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1. Introduction

Ever since Sandmo's initial analysis (1971), the problem of the output decisions of

the firm under uncertainty has been widely studied. Sandmo's approach has been

applied to problems including price stabilization and futures markets (Danthine,

1978; Feder, Just and Schmitz 1980), and analogous models have been developed

for a range of decision problems including self-protection against environmental

hazards (Lewis and Nickerson 1989). Feder (1977) presents strong versions of

Sandmo's main results for a general class of objective functions.

Sandmo assumed expected-utility maximization, and most applied work based



on his approach has maintained this assumption. It is well-known that decision-

makers systematically violate the assumptions of the expected-utility hypothesis,

and the primary argument for maintaining it is analytic convenience. But the

robustness of the analysis remains in doubt.

While the limitations of the expected-utility hypothesis are generally well

recognized, the problems relating to the technology of production under uncer-

tainty have been less remarked, but turn out to be more fundamental.The clearest

way to recognize these shortcomings is to note the stark contrast between the rep-

resentation of technology used in the literature on production under uncertainty

and that used in the general-equilibrium theory of uncertainty. In the latter,

production is typically represented in terms of the state-space representation of

uncertainty developed by Arrow (1953) and Debreu (1952). By contrast, both

the Sandmovian model of production under uncertainty as well as most principal-

agent and moral hazard models (e.g., Mirrlees (1974), Holmstrom (1979), Harris

and Raviv (1979), and Grossman andHart (1983)) are normally presented in terms

of a stochastic production function formulation that degenerates to a family of

random variables indexed by effort input.

This divergence reflects a fundamental difference in the approach to specifying

the production technology. Arrow and Debreu deal with the most primitive (and,
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therefore, general) technology specification, i.e., a production set. This represen-

tation is quite convenient for the purposes of proving the existence of competitive

equilibria under uncertainty and in the analysis of securities-market equilibria.

However, until the development of the modern axiomatic approach to production

analysis (Shephard, 1970; McFadden, 1978), few tools were available to permit

the use of set-theoretic representations of production technologies in the analysis

of firm behavior. Consequently, most applied analysis of firm behavior was based

on the older idea of a production function. And when issues relating to firm-level

stochastic production began to be seriously considered by theorists, they naturally

based their analysis on the related notion of a stochastic production function. The

widespread success of the axiomatic approach in creating the superstructure of

duality theory and its many applications, however, suggests the possibility of an

extension of this analysis to a state-contingent production technology as in the

work of Arrow and Debreu.

In this paper, the problem of the firm under uncertainty is analyzed using a..

general state-contingent production technology that has already proved useful in

analyzing hedging behaviour (Chambers and Quiggin, 1997) and principal-agent

problems (Chambers and Quiggin, 1996; Quiggin and Chambers, 1998). This

approach has the natural advantage that it is more general and flexible than
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the stochastic production function approach. Therefore, it allows a thorough ex-

amination of the consequences for producer decisionmaking of placing different

structural restrictions upon the stochastic technology. This flexibility opens the

door to a number of comparative-static results which are not available in the

more restrictive stochastic-production function approach. The approach is also

very easy to use largely because it permits the application of standard theoretical

constructs to the analysis of producer decisionmaking under uncertainty. More-

over, it carries with it the side-benefit of making the expected-utility hypothesis

superfluous in considering productive decisionmaking under uncertainty. Just as

the Arrow-Debreu proof of competitive equilibrium only requires the assumption

of convex preferences, the state-contingent approach advocated here allows one

to rely on a very general specification of preferences that has the expected-utility

model and many others as special cases.

The paper is organized as follows. ,Section 1 deals with general multi-input,

multi-output state-contingent production technologies and with their dual ana-

logues, effort-cost and revenue-cost functions. Section 2 develops the idea of a

production risk premium. Section 3 deals briefly with objective functions. Sec-

tions 4, 5 and 6 present comparative static results for the special cases of risk

neutral, maximin and generalized Schur-concave objective functions. Finally, con-



cluding comments are offered.

2. Production under uncertainty

The idea that production under uncertainty may be represented simply as a special

sort of multi-output production was first developed by Arrow and Debreu. To

make this explicit, suppose that the states of nature are given by the set

{1, 2, ..., S}, let x E Riv+ be a vector of inputs committed prior to the resolution of

uncertainty and let z E 's be a vector of state-contingent outputs. So, if state

s E S-2 is realized (picked by 'Nature'), the observed output is an M-dimensional

vector z3, obtained as the projection of z onto R±

We represent the production technology in the form of an input correspon-

dence which maps matrices of state-contingent outputs into sets of inputs that

are capable of producing that state-contingent output matrix. Formally, it is

defined by

(z) = {x E : x can produce z E

Intuitively, X (z), which we typically refer to as the input set, is best identified

with everything on or above an isoquant for the state-contingent technology. We



impose the following axioms on the input correspondence. These directly parallel

axioms placed on non-stochastic, multi-output technologies (Fare, 1988) and prove

sufficient to ensure a duality between the input corrrespondence and the effort-cost

function developed below:

X.1 X(OMs) = (no fixed costs), and ON E X (z) for z > Omxs and

Z Omss (no free lunch).

