interpretation of the parameter value which yields this maximum and of the inverse of
the negative of the Hessian at the point of maximum is different than in the frequentist interpretation in
terms of asymptotic properties. The likelihoodist interpretation of these magnitudes is in terms of a
quadratic approximation to the support function in the neighborhood of its maximum..

It is clear that the difference in the value of the support function at two different values of a
parameter has the significance that the value for which support is greater is more consistent with the
observed data than the value of lesser support. What we have is essentially a likelihood ratio test without

the frequentist apparatus of asymptotic chi-square. It is also clear that the values of parameters for which
maximum support is obtained (that is, the maximum-likelihood estimates), especially if the maximum is
unique, have a special significance in relation to other possible values. Moreover, how sharply defined
such a maximum of the likelihood function, if a unique maximum exists, is also clearly relevant to any

inference we may wish to draw. On the negative side, a poorly behaved likelihood function, for example,

one having ridges of equal likelihood, many local maxima, or a maximum on the boundary of an a priori

admissible region of the parameter space, is generally indicative of an incompletely or ill-formulated

underlying statistical model.

From a frequentist point of view what matters about the likelihood function is only its maximum

and curvature in the neighborhood of the maximum, and all the desirable properties and the assessment of

the reliability of the maximum-likelihood estimates are only asymptotic. Greene (1993, pp.111-116) gives

a very brief discussion of these matters; Davidson and MacKinnon (1993, Chapter 8, pp.243-287) give a

more complete and rigorous discussion; a more intuitive discussion with many econometric examples is

given by Cramer (1986). That only the maximum and the Hessian at the maximum are all the matters

from a frequentist point of view is perhaps not surprising in view of the fact that for the mean of a normal

distribution the quadratic approximation is exact (see the discussion below) and because of the central

limit theorem in its many forms many estimators, including ML estimators in regular cases, tend to

normality in distribution.
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When we are dealing with only one or two parameters looking at the whole of the likelihood or
support function is feasible. although some summary measures may be helpful. For three or more
parameters, however, it is no longer possible to examine the whole of the support function. In this case,
concentrating the likelihood function and corresponding support function may be helpful, and looking at a
quadratic approximation to the support function in the neighborhood of the maximum may be revealing.

First, we can section or slice the support function along the plane of all but one or two of the
parameters; in the case in which all but one of the parameters has been eliminated in this way, we are
back to a two-dimensional plot; when we have done this for all but two parameters we can plot a three-
dimensional surface and associated contours of equal support. The latter is particularly useful if we want
to examine how two of the parameters interact with one another. It would be natural to choose the values
of all but one or two of the parameters equal to the maximizing values. Proceeding in this way amounts to
looking at the concentrated likelihood function and associated concentrated support function.

A second, but not mutually exclusive alternative is to follow the lead of those frequentists who
maximize likelihood functions and characterize the entire likelihood function by the point in the
parameter space at which the maximum is attained and a quadratic approximation to the entire function at
that point. The point of maximum support, particularly if unique, obviously has considerable intuitive
appeal. A quadratic approximation at that point is likely to be pretty good if we want to consider only
points quite nearby and has the added advantage of being directly interpretable from a frequentist point of
view in terms of the information matrix of asymptotic maximum-likelihood theory. The disadvantage is
that except for cases, such as the mean or regression function associated with a normal distribution, for
which the quadratic approximation is exact, the approximating function may be quite wide of the mark.
Moreover, when the likelihood function has two or more local maxima, which may be far apart, the
inferential significance of this fact may be lost if one focuses exclusively on the behavior of the function in
the vicinity of the highest maximum. Boundary maxima, which are of frequent occurrence in dynamic

panel problems, also present a special problem from a frequentist point of view since the asymptotic

theory is no longer applicable. But from the standpoint of likelihood inference there is nothing that stops

us from comparing the value of support at the boundary values of the parameters with other values in the

interior of the permissible region.

What I am suggesting for viewing the support function in a multiparameter case is essentially

what one typically does in viewing a three-dimensional surface when we look at a contour map: We take a

slice through the surface in the direction parallel to the plane of the two arguments. A slice can, of course,

be thought of more generally as any lower dimensional hyperplane, whether parallel to the plane defined

by the axes of a subset of arguments or in some other direction. In four dimensions, a slice in any two-

dimensional plane, which eliminates all the arguments but two, yields a surface of the functional values in

three dimensions. Fixing, or conditioning on, the values of any subset of parameters is obviously a way of

defining a particular hyperplane corresponding to the remaining parameters; in this instance, those values

which maximize support, given the values corresponding to a point chosen on the hyperplane, on which

we want to view the support, assume a special significance. In discussions of maximum likelihood,

concentration of the likelihood function with respect to a subset of parameters corresponds to selecting a

hyperplane for the remaining parameters in just this way. Sometimes we say that we are "maximizing

out" the deselected parameters. In the method of maximum likelihood, for example, it frequently turns out

that, given the values of one or two of the parameters, it is very easy to maximize with respect to the

remaining ones.

2. Likelihood Functions for Two Basic Dynamic Panel Models

In this section. I present a new method of maximum-likelihood estimation based on the density of

the observations unconditional on the initial or starting values of the dependent variable, in which the

same process as that under investigation is assumed to generate the data prior to the point at which we



7

begin to observe them.3 I argue more generally for methods of inference which look at more than just the
maximum of the likelihood function, on the basis of the likelihood principle of Fisher (1922; 1925). This
approach fully takes into account what information the initial conditions contain about how the process
has operated in the past and is thus of special relevance to short time-dimension ("shallow") panels. I
extend this method to the case of country-specific trends. These make the underlying processes being
investigated nonstationary, but with simple forms of nonstationarity that can be removed by differencing
the data.

A good summary of the current state of knowledge about the properties of various estimators in
dynamic panel models is contained in Sevestre and Trognon (1992, 2nd. ed. 1996). Trognon (1978) was the first
to show the possible inconsistency of maximum likelihood conditional on the initial individual observations.
Nickell (1981) shows the inconsistency of the estimates of the fixed-effects in a dynamic panel model. Kiviet
(1995) derives exact results for the bias of leading estimators. I will assume a random effects model for the
disturbance for the reasons set forth in Nerlove and Balestra. (1996) and because fixed effects can be viewed as a
special case from the standpoint of estimation.

2.1. The Model in Levels

For simplicity, I restrict attention to the simple model containing one exogenous variable xi, and one
lagged value of the dependent variable yit.1 as explanatory. Extension to the case in which more than one
exogenous explanatory variable is included presents no serious difficulty.