X.2 z'< z= X (z) c X(zi).

X.3 xi> x E X (z) E X (z) .

X.4 AX (z) -I- (1 — ,\)X(z1) C X(Az (1 — A)z') 0 < < 1.

X.5 X (z) is closed and nonempty for all z

The first part of X.1 says that doing nothing is always feasible, while the second

part of X.1 says that realizing a positive output in any state of nature requires the

committal of some inputs. X.2, free disposability of state-contingent outputs, says

that if an input combination can produce a particular matrix of state-contingent

outputs then it can always be used to produce a smaller matrix of state-contingent

outputs. X.3 implies that inputs have non-negative marginal productivity. X.4

tells us that the state-contingent technology is convex, and intuitively it leads to

diminishing marginal productivity of inputs. X.5 is a technical assumption.
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2.1. Stochastic production function technologies

Just as technology represented by a production function is a special case of the

general representation of technology in terms of productions sets, existing models

of production under uncertainty are special cases of the analysis presented here.

The simplest case is that of Sandmo: Revenue is stochastic and thus represented

by the state-contingent revenue vector, r E Rs+, defined by r = zp where p E Rs+

is a vector of state-contingent prices for the scalar output, z, determined by a

non-stochastic production function, z . f (x). Imposing weak disposability of

output, then

X (z) . {x: z < f (x)}.

The case of production uncertainty generated by a scalar-valued stochastic produc-

tion function is only slightly more complex. Using a function f (x, s) to represent

the interaction of the choice of inputs x with the state of nature s, then

X(z) = ns {x : z, 5... f (x, 8)} , (2.1)

where z, is the scalar-valued output that occurs in state s.

7
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2.2. The effort-cost function

Our concern is not with the input vector x per se, but with its corresponding cost,

given by w • x, where w E Riv  is a vector of non-stochastic input prices. The

definition of the cost function for a general multi-output production technology

may be applied directly to the case of production under uncertainty (Chambers

and Quiggin, 1992, 1998). That is, the effort-cost function is defined by:

c(w, z) = min{w •x:xEX (z)}

if X (z) is non-empty and oo otherwise. The effort-cost function plays a central

role in analysis of production under uncertainty. Its properties are standard".

Properties of the Effort-cost function c(w, z)

C.1.c(w, z) is positively linearly homogeneous, nondecreasing, concave, and

continuous on RN •++)

C.2. ( Shephard's Lemma) If an unique solution exists to the minimization

problem, c(w, z) is differentiable in w, and its gradient in w equals the vector of

cost minimizing derived demands; and if c(w, z) is differentiable in w, an unique

'The derivation of these properties is considered in detail in Chambers and Quiggin (1997;
1998) and is completely analogous to the derivation of parallel properties for cost functions for
non-stochastic technologies.
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solution exists to the cost minimization problem, and the gradient of c(w, z) equals

the vector of cost minimizing demands;

C.3. c(w, z) > 0, c(w, OMs)=0, and c(w, z) >0 for z > Omxs, z Omxs;

CA. z°> z c(w, z°) > c(w, z);

C.5. c(w, z) is convex over R_A;_ixs

Here C.1 and C.2 follow from X.5 and the principle of optimization, C.3 from

X.1, CA from X.2, and C.5 from X.4.

Note, in particular, that, where state-contingent production is determined by

a stochastic production function, the cost function will generally not be smoothly

differentiable in the state-contingent outputs. From (2.1), it follows immediately

that in that case2:

c(w, Z) > MaX3=1,2,...,5 {Min {wx :z, < f (x, s)}}

. max.9=1,2,...,s {e(w, z8)}

..
-

where c(w, z,) is the cost function associated with the ex post production tech-

2Chambers and Quiggin (1998b) develop the effort-cost function for the stochastic-production

function technology in the case where the state space is continuous.

9



nology and is defined by:

cs(w, z,) = Min {wx :z, < f (x, s)} .

2.3. The revenue-cost function

Denote by p ERIlt!+xs the matrix of state-contingent output prices. When s occurs

the vector of s-contingent prices is denoted p3. In this paper, the price vector

will be interpreted in an ex post sense, so that p3 is the set of spot prices that

will prevail in the event that state s occurs. The state-contingent revenue vector

r = pz E Rs+ has elements of the form p3 • z3. In all cases we consider, producers

will be concerned with state-contingent revenue rather than output per se, and it

is useful to consider the revenue-cost function

C (w, r, p) = rnin {c (w, z) : Epmszms > r,, s E S2}
771

if there exists a feasible state-contingent output array capable of producing r and

oo otherwise. Both c(w, z) and C(w, r, p) are homogeneous of degree 1 in w,while

C(w, r, p) is homogeneous of degree 0 in r and p. In the analysis that follows, we

presume that the effort-cost function satisfies properties C.1-C.5 The properties

10



of C (w, r, p) that follow from these are (Chambers and Quiggin, 1998):

Properties of the Revenue-Cost Function (CR):

CR.1C(w, r, p) is positively linearly homogeneous, nondecreasing, concave,

and continuous in w E

CR.2 Shephard's Lemma.

CR.3 C(w, r, p) > 0 with equality if and only if r = 0.

CR.4 ri> r = C(w, a", p)?_C(w, r, p).

CR.5 p'> p = C(w, r, p') r, p).

CR.6 C(w,r,, Ors,,p,, eps) r_s, Ops), 0> 0.

CR.7C(w,r,p) = qw,r/k,p/k), k> 0.

CR.8 C(w, r, p) is convex in r.

For analytic simplicity, we shall typically assume that C (w, r, p) is smoothly

differentiable in all state-contingent revenues. By assuming a differentiable cost

structure, we, therefore, rule out the stochastic production function approach and

the non-stochastic production approach of Sandm9.3

3If production is non-stochastic, then it follows immediately that

r, p) = {Cf (w,r3,p8))

where
Cf (w,r,,, = Min {wx :739 f (x)

Generally, neither this function or the one corresponding to the stochastic-production function

will be everywhere smoothly differentiable in revenues or outputs respectively.

11
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Our main concern will be with the case where prices are interpreted in ex

post terms. However, the analytical tools presented here may also be applied to

the case of a profit-maximizing firm, in the presence of a complete set of state-

contingent markets with ex ante prices p. The resulting constructions may be

applied, with appropriate modifications, to the optimization problem faced by a

risk-neutral producer under price uncertainty, and adapted further to the case of

a producer with preferences characterized by additively separable effort-costs.

3. Effort-cost and Technological Risk

3.1. The certainty-equivalent revenue and the production-risk premium

Just as a risk-averse individual will pay a premium in each state to ensure the

certainty outcome, achieving the certainty outcome may prove costly. That is,

typically it should cost more to remove production uncertainty and produce the

same non-stochastic output in each state than to allow for stochastic production.

..
The intuitive reason is clear: Most people appear averse to taking risk, but pro-

ducers routinely use stochastic technologies. A plausible conjecture, therefore,

is that removing risk is typically costly. If it were not, we'd expect to see, for

example, farmers growing all their crops in greenhouses under closely controlled

12
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climatological conditions rather than in the open air subject to the vagaries of

weather.

For the revenue-cost function, C(w, r, p), and r E we define the (cost)

certainty equivalent revenue, denoted by ec (r, p, w) E R±, as the maximum non-

stochastic revenue that can be produced at cost C(w, r, p), that is,

ec (r, p, = sup{e : els, p) r, p)},

where ls is the S-dimensional unit vector. By analogy with the risk premium

used in the theory of portfolio choice under uncertainty, we define the production-

risk premium as the difference between mean revenue and the certainty equivalent

revenue. Notationally, letting F E RI. denote the vector with the mean of r,

= E rkrk,

occurring in each state, then the production risk premium is defined by

p(r,p,w) ee (r, p,

13
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and satisfies:

C(w, r, p) = qw, F—p(r, p, w) 1s, p) = C(w,ec (r, p, w) Is, p).

The technology will be called inherently risky if producing f is more costly than

producing r and not inherently risky if producing F is less costly than producing r.

By CR.4, the technology is inherently risky at r if and only if p (r, p, w) is positive,

or equivalently if and only if the certainty equivalent revenue is no greater than the

mean. Both imply that producing F is more costly than producing the stochastic,

r, there are costs to removing uncertainty. This seems the natural state of affairs.

However, p (r, p, w) may be negative, implying that certainty is less costly than

the stochastic output vector, and in this case the technology is not inherently

risky at r.4

The certainty equivalent may be formally derived by using a directional dis-

tance function analogous to David Luenberger's benefit function (1992). The

..

directional distance function for the revenue-cost function is defined (Chambers,

4 Chambers and Quiggin (1997) provide an example of such a technology that is closely related

to the generalized Schur concave preference structure introduced below.

14



Chung, and Fare, 1996):

/3(C, r,w, p; g) = max{0 E R : qw, r + 0g, p)<C} g E RI.

if there exists a9 ER:r+ Og such that C(w, r ± Og, p)<C and inf {9 E R : r + Og E RI}

otherwise. Here g is a reference vector of revenues. In words, ii(C, r, w, p; g) is

the maximal translation of the state-contingent revenue vector in the direction of

g that keeps the translated revenue vector less costly than C.

Among other things, it is easy to show that if state-contingent revenues are

freely disposable, then

te)(C, r, w, p; g) _. 0 .4#, qw, r, p)<C, (3.1)

and that 15(C, r, w, p; g) is nonincreasing and translatable in r (i.e., n(C, r±ag, w, p; g) =

D (C, r, w, p; g) — a, for a E R), nondecreasing in C (Chambers, Chung, and Fare,

1996).

By inspection, we see that:

15
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Lemma 1

ec (r, p, w) = n(qw, r, p), 0s, w, p; 1s)

p (r, p, w) = 1— b' (C (w ,r , p) , Os ,w , p; 1s)

= —n(C(w, r, p), ?, w,p; is).