(1) y1t = a ± [frit + yy + +e it ,i=1,...N,t=1,...T.

Taking deviations from overall means eliminates the constant a. The usual assumptions are made about the

properties of the }.Li and the sit:

(i) E(1.4) E(sit) = 0 , all i and t,
(ii) E( t) = 0 , all j and t,

a
2 jj

EGL 
1.1

0

a2 
= S, =

(iv) E(e„S)= 05
otherwise

3 Anderson and Hsiao (1981, 1982) have also considered unconditional ML and its relation to conditional

ML for a number of different cases. See also Hsiao (1986). In Anderson and Hsiao (1981), they study a
simple autoregressive process with additive term specific to the unit under the following alternative
assumptions about the initial conditions: (a) initial state fixed; (b) initial state random; (c) the unobserved
individual effect independent of the unobserved dynamic process with the initial value fixed; (d) the
=observed individual effect independent of the unobserved dynamic process with the initial value
random. The problem is greatly complicated by the presence of exogenous regressors and is studied in

Anderson and Hsiao (1982) for panel data both with and without lagged dependent variables. The same
four cases are studied as for the simple autoregression considered in the 1981 paper but a number of
different assumptions are made about the exogenous explanatory variable. The key distinction is between
time-varying and time-invariant exogenous variables. Clearly to examine asymptotic properties some

assumptions have to be made about the behavior of the exogenous variables, which is a tricky matter
since, being exogenous, we effectively deny knowledge of how they might be generated; however, see my
solution below. The important point is that none of the four alternative assumptions about the initial state
of the system being observed presupposes that it must have been in operation prior to the initial
observation. Such is, I hope, the contribution of this paper.
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Both and En are assumed to be uncorrelated with xi, for all i and t. While this assumption is far from

innocuous, for example, if the independent variable xi, is not independent of the dependent variable yi, or

unobserved factors which affect it, I adopt it here, not only because it is conventional but because one has to cut

off somewhere. Clearly, however, y cannot be assumed to be unconrelated with 1.4.

The intraclass correlation coefficient p is defined as „: . This parameter measures the extent of

=observed or latent time-invariant individual-specific, variation relative to the total unobserved variation in the
sample,. It is extremely important in understanding the nature of the variation, both observed and unobserved, in

the panel. Also useful are the characteristic roots of n = the variance-covariance matrix of the disturbances
"tit = eit: =1— p+Tp and 77=1— p.' = I+ Tp I (1— p) measures the relative

information contributed over time by the individual specific unobserved effects for each individual.

I restrict attention broadly to likelihood inference about the parameters of the model characterized by

(1) and (i) - (iv) and its first-difference extension. Finding the maximum of the likelihood function and the

Hessian there is also of specific interest

(a) Maximum Likelihood Conditional on the Initial Value of the Lagged Dependent Variable.

When the likelihood function for the model (I) with ui, = p.i + ei, — N(O, cr20) is derived in the usual
way from the product of the densities of yi, conditional on xi, and y 1 , the joint density is conditional on yio.5 This
likelihood function can be written in terms of the notation introduced above as

(2) log L(a,i37 r, (72,4, cr'elyn , • • •,yNT .,x,i ,.•.xNT ;y10, • • •,YN0)
NT, NT , 2 N , N(T - 1)  

log ri= - —tog27r - — log a- - —tog gs-
2 2 2 2

1 N T
-1/2 _ at, e _ *_ 

---7 E I (yit — a i---- it u it-1)22o-- ,.1 t.1

where y*, x* and y*.1 are the transformed variables.6 Since

AT
= and = , logL can be expressed as a function solely of X, , (32, a, 13, and

I + /1,(T —1) 1+ A(T l)

4 The GLS estimates for a regression based on the variance-covariance matrix of the disturbances in (1)

has a ready interpretation in terms of these roots: A regression of the means for each cross-sectional

observation over time and a pooled regression of the individual observations taken as deviations from

these means both contain information about the parameters of the model: The means regression reflects purely

cross-sectional variation; whereas the fixed-effects regression reflects the individual variation over time. GLS

combines these two types of information with weights which depend on the characteristic roots of Eun = (3.2 Q.

The individual means themselves are weighted by the reciprocal of the square root of = 1 - p+ Tp, while the

deviations from these means are weighted by the reciprocal of the square root of 1 = 1-p. A representative

transformed observation is

= ç112yi. rl
-1/2 

(yit YE.), = N, t = 1,
The GLS estimates are just the OLS estimates using the transformed observations.

5 By repeated application of the definition of the joint distribution in terms of the product of the

conditional and the marginal, it can easily be seen that the unconditional joint distribution is the product

of the joint conditional distribution on which (2) is based and the marginal distribution of the initial

observations yio, so that the unconditional likelihood is the sum of (2) and a term which reflects the

marginal likelihood of the initial values.
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y. X. is defined above. Trognon (1978) shows that, when the exogenous variable x is generated by a first-order

autoregression with white noise input w— wn (0, aw: I), also assumed in the Monte Carlo experiments reported
in Nerlove (1971),

(3) X = gDC_I + w

maximization of the conditional likelihood function (3) yields boundary solutions 13 = 0, which, unlike interior

maximum likelihood solutions, are inconsistent for a considerable, and indeed likely, range of parameter values.
In particular, there is a value of y in OA

(T-3)2 —8
= 

(T+1)2

such that when y <y* there exists an interior maximum of (2) which yields consistent ML estimates, but that
when y y* there are values of p for which the conditional likelihood function (2) is maximized at the

boundary p =0, i.e., for the OLS estimates of the pooled regression of untransformed observations, which we
know to be inconsistent The problem is that when T is small the permissible range of')', the coefficient of the
lagged dependent variable is implausible (e.g., negative or very small). For example, for T = 5, y* = -0.11, while
for T = 10, y* = 0.34. When y y*, whether or not an interior maximum with consistent MI., estimates occurs
depends on the value of p: For p <p* boundary maxima occur where

(T-02 ,820-1  1-y 
P -=.