So, the technology is inherently risky if and only if ti(C(w, r, p), f, w, p; 1s) 5_

0, because this presumption and (3.1) imply that producing? is more costly than r.

Conversely, the technology is not inherently risky if and only if fi(c (w, z) , 2; 1) >_

0, which by (3.1) implies that f is less costly than r. But these implications are

quite intuitive because they mean that removing uncertainty for an inherently

risky technology always requires higher costs, while no additional costs are neces-

sary for a technology that is not inherently risky. By using CR.1 and CR.7, it is

also easy to establish
.. ..

Lemma 2 The certainty equivalent revenue satisfies: ec (r, p,p,w) = e (r, p, w) ,

ec (Ar 'Al) ,w) = Ile (r, 13, w) , A > O. The production risk p
remium satisfies

P (r )P 'Pm) = P (r, P, w) , P (ta 'AP ,w) = AP (r, P, w) , kt > 0-

16



The certainty equivalent revenue and the production risk premium are alterna-

tive characterizations of the technology. Formally, this can be verified by noting

that, by the properties of the directional distance function and Lemma 1, the

certainty equivalent revenue is a nondecreasing transformation of revenue-cost.

It proves useful to have classes of technologies that are easily characterized in

terms of either the production risk premium or the certainty equivalent. We de-

fine a state-contingent technology as displaying constant absolute riskiness if for

all r, t E H :

p (r±tls , p, w) = p (r, p, w) .

From this definition, properties CR, and Lemmata 1 and 2, it follows almost

immediately that:

Result 1 The technology displays constant absolute riskiness if and only if

qw, r, p) = 0 (w, T (r, p, w) ,p)

-

where

T (r ± 619, p, w) = T (r ,p,w) + 5, 6 E R,

T (Ar,Ap, w) = AT (r, p, w) , T (r ,p,Aw) = T (r, p, w) A> 0,

17



and 0 (w, T (r, p, w) , p) is positively linearly homogeneous in input prices,

homogeneous of degree zero in T (r, p, w) and p, nondecreasing in T (r, p, w),

and nonincreasing in p. T (r, p, w) can be chosen to be nondecreasing and

convex in the state-contingent revenues, and 0 can be chosen to be convex

in T (r,p,w).

Proof See Appendix.

Geometrically, if a revenue-cost function displays constant absolute riskiness,

rays parallel to the equal-revenue ray will cut successive isocost contours for the

revenue-cost function at points of equal slope.

The production risk premium defined above is an absolute measure of the

inherent riskiness of the technology. A measure of the relative riskiness of the.

technology is given by the relative production risk premium

ec (I-, p, w) 
r (r, p, w) = .

f
_ _

By analogy with the treatment of constant absolute riskiness, we say a technology

displays constant relative riskiness if for all r, t E R+ :

r (tr, p, w) . r (r, p, w) .

18



From this definition, CR, and Lemmata 1 and 2 it follows almost immediately

that:

Result 2 : The technology displays constant relative riskiness if and only if

where

qw,r,p) = 0 (w,ll' (r, p,w) , p)

= AT (r, p, w) , 1.' (r,p,Aw) =

'I' (r,)p, w) = P(r,p,w) A > 0,

and 0 (w, '1' (r, p, w) , p) is positively linearly homogeneous in input prices,

homogeneous of degree zero in P (r, p, w) and output prices, nondecreasing

in D (r, p, w), and nonincreasing in output prices. P (r, p, w) can be chosen

to be nondecreasing and convex in the state-contingent revenues, and 0 can

be chosen to be convex in 7" (r, p, w).

19



4. Objective functions

Quiggin and Chambers (1997) analyze general preferences of the form W: Ys --+

R, where Y C Itf. . Thus the analysis is concerned with preferences over state-

contingent income vectors y E R:9# . It is assumed that preferences are subjectively

risk-averse in the sense that there exists a vector it E Rs , with Ess 1 rs . I and

W(E,[y]ls) _?_. W (y) , Vy

where Eir[Y] = Ess—i 78Y8, and E[y]1 s is the state-contingent out
come vector

with E,r[y] occurring in every state of nature. Thus, the elements of it may be

considered as subjective probabilities.

We focus on the case when y is a vector of net returns. Net returns for state

s are given by

Hence

.._

ys = ps • zs — w • x

. r, — C(w, r, p).

20



y = r — C(w, r, p)ls.

Using this notation, then the producer's objective function can be expressed as

W(Y) = W(r — C(w, r, P)1s).

5. Risk neutrality

The simplest optimisation problem for the firm under uncertainty arises when pref-

erences are characterised by risk neutrality. Under risk neutrality, the producer

chooses state-contingent outputs to maximize her expected return from produc-

tion. Formally, therefore, her optimization problem can be written in terms of the

effort-cost function as:

max E 71-3 E pmszms — c (w, z) ,
z 3 m

21



which can be conveniently reduced to the following S-dimensional problem by

using the revenue-cost function:

max 73r3 — C (w, r, p)
r  

3

The first-order conditions on r may be written in the notation of complementary

slackness as

where

rs — C's(w, r, p) < 0, rs >O, s E n

, aqw, r, P) 
C,(w, r, p) = or, .