T+1) r * - 5)2

a2

For example, when T = 5, 13 = 1.0, y = 0..75, 5 = 0.5, and = 1.0, y* = -0.11 and the critical value of p is

p* = 0.31. That means that any true value of the intraclass correlation less than 0.31 is liable to produce a

boundary solution to (2) p =0 and inconsistent estimates of all the parameters. Using these results, Trognon
(1978) is able to replicate the Monte Carlo results reported in Nerlove (1971).7

Even though ML may yield inconsistent estimates when the nonnegligible probability of a boundary

solution is taken into account it is nonetheless true that the likelihood function summarizes the information
contained in the data about the parameters. From a conventional, Neyman-Pearson point of view what
matters about the likelihood function is only its maximum and curvature in the neighborhood of the

maximum, and all the desirable properties and the assessment of the reliability of the maximum-

likelihood estimates are only asymptotic. That only the maximum and the Hessian at the maximum are all

that matters from a conventional point of view is perhaps not surprising in view of the fact that for the

mean of a normal distribution the quadratic approximation is exact and because of the central limit
theorem in its many forms many estimators, including ML estimators in regular cases, tend to normality

6 See footnote 1.
Maddala (1971, pp. 346 - 347) gives a condition for the gradient of the concentrated likelihood function

to be positive at a boundary p = 0 (OLS on the pooled data) for the conditional likelihood function. so if

p is constrained to the interval [0,1) this implies a local maximum at the boundary 0. Breusch (1987)

shows that this condition can be easily checked at the start of his iterative GLS procedure by beginning

with the pooled OLS estimates and p = 0. Unfortunately these results apply only to the likelihood

function when no lagged value of the dependent variable is included or when those initial values are

conditioned upon. I have not been able to derive a similar result for the unconditional likelihood function
below.
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in distribution. So the problem of possible inconsistency of the ML estimates should not concern us unduly
from the standpoint of likelihood inference. It is the whole shape of the likelihood function which
expresses what the data have to say about the model and its parameters which matters.8 For this reason,
"slices" or sections of some of the multidimensional likelihood functions are also presented in the empirical
example of the next section. In subsection 2.2 I consider a model in which first differences are taken to eliminate
a linear deterministic trend; in this case, the individual-specific time invariant effects become differences in the
trend slopes. This makes the interpretation of the model in fust-difference form different from that in levels.
Moreover, the time and individual varying disturbance is now likely to be serially correlated, a fact which needs
to be taken into account in the formulation of the unconditional likelihood function. A parallel set of !results for
the individual-specific trends model is presented in 2.2 below.

(b) Unconditional Likelihood and Unconditional Maximum Likelihood.

While it is not guaranteed that a boundary solution to the likelihood equations is obtained, which would
yield ML estimates which are inconsistent, it is apparent, as suggested above, that in panels with a short time
dimension the initial values provide important information about the parameters of the model, and to condition
on them is to neglect this information.

It is not, in fact difficult to obtain the unconditional likelihood function once the marginal
distribution of the initial values is specified.9 The problem is a correct specification of this distribution. If
171 1 or the processes generating the xi, are not stationary, it will not. in general be possible to specify the
marginal distribution of the initial observations. I will assume that, possibly after some differencing, both
the Yit and the xi, are stationary. The derivation of the unconditional likelihood function in the case in
which deterministic or stochastic trends are included is contained in the next subsection.

Under this assumption, the dynamic relationship to be estimated is stationary and IA < I.
Consider equation (2) can be rewritten with the intercept eliminated, for yio and the infinite past as:

(4) Yio 
1 

'fixi +  vio ,where v + 'it •it = Tv 
10,11

J=1 
yit-i 

Maddala (1971, p. 346) shows that the likelihood function may have at most two local maxima. In work
not reported here, I have obtained likelihood functions with two local maxima, one for large values of p
and small 7, the other for large y and p close to 0. When these yield a similar value of the likelihood
function, I would argue that the data are telling us that it's difficult to distinguish. A method which does
must therefore be misleading. For the cross-country data considered below in this paper, I do not find
evidence of two local maxima but rather that the likelihood function is rather flat in the y-p plane, which
leads to a similar conclusion.
9 See footnote 5.
10For a particular time period T and the infinite past

1—y
iT = 7 Yi-. +ETj   + v , where vir = y T—j . Since I [yl and

j=o 1 —rJ.0
ao

V iT = SIT—
j=0

is the MA form of a first-order autoregression with white noise input, equation (24) follows.

11 [fall variables are expressed as deviations of from their overall means, there is no need to include an intercept;
if not, should be replaced by a +
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If =0, so that the relationship to be estimated is a pure autoregx-ession for each yit, the vector of initial
values YO= (yo, • • • YN0) has a joint normal distribution with means 0 and variance-covariance matrix

2

{(1 4
a 2 (

)2 +Cry (1 4)2

(5)

a2
e 2 )IN . The unconditional likelihood is therefore

1 —

log ii(y , p, , a ,21.)) • •-,YArr;•••;Yio,•••,Ytvo)

NT N N(T — 1)
= — 

NT 
log 271- — log — —log log ri

2 2

1 N

- 2 I (Y:t 

.)2

t.i

2N
- log( 

0-
2

CY,

2 (1_ y)2 I 2 2 2

2( 
a
m 2 + 

(7E 

2 )
(1-7) 1—y

Eyro

This likelihood function can easily be concentrated: To maximize, express a,2, cs;2, and r in terms of p and y.
For given p and y in the interval [0,1), concentrate the likelihood function with respect to &. It follows that

RSS * (y , p) N T N

6-2(r,p) = where RSS *(y , p) —EZU ie, — YY i:_i)2 + ( 
2

I YioN (T +1) i.i t=1 1.1

Thus, the concentrated LF is

log L *(y,p) = 
AT(T+ 1) 

log2n-- 
N 
log— 

N(T-1)  
log ri

2 2 2

N (T — 1)  
log
{  RS S * (r,p)1 N {  p  1 — p  }

2 N(T —I) i 2 (1 — 7)2 1— y2

— (Y2Rss./N(T+0) ii(Yi: — YY:t-I. )2 — lir yi:20 1 {(2 / N(T+ 1))[ P +
1=11=1 t=1 (1 — r)2

[  P  1— P 
(1-7)2 1—y2 l•

RSS*

Maximizing L* is quite a bit more complicated than the =al minimization of the sum of squares in the
N 2penultimate tem because RSS*, in that term, depends on Ei.i yio = N vary° , as well as on p and y ,

which enter the final terms as well. var yo is the observed sample variance of the initial observations. This
magnitude relative to the theoretical unconditional variance of the yo's is crucial in the relation between the
conditional and the unconditional likelihood functions. When f3 # 0, things are more complicated still. But more
important than finding the maximum of L* is its shape above the y-p plane. It is apparent from the results
presented below that there may be significant trade-offs between y and p without large effects on the value of the
likelihood.

Various alternative specifications of the likelihood function are considered in the literature are reported
and analyzed in Sevestre and Trognon (1996, pp. 136-138).12 Considerable simplification, however, can be

12 One interesting possibility discussed by Sevestre and Trognon (1996, p. 136-138) is to choose yio a
linear function of some observed individual-specific time-invariant exogenous variables and a disturbance
which is decomposed as the sum of the individual-specific disturbances µi and a remainder. The first-
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obtained if, following Nerlove (1971), we are willing to assume that xa follows a well-specified common
stationary time-series model for all individuals i. The first term in (13) is

Co

Pio = fl yxi, . Hence, for any stationary processes x , which may be serially correlated.
J=o

with variances

(6)

co,t Pit-1
p x.

2
0
-2

/ xtcr„, = , •

If we suppose that the variance of the xit is the same for all i, then the random variable

co

Oit =Eriftcit —
j=0

has a well defined varianc.e which is the same for all i and a function of p, y, and ax2. • This then enters the

final term in the unconditional likelihood (5), which now becomes:

(7) log gp, r, cr2p, o-62 lyn
N(T+ 1) 

log27r— 
NT

logo-2 
N(T-1

— 
N 

log  -
2 2 2

1NT
f

2 Ld PA 

2

it rYit-1
1=1 t=1

N /32(72
Cr„

—
2

1og(
1— y2
 + 

(1 —
;

)2 
± 

— 
2

og 77

1

fir2 0.2 
0-

2
a2

2(+  1)
1—y- (1—y)2 1—y-

Concentrating the likelihood function to permit a one- or two-dimensional grid search is no longer possible. Nor
is it possible to graph the likelihood surface with respect to variations in all of the parameters. Although "slicing"
the likelihood function along any hyperplane in the parameter space can reveal the trade-offs between any pair of
parameters. If gradient or search procedures yield an interior maximum, the ML estimates obtained are

Co

consistent as long as the random variables Of = IrJlexi,t_i have well-defined variances and covariances,
j=0

order equations for maximizing the likelihood then take on a simple recursive form when p = 0, and
permit other simplification when p # 0. But if we knew some individual-specific time-invariant observed
variables influenced behavior why not incorporate them directly in (2) , the equation to be estimated?
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which they will if the x, are generated by a stationary process. It doesn't really matter what this process is as
long as it is stationary. Besides. since the x, are assumed to be exogenous, we really have no basis on which to
model their determination and are likely to rnisspecify this part of the model. In this sense we ought to prefer this
kind of "almost full-information" maximum likelihood. Still we have to assume something about the variance of

the x process in order to proceed. I suggest estimating crx.2 from the sample data.

To generalize these results to the case in which their are several explanatory variables in addition to the
lagged value of the dependent variable, assume that X, follows a stationary VAR process and replace 13x*,by

'
X*itt3 and fl2 a; by /PE )6 in the above formula.

The expression

2

ço = 
)62 cir2 Cr

2
1

1-7' 0-7)
2 

l — r2 l — y2

fl2 0..-x2 .4_ a: 0 +  2 yp

I — )

is the unconditional variance of the initial observations yio. The absolute value of the difference between the log .
of the unconditional likelihood function and the log of the conditional likelihood function is

(8) f( 2) = —2 [1og2n- + log92 + varY°
N

9-

f(p2) is an increasing function of N and var yo, but given N and var yo, reaches a zninimum for (p2 = var yo, i.e.
when the sample value is close to the true value of the unconditional variance of the initial observations. So the
larger the number of cross-section observations and the larger the sample variance of the initial observations the
greater the information contained in them about the prior operation of the process which generated the data But
the closer are cp2 and var yo the less informative are the initial observations on the dependent variable. In Figure
1, I have plotted the function f(q)2) for the values of N and var yo for two samples of countries in a panel study of
growth used to illustrate these methods in the next section.

2.2. The Model in First DifferencesI3

Adding an individual-specific trend, t, to (2)

(2') y„ = a + flx„ + rit + + sit , i=1,...N, t=1,...T,

and differencing,

(2") Ay„= f3& c1 „ + r4y + + co„, co„ = Ae„ , i=1,...N, t=1,...T,

where A denotes the fust-difference operator and ti is the individual-specific trend coefficient assumed to have
mean zero (enforced by eliminating any overall constant in the differences by deducting the sample means).
Thus, not only is the meaning of p altered, but if e., did not contain a unit root to start with a, will now; in

particular, if c is not serially correlated to start with, wit will follow a first-order moving average process with

13 I am indebted to Pietro Balestra for his suggestions on how to work out the likelihood functions in the
first-difference case and to Jinkyo Suh for his help in the details. Baltagi and Li (1994), in a paper which
later came to may attention, also give a transformation which would permit such a derivation.
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unit root. The variance -covariance matrix of the new disturbances vit = ti+As, is now block diagonal with
blocks:

A = (3:2

1 a b

a 1 a b..

b a 1 a...

...1

where a = o + 2a; ,a =
2 2 cr:*CTE

, and b -2 •
0
-2 

0-

Let z, = Ax„ and 5 = [7 fi , 1),,t = + W. , Wi,t = A. . Assume

(i) E(r,)= E(w1 ) 0, V i,t

E(r,coi,t) = 0, Vi, j, t

Stacking observations over time we can write the model (2") as:

(2—) Ay = zi, + = 1,2, •. • , N, t = 2, • • • , T , or

(9) Ay, = vi = zi8 +(rI + coi) , = 1,2, ... , N ,

where 1 is (T —1) x I column vector of ones. Now, consider mean vector and the variance-
-(T-1)

covariance matrix of V,:

E(v1) = E(z11_04- w.) = E(r) E (c o) = 0, by assumption (i).

E (v ERri 1 + co i)(r, 1 + co i)'] = E(1.,) 1 l' + E(coic.o;)
-(T-1) -(T-1) -(T-1)-(T-1)

= 2 1 I ± 0 B , by assumption (ii),r 
-(T-1)-(T-1)

where B is the (T —1) x (T —1) variance-covariance matrix of COi B is a tri-diagonal matrix
having 2 on the main diagonal and (-1) on the adjacent diagonals. Note

E(c012,1)= E[(si,t 20;2

E(co1,1co,,,_1) = ERE 6,,t-2)]=.