That is, the marginal cost of increasing revenue in any state is at least equal to

the subjective probability of that state. Pictorially, therefore, we represent the

producer equilibrium in a manner reminiscent of the representation of production

equilibrium in the non-stochastic multi-product case by a hyperplane being tan-

gent to an isocost curve of the producer. Figure 1 illustrates. Here the slope of

the hyperplane is determined by the ratio of the producer's subjective probabil-

ities, the fair-odds line, and the isocost curve is determined by the equilibrium

level of revenue-cost. Instead of determining an optimal mix of outputs as in the

22



non-stochastic multi-product case, the producer equilibrium now determines the

optimal mix of state-contingent revenues. This analogy naturally suggests inter-

preting the producer's subjective probabilities as the producer's subjective prices

of the state-contingent revenues.

Summing these first-order conditions yields an arbitrage condition

Ecs(w, r, p) ?_. E 7r3 = 1
sEri sEn

(5.1)

To see why we refer to (5.1) as an arbitrage condition, notice that the far left-hand

side of the expression represents the directional derivative of the cost function in

the direction of the equal-revenue ray (the bisector in Figure 1), i.e.,

aqw,r+tyl.s,p) ,
Ecs (w, r, p) .   ky=0 •

a'ysEn

So, intuitively speaking, EsEn Cs (w) r, 13) is the marginal cost of increasing all

state-contingent revenues by the same small amount, and (5.1) simply requires

that this cost be at least as large as the expected return. If it were not, it would

obviously be profitable for the decisionmaker to continue increasing each state-

contingent revenue. For an interior solution, (5.1) must hold as an equality.

We shall refer to the set of revenue vectors r satisfying (5.1) for given w,p as

23



the efficient set , denoted E (w, p) ,

Ea (w, p) = {r : Cs(w, r, p) > 11 .
sEfi

We call the boundary of E (w, p) the efficient frontier and note that its elements

are given by:

2 (w,p) = {r: E cs(w, r, p) = 1} .
sEs/

Because the revenue-cost function is positively linearly homogeneous in input

prices (CR.1) and homogeneous of degree zero in (r, p)(CR.7), it is trivially lin-

early homogeneous in (w, r, p) . Therefore differentiating both sides of

C (61w,Or,t9p) . OC (w, r, p) , 0 > 0

with respect to r, gives:

which implies that

..

OC, (Ow ,Or A)) . 0C3 (w, r, p)

C, (Ow ,Or ,Op) . Cs (w, r, p) .

24



This homogeneity property of marginal cost allows us to establish the following

property of the efficient set:

Lemma 3 E (Ow, Op) = OE (w, p) and F., (Ow, Op) = OE (w, p) , 0 > 0 the efficient

set and the efficient frontier are positively linearly homogeneous in input and

output prices.

We establish this result for the efficient set, and the leave the obvious extension

to the efficient frontier to the reader. By the definition of the efficient set:

s
F., (Ow, Op) = { r : E cs(ow, r, Op) _?_. 1

s=1
s

. {r : E cs(w, -19, p) > 1}
r

s=1

r
.

0v 3=1

= OE (w, p) .

Here the second equality follows by the fact that -C, (w, r, p) is homogeneous of

degree zero in all prices and revenues. The obvious implication is that expanding

all state-contingent output prices and input prices radially expands the efficient

set by the same proportion. Consequently, expanding input and output prices

proportionately leads a risk-neutral individual to expand optimal revenues by the

25



same proportion.

Different risk neutral decision-makers may hold different subjective probabil-

ities. However, a revenue vector r is potentially optimal for some risk-neutral

decision-maker only if (5.1) holds. If (5.1) holds for an arbitrary revenue vec-

tor, is say, then one can say that that revenue vector is consistent with expected

profit maximizing behavior for an individual with the subjective probabilities

*8 = Cs(w,f, p) . The correspondence of the producer's subjective probabilities

with these state-contingent marginal costs then determines the optimal point on

the efficient set.

The efficient frontier is easily characterized under the presumption that the

revenue cost function displays constant absolute riskiness. By Result 1, revenue

cost in this case can be written

C (w, r, p) = 0 (w, T (r, p, w) , p)

-

where T (r, p, w) is now interpretable as a revenue aggregate, which satisfies

T (11- ± 61s ,p,w) = T ( r,p,w) -4- 6.

26
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Differentiating this last expression with respect to 6 and evaluating the expression

at 6 = 0 gives:

ETs (r, p, w) = 1,
sEn

(5.2)

while differentiating with respect to 7-3 gives:

Ts (r + 61s , p, = Ts (r, p, w) , V6. (5.3)

Substituting these results into the first-order conditions for an interior solution

yields:

7r3 Ts(r, p, w) • Ts (r ± p, w)
— =  E Vk, s E
71k Tk(r , p , w) Tk (r ± 61s, p, w)

(5.4)

from which we conclude, by using the homogeneity properties of the revenue

aggregate cited in Result 1, that the expansion path is homogeneous of degree zero

in input prices and parallel to the equal-revenue vector. Moreover, substituting

(5.2) into the definition of the efficient set gives:

(w,
p) =

80 
r  

(w,
aT sEn

ao (w, T (r, p, w) 13) > 1}= r aT
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This last expression tells us that the efficient frontier uniquely determines the level

of the revenue aggregate, and thereby the revenue-cost level, if the revenue-cost

function exhibits constant absolute riskiness. Summarizing results, we have:

Result 3 If the revenue-cost function exhibits constant absolute riskiness, the

expansion path is homogeneous of degree zero in input prices, parallel to

the equal-revenue vector, and all elements of the efficient frontier are equally

costly.