We transform the first-differenced data so as to reduce the model in first-differences to the
previous case.

Since matrix B is a positive definite and symmetric, there exits a non-singular matrix , S, such

that SBS' — I T_i or SS' = . Pre-multiplying (9) by S yields
(10) SAy, = Sz18 + Svi = Szig + S(ri _<L)+ coi) or

(10') Y, = 48 +V, , where Yi = SAyi , Z1 = Szi , and V, = SV,

Then, E(V) = E(Svi) = SE(vi) = 0, and
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r2 0+ cre2 Bis,E(ViVi)= ERSvi)(Sv,)`]= SE(v,v,i)S' 
s= [a 

= o-r2(S 1 XS (7,2SBS" = O1TlT 4- a e2 I T-1

where = S 1 , which is same as the usual error component structure assumed in the previous-(T-1)
case. Thus. the conditional and unconditional likelihood functions derived above apply to the transformed
data with appropriate re-interpretation of the parameters p and a2.

We proceed as follows to determine the matrix S and the vector /7. explicitly in order to obtain
the required transformation of the data: In stacked form, the variance-covariance matrix of the
disturbances in (10') is cr20, where a 2 = r2 

= p(I 17.4 (1 — IN(r-l) = PUN 174) + (1— p)(I N 17.-1)

= 0 {p(44) + (1— i')'7_1} = 'N A
2
ar

and A is p(41;,)± (1— p)I N(7%.1), P = 0.2 •

Since A is a symmetric matrix, there exists an orthogonal matrix CT_i such that

CT_i CT_i = /T-1 and Cr_1ACT_i = T_I, where A T_i is a diagonal matrix with the

characteristic roots of A on the diagonal. Note that since CT_i is an orthogonal matrix

CT_i CT_i , CT_i CT_i = .4_1, and C7_1 = C 1 • This matrix CT_i is same as the
following:

[CT_i =17.(41T)-112 Cl such that
(T-1)x(T-2).=,

(a) C;17, = 0 ,

(b) C;Ci

(c) C1C; = 4_1 — lT(41T)-1 4,

Given C1 satisfying (a), (b), and (c), CT_i is an orthogonal, in as much as

=

and

4. (41T )-112

1 
(/ Y112 CI

(T-1)x(T-2)...
(T-1)x(T-2)

-1 0

= /T-1
-0 'T-2J

417. (44 )-1
C717. ( 7 .1,17.)- 112

4 (4 4)-1/2 ci
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CTC,' = 17.(1;-17- )-112 Cl ](7.-1)x(T-2

Tf (41T )-1/2

C
(T-l)x( T-2)

= 17,(1;.1T)-1 LT ± - 4(1;4)-111 =

= IT(41T)-1

Therefore, since A= {p(17.4)+ (1- p)IT_,I,

CT' _1ACT_i )CT_i ± (1- p)CT' _iCT_ i

4(44)-1/2-
(4414 (44 Cid + (1 -=

=
(410 01

0 0]
+0- p)I,,=

Thus, the (T - 1) characteristic roots of A are:

=1-

1- p + (4lT) p 0 0

1- p

0 1 - p

with multiplicity one (note the subtle difference between this and the previous case), and

77=1- p , with multiplicity (T - 2).

Define C = CT! and A=IN A T_I , then Cf2C = A, since

C'QC = ('N C _Of (I N N C C = 1 N0 (CT'_,ACT_,) =
Therefore, the N(T 1) characteristic roots of n are

.1- p + (410 p

with multiplicity N , and

77.1- p , with multiplicity N(7" - 2) .

N

= AT-1

It remains to determine the structure of column vector iT . Since 17. is defined as

= S. 1 , we have to know the structure of transformation matrix S. Here, we know the
-(T-1)

variance-covariance matrix B and so the transformation matrix S is easily obtained from the following
formula"

14 See Balestra (1980).



17

Then,

S = DL , where D= diagHt(t + l)} 1/2
j and L =

1 0 0 0

1 2 0 0

.. 0

1 2 ... —1)_

- (1 x 2)1/2 -

1 (2 x 3)1/2 (T -1)T(T +1)
S 1 

1) ••• 
; and i17. =

-(T- 2 12
_RT —I) X 71112

Note the difference between this and the previous case.

To transform the data, write the model as

(11) = ZiS + I•7„ where Vi = ir + w,), i =
-

Pre-multiply the i-th equation by 
A1/2 

, where

A112 =
C A-112C

[iT (44 )-1/2
T-1 T-1 T-1 II

77-1/2

0

77-1/2

irt (iTtiT )-1/2

= -1/2/7. (44 )-1 trf + 77-1/2 cicir = c-1/2/7. (4 
I 
IT -) 14 ± /1-112 {IT-1 - 17, (17, 1 17,)-1 }

A -1/2 yi = A -1/2
Thus, Yi* = . S . Ay, , and similarly Z: =

(T-1)xl (T-1)x(T-1)(7_1).1 (T-1)x(T-1) (T-1)x(T-l)

To obtain the results for the conditional and the unconditional likelihood functions which parallel

(2) and (5) above, simply replace yit ,yi,t.1 , and z by the transformed values, 0-12, by c7,2 , and note

(T — (T + 1)
=1— p+ (44)p, where 74 = 44 =  

12 
enters where T did before. Thus,
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N(T— I)  N(T-1) N
In L(y , , a- , ) = 

2 
1n21r In o-- — ln(1 — p + p)

-c-,N vIT • •
(12) 

N( T— 2)  
In(' p) 

1 
L, (Ya XitP)

2

and

2o-- 2.1 t=2

N I
--
N 

—In co- —

/32 2
2 P 
= + + — ,

1-7- 0-7)2 1-7-

2
a: ar

P= 2 - 2 •
ar ±

1

The changes required for the conditional likelihood function are exactly parallel.

+o-2(1+ 
2yp

1—y
)

3. An Empirical Example: A Study of Cross-Country Economic Growth Using Panel Data

To assess the feasibility and power of likelihood methods for inference about dynamic panel
models, I used data on 94 countries for the period 1960 - 1985, and a subsample of 22 OECD countries,
from the Penn World Tables 5.6, publicly available from the NBER web site at
ftp://nber.harvardeedu/pub/. The 22-country sample consists of primarily European countries, all highly
developed and tied together by a network of trading relations; the 94-country sample is much more
heterogeneous, consisting of the aforementioned 22 plus 72 additional countries ranging from
Mozambique and Haiti to the -Asian Tigers." This is the same data set which has been used in dozens of
previous studies. Following Islam (1995), s and n were computed as quinquennial means over the
preceding 5-year span for the 5 years 1965, 1970, 1975, 1980, 1985; y was taken as the value reported in
that year and in 1960 for the lagged value applicable to 1965. In the Table, I present the results both for
the levels model, in which country-specific effects affect the intercepts of the growth equation, and for the
country-specific trends model, which requires differencing to reduce the process to stationarity. In this
case, what I call the first difference model, the conditional and unconditional likelihood functions are
defined for the first differences of the original data and the likelihood functions modified from those for
the levels model as described in the preceding section.

The Solow-Swan model is the basis for almost all previous investigations and for mine as well:

Let y, = per capita output, k, = the capital-output ratio, s = the savings rate, 5 = the depreciation rate of
capital, and n = the exogenous rate of population growth and labor force. All of these variables may differ

over time as indicated by their subscript t, but also, in a cross-country context, they are certain to differ

from one country to another in a fashion which persists over time. An additional subscript is introduced in

the sections which follow this one to indicate that fact. If the production function is Cobb-Douglas,

= Atka , where A, reflects other than conventional factors of production affecting growth and where

a, the elasticity of per capita output with respect to the capital-labor ratio, is often interpreted in terms of

capital's share as implied by payment of capital at its marginal product. Under these circumstances it can
easily be shown, using a simple partial adjustment model, that
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1-y
(13) logy, = 

a(1 -
 [logs- log(n + J+()  log A + logy, .
1-a 1-a

The speed of convergence to equilibrium is inversely proportional to y. With growth convergence 0 <y <1.
In equilibrium, per capita GDP depends only on the parameters n, s, and the time path of A. In an
empirical context, these differ from time to time and country to country. Clearly the extent of convergence
is conditional on s, n, 5 and the time path of A. In empirical investigations, changing n and s and
sometimes a measure of changing A have been introduced. Below I examine both models in which A is
assumed to be constant although differing from one country to another and models in which At can be
represented by a simple linear trend which plausibly also differs from country to country.

Recent Empirical Investigations

Equation (13) has been widely used to examine the hypothesis of growth convergence (Mankiw,
et al, 1992, p.410; Barro and Sala-i-Martin, 1995, Chapter 12; Islam, 1995, p. 1133; Lee, et at. 1996,
Casseli, et al. 1996). In empirical work, 37, is replaced by real per capita GDP; when varying s and n are
taken into account, s is replaced by an average savings rate over the period t-1 to t, and n is replaced by
the growth rate of population over the period t-1 to t. It is usual to use rates averaged over several years;
following Islam (1995) and others. I have used quinquennial averages. The restriction on the coefficients
of 1n(s) and ln(n+5), which arises from the constant-returns-to-scale assumption implies that in(s) and
ln(n+o) can be collapsed into a single variable. Testing the growth convergence hypothesis, in this

context, revolves largely around the coefficient y of the initial level of per capita real GDP. If this is
positive but much less than one, the implication is that on average countries with low initial values are
growing faster than those with high initial values and is therefore evidence of convergence. Whereas if
this coefficient is close to one, perhaps even slightly larger than one, the implication is that initial values
have little or no effect or even a perverse one on subsequent growth; such a finding is therefore evidence

against the neoclassical theory which implies convergence. For example, if y = 0.9, convergence to within
90% of final equilibrium occurs only in 22 periods, which, given quinquennial data, implies 110 years!
Similarly, 0.8 requires 53 years, 0.7 32 years, while 0.2 requires only 7 years and 0.1 is within 90% in 5
years. Using unconditional ML below, I obtain a value of about 0.45 which yields convergence to within
90% of equilibrium within 15 years.

The estimates of y obtained heretofore using cross-country quinquennial data are generally in
excess of 0.7 no matter what econometric procedure is employed, but vary over a wide range depending on

the method, 0.7 to 0.98. But for the differenced model, many estimates of y are much smaller, in the
vicinity of 0.5.15 (See Nerlove, 1996, for a summary and comparison of many of the standard methods of

analysis with one another and with the likelihood methods proposed here.) It is apparent that, for all

practical purposes, coefficients in excess of 0.7 represent negligible convergence, since, with unchanging

s, n, and A, it would take more than a generation to achieve 90% of equilibrium real per capita GDP.

15 Using a GMM estimator derived from a modified Chamberlain approach (Chamberlain, 1984; Crepon

and Mairesse, 1996), Caselli, et al. (1996) obtain an estimate of about 0.51 - 0.53, i.e., much more rapid

convergence and close to the estimates obtained for the 94-country sample using either conditional or

=conditional ML. My estimates for the 22-country sample are much higher, however.
It is interesting to note that these methods are basically instrumental variable methods which use lagged

values of the explanatory variables as instruments, an approach which was employed in Balestra and

Nerlove (1966) to obtain initial consistent estimates of the residual variance-covariance matric on which

to base feasible GLS.
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Most recent work attempts to test whether y = 1; however, this is a test for unit root in log yit. Even under
the best of circumstances testing for a unit root is problematic.I6

Tests based on a single cross-section (which can be viewed as a panel of time dimension 1) or on
pooled cross-section time series (panel) data generally have yielded contradictory results: Pooled panel
data studies tend to reject the hypothesis of convergence (relatively high y's), even after controlling for
population growth rates, savings rates and other variables. Dynamic fixed-effects models are of course not
possible for a single cross-section, but recent work (Islam, 1995) using a dynamic fixed-effects panel
model yields results supporting convergence. There are serious problems with tests such as these which
rely on the estimated coefficients of the initial, or lagged value, of the dependent variable in dynamic
panel models, or in the special case of a single cross-section, which arise from two sources of bias. In this
paper, I contrast these findings with results obtained from likelihood methods which take account of the
information contained in the initial observations about the process which must have generated those
observations in the pre-sample period. In Nerlove (1996), I showed that many of the earlier findings are
probably statistical artifacts arising from biases in the econometric methods employed, and, now here,
especially failure to take advantage of the relatively large amount of information contained in the initial
observations and fail= to take account of differing country-specific trends. This demonstrates the
sensitivity of the conclusions drawn about y to the econometric method employed, irrespective of the
validity of the relationship estimated.