Hence we are led to conclude that when there are interior solutions to the

expected profit maximizing problem, then for fixed input and output prices all in-

dividuals possessing a technology exhibiting constant absolute riskiness will incur

the same level of revenue-cost regardless of their (risk-neutral) preferences towards

state-contingent outcomes. Put another way, the optimal level of revenue-cost is

independent of a risk-neutral decisionmaker's subjective probabilities when the
..

technology exhibits constant absolute riskiness.

The reason that this happens is transparent. When the revenue-cost func-

tion exhibits constant absolute riskiness, it can be written in terms of a single

revenue aggregate T (r, p, w) . This revenue aggregate is positively linearly homo-

geneous in revenues and state-contingent prices, homogeneous of degree zero in
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input prices, and has the desirable property that when all revenues increase by

the same amount the aggregate goes up by that same amount. Since the arbi-

trage condition that determines the efficient set requires that the marginal cost

of increasing all revenues by the same amount equal one, then for such a technol-

ogy, the arbitrage condition boils down to requiring that the marginal cost of the

aggregate equal one.

We now consider what constant absolute riskiness implies about the producer's

optimal response to re-scaling input prices. For an interior solution, upon re-

scaling input prices, (5.1) becomes:

(90 (w ,T (r, p,p,w) , p

aT
ao (fLw,T (r,P,w) , P) —1

aT

where ii > 0 is the common factor by which all input prices are multiplied, and the

first equality follows by the fact that T (r, p, w) is homogeneous of degree zero in

input prices. Because the revenue-cost function is positively linearly homogeneous

in input prices, this condition can be rewritten:

80 (w ,T (r ,p,w) ,p) _ 1
aT — I;
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Therefore, we conclude that if p, < 1, the convexity of O in T (r, p, w) implies

that the optimal T (r, p, w) increases as a result of a re-scaling of input prices.

Conversely, when p, > 1, a re-scaling of input prices leads to a decline in the

revenue aggregate. Now recall that from (5.4) we know that the expansion path

is homogeneous of degree zero in w and parallels the equal-revenue ray. The fact

that the revenue-aggregate increases as input prices are proportionately decreased

when combined with this fact implies that all state-contingent revenues go up or

down by the same amount in response to a rescaling of input prices. Stated

in more geometric terms, a proportional decrease in all input prices leads the

optimal state-contingent revenue vector to expand in a direction parallel to the

equal-revenue vector.

Now consider what happens when output prices expand or contract radially.

Even when the revenue-cost function exhibits constant absolute riskiness, a pro-

portional change in output prices will generally affect the expansion path. Hence,

we cannot show that all state-contingent revenues expand equally as they do when

input prices change proportionately. However, it is possible to show that effort

must increase as a result of a radial expansion of output prices. When output

prices are changed proportionately, the first-order condition determining the rev-

enue aggregate (under the presumption of constant absolute riskiness) can be

30



rewritten as:

80 (w,T w) pp) 1.

aT

Using the homogeneity properties of C and T, this condition can be expressed

86' ,T ,p,

Evaluating the left-hand side of this expression at the state-contingent revenues

that were optimal before the price re-scaling shows that it must be smaller than

the right-hand side if 11 > 1. Consequently, the optimal level of T and revenue

cost must increase as a result of the re-scaling of output prices.

Result 4 If the revenue-cost function is characterized by constant absolute risk-

iness, then re-scaling input prices leads a risk-neutral producer to adjust

all state-contingent revenues by the same amount. Increasing (decreasing)

output prices proportionately leads a risk-neutral producer to increase (de-

crease) the revenue aggregate and revenue cost.

When the revenue-cost function exhibits constant absolute riskiness, output

price is non-stochastic, and there is only a single stochastic output, the second

part of Result 4 can be considerably strengthened. In this case because there is
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a single state-contingent output whose price is non-stochastic we can write the

revenue aggregate and the revenue-cost function as, respectively,

and

T (I-, p, w) = T (pz,pls , w) = pT (z, ls , w)

O (w ,pT (z , is , w) ,p1s) = O (w ,T (z , is , w) , 1s)

where we have exploited the homogeneity propeTties of the revenue aggregate and

the revenue-cost function. Using these results, we now see that a risk-neutral

entrepreneur facing such a technology chooses the state-contingent output vector

z ER:91_ to

max {p E rsz, — e (w,T (z, 1s , w) , 1s) } .
sen

The associated first-order conditions are:

Fr s — OT (W,T(Z7 iS 7W) 7 1s) T, (z , 3Ij , w) 4.0 , z3 ?.. 0

in the notation of complementary slackness. Note first that using (5.3) with these
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conditions imply that the expansion path for an interior solution obeys:

73 T3 (z , ls , w) Ts (z ± 61s , is , w)
.  .  
7rk 71 (z, ls, W) Tk (Z + 61S )1S , W)

for all 6.

Accordingly, the expansion path is parallel to the equal-revenue vector and

independent of the level of the non-stochastic output price. Where exactly the

individual is on the expansion path can be determined by summing these first-

order conditions over all states while using (5.2) to obtain the first-order condition

(the arbitrage condition) for the output-aggregate:

p — OT (w ,T (z, is , w) ,1s) 5_0.

Or, perhaps in more intuitive terms, the level of the output aggregate is chosen to

equate its marginal cost to its price. Increasing the non-stochastic output price
_

then naturally leads to an increase in T. This gives us the conclusion that we were

looking for: Increasing the non-stochastic output price leads to an expansion of

the state-contingent output vector along a ray that parallels the equal-outcome

vector.
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Result 5 If the revenue-cost function exhibits constant absolute riskiness and

z ERs+, p =p1s, with p E R++, the state-contingent output vector expands

parallel to ls in response to a change in the non-stochastic output price.

A similar analysis may be undertaken for constant relative riskiness. Using

Result 2, the risk-neutral individual's objective function in that case is:

max
r

7r8r, — C (w, rt (r, p, w) , p)

where it' (r, p, w) satisfies the properties detailed in Result 2. The associated

first-order conditions for this problem are:

ao (w x (r ,p,w) , p) _
(r, p, w) <0, r, > 0, SE C2

aT

in the notation of complementary slackness. For an interior solution it follows

immediately that
-

7
3 = 

T
3 
(r
' 
p
' w)

  
, Vs,k._

irk Tk (r , P , w)

By Result 2, the right-hand side of this expression is unaffected by proportional

changes in either input prices or output prices and is homogeneous of degree

zero in state-contingent revenues. Hence, so long as input prices or output prices
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move proportionally the optimal mixture of state-contingent revenues (i.e., relative

state-contingent revenues) is unchanging.

Now that we have shown that the optimal mixture of state-contingent revenues

is invariant to proportional changes in prices all we need to do to complete our

examination is to show that a proportional reduction in input prices leads to an

increase in the revenue aggregate D (r, p, w) . By complementary slackness and

the positive linear homogeneity of this aggregate in state-contingent revenues, we

have from the first-order conditions that:

ac (w ,T (r,P,w) ,  
T 

13) - 
(,p , w) •aT

3

(5.5)

The right-hand side of this expression is an increasing function of I' (r, p, w) and

a decreasing function of w. Factoring in a proportional reduction in input prices

obviously leads the right-hand side to fall implying that P (r, p, w) must adjust

upward. Thus,

Result 6 If the revenue-cost function displays constant relative riskiness, a pro-

portional reduction (increase) in all input prices leads to a proportional

increase (reduction) in all state-contingent revenues.

In this case, the statement of the equivalent result in terms of output prices
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,

is straightforward. The revenue aggregate is now homogeneous of degree zero in

output prices (Result 2) so that a proportional change in output prices changes

(5.5) to

act (w ,T (r, p, w) , AO E 
_ 

= T (r, p, w)aT
3

which using the homogeneity properties of 0 becomes

3

Hence,

ac A ) A
( w Vr,p,w)

Corollary 6.1 If the revenue-cost function displays constant relative riskiness, a

proportional increase (reduction) in all state-contingent output prices leads

to a proportional increase (reduction) in all state-contingent revenues.

6. Maximin preferences

t.

Risk neutrality is the polar case of net returns corresponding to the absence of

aversion to risk. For purposes of comparison and to illustrate the generality of our

approach, we start our analysis of risk-averse decisionmaking by considering the

most extreme form of risk aversion as typified by the maximin objective function.
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Maximin is particularly convenient for two reasons: It corresponds to infinite risk

aversion (by our definition, it is risk-averse for all possible probability distribu-

tions) and thus offers a convenient polar case with which to compare the results

from risk neutrality. It also corresponds to a case, where producers are strictly

risk averse, but where preferences exhibit both constant absolute risk aversion and

constant relative risk aversion5. Finally, maximin preferences are not consistent

with the expected-utility hypothesis.

In the maximin case, the producer's problem is:

max {min fri — qw, r, P), •••, rs — qw, r) P)}}r

. max {min {r1, ..., rs} — qw, 1-7 0} •r

Because the objective function here is not smoothly differentiable, we cannot gen-

erally rely upon first-order conditions and the Kuhn-Tucker theorem to guide

identification of an optimum. Even so, the results one expects to emerge are
-

transparent intuitively. We expect the producer to produce at a point where her

'Chambers and Quiggin (1998) give definitions of constant absolute risk aversion and con-

stant relative risk aversion for general preferences, analogous to the corresponding definitions

for production technology given in this paper. Only risk-neutral preferences are consistent

with constant absolute risk aversion and constant relative risk aversion and the expected-utility

hypothesis.
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indifference curve just 'sits' on one of her isocost curves. Under maximin prefer-

ences, indifference curves are 'L-shaped' around the equal-revenue ray. Therefore,

we expect the producer's L-shaped indifference curve to sit on an isocost curve

at a point on the equal-revenue ray. In other words, the producer chooses a

non-stochastic production pattern. (Figure 2 illustrates.)