The first source of bias are omitted variables, especially infrastructure and investments over time
in infrastructure, and the natural resource base available to each country in cross-sectional or panel
studies. Systematic differences in these across countries or regions will systematically bias the
conclusions. Because such variables are likely to be correlated with savings or investment rates in
conventional or in human capital and with population growth rates it is not altogether clear what the net
effect of omitting them on the coefficient of the initial value will be in a single cross-section.I7 But in a
pooled model it is clear that, to the extent such differences are persistent, they will be highly correlated
with the initial value and therefore omitting them will bias the coefficient of that variable upwards
towards one and thus towards rejecting convergence. This source of bias has been well-known since the
early paper by Balestra and Nerlove (1966) and is well-supported by the Monte Carlo studies reported in
Nerlove (1971). In this light, it is not surprising that pooled panel data, or single cross-sections, which are
a special case of panels with T = 1, even with inclusion of additional variables, often reject convergence.

Second, since there are likely to be many sources of cross country or cross region differences,
many of which cannot be observed or directly accounted for, it is natural to try to represent these by fixed
effects in a panel context. But, as is well-known from the Monte Carlo investigations reported in Nerlove
(1971) and demonstrated analytically by Nickell (1981), inclusion of fixed effects in a dynamic model
biases the coefficient of the initial value of the dependent variable included as an explanatory variable
downwards, towards zero and therefore towards support for the convergence hypothesis. This may account
for Islam's (1995a) recent findings.I8

Alternative estimates based on more appropriate random-effects models, such as two-stage
feasible Generalized Least Squares or maximum likelihood conditional on the initial observations are
also biased in small samples and inconsistent in large, or in the case of Instrumental Variable estimates
have poor sampling properties or are difficult to implement. For example, the papers by Knight, Loayza

16 Bernard and Durlauf (1995) use cointegration techniques on rather longer time series for 15 OECD
countries to test alternative time-series definitions of convergence and contrast the results with the
standard formulation.
17 Caselli, et al. (1996) attempt to control for the endogeneity of these explanatory variables.
18 As pointed out to me by Hashem Pesaran, these country-specific effects may also be trends, since many
of the latent variables specific to each individual in the cross section may themselves be trending. Taking
such country-specific trends into account has been one of the great challenges of doing this paper.
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and Villanueva(1993), Loayza (1994), and Islam (1995a) employ a method, among others, proposed by
Chamberlain (1984), generally referred to as the 11-matrix approach.' 9 The alternative of unconditional
maximum likelihood suggested in Nerlove and Balestra (1996) is implemented here. In the case of
country-specific trends, this method requires differencing the data in order to achieve stationarity, which,
in turn, requires a reformulation of both the conditional and the unconditional lilkelihood functions.20

Even if one has little interest in the question of convergence, or its rate, per se, the question of
whether the coefficient of the state variable, lagged dependent or initial value, is biased in the sense of
being inconsistent is an important one since biases in this coefficient will affect the estimates of the
coefficients of other variables correlated with it and their levels of significance. To the extent such
estimates are important in the formulation of policies to promote growth, the matter is indeed a serious
one.'

New Estimates Based on Maximizing the Conditional and Unconditional Likelihood Functions

Consider first the levels model: The estimates of p, the ratio of the unobserved country-specific
variation relative to the total unobserved residual variation, are much higher for the 22-country sample
than for the 94-country, 0.48 vs. 0.11 for conditional estimates, but 0.77 vs. 0.13 for unconditional
estimates. The estimate of the overall residual variation is about the same for the 94-country sample
whether one conditions on the initial observations or not, while that for the 22-country sample is reduced
dramatically by conditioning. The values of the other coefficients differ significantly for the two samples
but are quite similar for the conditional and the unconditional ML methods. The variance of the initial
values of real per capita GDP is only 0.256 for the 22-country sample vs. 0.799 for the 94-country sample.
On the other hand, the value of

1
['82crx2 +0'20+ 

2yP 
r

which together with the variance of the initial values, determines the "distance" between the conditional and the
unconditional likelihood functions is in both cases, at the unconditional W. estimates, very close to these
variance values, 0.25 for the 22-country sample and 0.91 for the 94-country sample. The difference or similarity
of the estimates obtained from the two likelihood functions reflects the off-setting effects of the larger sample and

greater heterogeneity for the 94 countries vs. the opposite for the 22 countries. At the same time the estimate of p

behaves in such a way as to minimize the "distance" between the two functions. See Figure 1. The estimates of y,

the adjustment coefficient are very high, irrespective of method and the estimates of a, which should
approximate capital's share of GDP, are also considerably higher than one would expect.

Turning now to the estimates of the first-difference model: The relation between the estimates of p for
the 22-country sample and the 94-country are now reversed, being much smaller and by conventional measures
insignificantly different form zero, for the 22-country sample than for the 94-country sample. This is just what
one would expect if the 22 countries had more-or-lew common trends, while in the larger more hetrerogeneous
94-country sample trends were more diverse. The difference between the levels and the first-difference models is

19 See also Crepon and Mairesse (1996).
20 Lee, et al. (1996) also estimate from what they maintain is an unconditional likelihood function, but

inasmuch as they do not transform to stationarity (their relationship includes both a constant and a linear

trend), I do not think their formulation of the likelihood function based on the unconditional density of the
dependent variable is correct. They use annual observations to obtain sufficient degrees of freedom to

estimate individual country-specific trends, but I think they are only fooling themselves if they think that

much of the information contained in the annual observations is real, as opposed to interpolated.

21 For example in (13) the parameter a could be derived from the coefficient of the variable

log s - log (n+o) as coefficient/(coefficient +11), so there is a double source of bias. Indeed, a number of

authors accept or reject statistical formulations based on the estimated value of a which should •
approximate capital's share.
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striking. With the exception of 13 and the implied a. the estimates of the other coefficients are similar for the
conditional and =conditional methods. although they differ greatly as between the 94-country and the 22-
country samples. The estimates of a are now of reasonable magnitude, about 20%, except higher for the
unconditional estimates for 22 countries. Perhaps the most dramatic change is the great reduction in both p and y
as comport(' with the levels model. The estimates of y are still large for the 22-country sample, but now for the
94-country sample imply convergence to equilibrium in only 13 or 14 years. On balance, the estimates for the
first-difference model are much more reasonable than for the levels model, while except for rather different
values of p, which of course has a rather different interpretation for the two models, there is not much basis for
choosing between conditional vs. unconditional ML.

Lest we accept these conclusions too uncritically, however, remember that the value of the likelihood
function at the maximum and its quadratic approximation there is only a partial and imperfect basis for
inference. In the models considered here, likelihood is a function of four parameters, p, Y30, 13 and 02, assuming
that the overall intercept has been removed by taking deviations from the overall sample means. Unfortunately,
in terms of assessing the support for various combinations of parameter values, we are in the position of the
poor hexagon in his dealings with the sphere in Flatland Our likelihood functions are five-dimensional
creatures while we, poor souls, are only three-dimensional. Taking two parameters at a time and "slicing" or
sectioning the likelihood function along a plane defined by some values of the other two, say, for example, the

values which maximize the likelihood function, is potentially a way out. But, inasmuch as there are =

possible combinations of the 4 parameters taken 2 at a time, we are left in a situation like that of the six blind
men of Indostan asked to describe an elephant, each one by feeling only one part of the animal. For reasons of
limited space and time, I choose to look only at one pair, p and y, here. "Slices" of the four unconditional
likelihood functions, levels and differences, 94-country and 22-country samples, are presented in Figures 2 - 5.
Each figure consists of two parts, a close-up near the maximum value and a panoramic view of nearly the
whole surface of the "slice." The "slices" are all defined by the plane of13 and a2 which maximize the joint
unconditional likelihood of the observations. Both surface and contour plots are presented. Each Figure,
therefore, consists of four graphs.

The "slices," p vs. y, suggest that the conventional asymptotic standard errors, which are a reflection of
the quadratic approximation to the likelihood around its maximum, are of some help but not a sure guide to
assessing support for the possible values of the parameters. While y is well-determined in most instances, p is
not Although the algorithms for maximizing the likelihood functions converged without difficulties in every
case and no boundary solutions were encountered, it is clear, especially from the panoramic views that the
likelihood functions of the pi "slices" are rather flat over considerable ranges. Rather than offering much
support for the ML estimates, these partial views suggest rather clearly what is not supported by the data The
first-difference model has the greatest support for a reasonably small value of y in the 94-country case, but there
is a clear trade-off between p and y not revealed by the conventional asymptotic standard errors. Perhaps the
greatest benefit of looking at the likelihood function at points in the parameter space away from the likelihood
maximizing values is to reveal the fragility of inferences based on the ML and other estimates which may appear
to be rather precise.
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TABLE: CONDITIONAL AND UNCONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATES
FOR THE LEVELS MODEL AND THE FIRST-DIFFERENCE MODEL,

94-COUNTREY AND 22-COUNTRY SAMPLES

Conditional ML

P
I

13
Implied a
Residual Variance

Unconditional MI,

Estimates of Crx2 used

P
I

13
Implied a
Residual Variance

Conditional ML

P
I

13
Implied a
Residual Variance

Unconditional ML

Estimate of crx2 used

P
Y

0
Implied a
Residual Variance

LEVELS MODEL

94-Country Sample 22-Country Sample

0.1133 (0.0497)

0.9339 (0.0122)

0.1370 (0.0131)

0.6744 (0.0289)
0.0194 (0.0013)

0.0826

0.1288 (0.0456)

0.9385 (0.0105)

0.1334 (0.0124)

0.6846 (0.0277)
0.0197 (0.0013)

FIRST-DIFFERENCE MODEL

0.4796 (0.1584)

0.8189 (0.0245)

0.1908 (0.0438)

0.5131 (0.0664)
0.0052 (0.0012)

0.0069

0.7700 (0.0731)

0.8085 (0.0228)

0.1815 (0.0521)

0.4865 (0.0791)
0.0113 (0.0028)

94-Country Sample 22-Country Sample

0.2267 (0.0664)

0.4540 (0.0651)

0.1368 (0.0208)

0.2004 (0.0358)
0.0122 (0.0009)

0.0597

0.2335 (0.0632)

0.4364 (0.0578)

0.1340 (0.0201)

0.1921 (0.0317)

0.0120 (0.0008)

Figures in parentheses are asymptotic standard errors.

0.0126 (0.0405)

0.6187 (0.0490)

0.0815 (0.0601)

0.1762 (0.1159)
0.0021 (0.0003)

0.0058

0.0936 (0.0696)

0.7254 (0.0512)

0.1478 (0.0727)

0.3500 (0.1326)
0.0027 (0.0004)
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Notes to the Table
Data on 94 countries for the period 1960 - 1985 from the Penn World Tables 5.6, publicly available from

the NBER web site at ftp://nber.harvard.edu/pubi.

22-Country Sample: 94-country Sample = 22-Country Sample + the Following:

Japan
Austria
Belgium
Denmark
Finland
France
Germany (FRG)
Greece
Ireland
Italy
Netherlands
Norway
Portugal
Spain
Sweden
Switzerland
Turkey
U. K.
Canada
U.S.
Australia
New Zealand

Algeria
Botswana
Cameroon
Ethiopia
Ivory Coast
Kenya
Madagascar
Malawi
Mali
Morocco
Nigeria
Senegal
South Africa
Tanzania
Tunisia
Zambia
Zimbabwe
Costa Rica
Dominican Rep.
El Salvador
Guatemala
Haiti
Honduras
Jamaica
Mexico
Nicaragua
Panama
Trinidad & Tobago
Argentina
Bolivia
Brazil
Chile
Colombia
Ecuador
Paraguay
Peru

Uruguay
Venezuela
Bangladesh
Hong Kong
India
Israel
Jordan
Korea
Malaysia
Burma
Palcistan
Philippines
Singapore
Sri Lanka
Syria
Thailand
Angola
Benin
Burundi
Central African Republic
Chad
Congo
Egypt
Ghana
Liberia
Mauritania
Mauritius
Mozambique
Niger
Rwanda
Somalia
Togo
Uganda
Zaire
Nepal
Papua New Guinea
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FIGURES

Figure 1: Graphs of log(ratio conditional/unconditional If) against phi2•

Figure 2: Unconditional likelihood. Levels. 94 countries. Rho vs. gamma. Sigma2 and beta fixed.
Closeup and panoramic views.

Figure 3: Unconditional likelihood. Levels. 22 countries. Rho vs. garruna. Sigma2 and beta fixed.
Closeup and panoramic views.

Figure 4: Unconditional likelihood. First differences. 94 countries. Rho vs. gamma. Sigma2 and beta
fixed. Closeup and panoramic views.

Figure 5: Unconditional likelihood. First differences. 94 countries. Rho vs. gamma. Sigma2 and beta
fixed. Closeup and panoramic views.
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