This is quite easy to show. In fact, we can conclude even more: The producer

not only chooses a non-stochastic production pattern, but she chooses to produce

where the efficient frontier intersects the equal-revenue ray. Let r* denote the

producer's optimal state-contingent revenue vector. Now suppose, contrary to our

assertion, that r* does not lie on the equal-revenue vector, and consider perturbing

any single element of r*, say 7-3, by the small amount Sr,. The associated variation

in the producer's objective function is

(billin — Ca(w, r, p)) 6r3

..

where Smi' . 1 if r, E min {r1, ..., rs} and 0 otherwise. So if r, V min {ri, ..., Ts},

the variation in the producer's objective function is

—C8(w, r, p)br,

38



which implies that the producer's welfare can be increased by decreasing this

state-contingent revenue towards the equal-revenue vector. Hence, the optimal

state-contingent revenue vector must involve no revenue uncertainty.

Because the optimal production pattern can involve no revenue uncertainty,

the decisionmaker's problem then reduces to

max {r — C (w,r18,p)},

with the associated first-order condition:

1 — E cs (w, ris, p), r ..?. 0
sEn

in the notation of complementary slackness. This last condition tells us that the

revenue choice must meet (5.1) and hence be on the efficient frontier if r is strictly

positive. Putting these arguments together, while using Lemma 3, lets us conclude
..

that:

Result 7 A producer with maximin preferences completely stabilizes revenue and

for an interior solution produces where the efficient frontier intersects the

equal-revenue vector. A proportional increase in input and output prices
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leads to a proportional increase in the optimal non-stochastic revenue.

An immediate corollary of Result 7 is obtained by assuming that the revenue-

cost function exhibits constant absolute riskiness and applying Result 3 to obtain:

Corollary 7.1 If the producer has maximin preferences and uses a technology

exhibiting constant absolute riskiness, then for an interior solution the pro-

ducer incurs the same level of cost as a risk-neutral producer.

This latter case is also illustrated in Figure 2. There we have drawn the iso-

cost curve associated with the efficient frontier under the presumption of constant

absolute riskiness. The risk-neutral producer with fair-odds as depicted produces

at the point of tangency between the fair-odds line and the isocost curve. The

completely risk-averse producer facing the same technology produces on the bi-

sector.

Figure 2 illustrates the essential relationship between the solutions for a risk

taker and a risk averter that emerge when we consider more general risk-averse

preferences. The risk averter sacrifices expected returns in order to self-insure by

arranging (in her view) a less risky production pattern than would be chosen by

a risk-neutral individual with the same subjective probabilities. Higher expected

returns are sacrificed for more stable returns.
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When the technology exhibits constant absolute riskiness, this producer's re-

sponse to a radial contraction of input prices or a radial expansion of output prices

parallels that of a risk-neutral individual. In the case of a radial change in input

prices, the producer's first-order condition for an interior solution requires:

80 (p,w ,T (ris ,pw) ,p) =1,
aT

which by the homogeneity properties established in Result 1 reduces to:

80 (w ,T (is, p, w) , p) = 1
aT A

so that T (rls , p, w) must increase if input prices decrease proportionately. By

Result 1, this also means that the maximin individual's optimal certain revenue

must increase as a result of a proportional decrease in input prices. Similar ar-

guments establish that a proportional change in output prices transforms the

producer's first-order conditions to

aO (w ,T (hlis , p, w) ,p) 

-

it,aT =

implying that T (r1s, p, w) and r must increase as a result of a proportional
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i

increase in state-contingent output prices.

Corollary 7.2 If the producer has maximin preferences and uses a technology

exhibiting constant absolute riskiness, then for an interior solution a pro-

portional increase (decrease) in state-contingent output prices or a propor-

tional decrease (increase) in input prices leads to an increase (decrease) in

the optimal non-stochastic revenue chosen by the producer and an increase

(decrease) in her revenue cost.

When a producer with maximin preferences uses a technology displaying con-

stant relative riskiness, his or her level of revenue cost relative to that of a risk-

neutral individual depends critically upon the level of the certain revenue that

he or she produces. In this case, the first-order conditions and complementary

slackness require:

r =
ac (w,T (ris,p,w) , p)  T-

871 
(rls , p ,w) •

_

The right-hand side of this expression, by Result 2, is a nondecreasing function of

the revenue aggregate, and therefore by recalling (5.5), one sees that the revenue

aggregate here can be higher than that used by a risk-neutral individual only if

the non-stochastic revenue produced here exceeds mean revenue produced by the
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risk-neutral individual. Conversely, the revenue aggregate here will be lower than

that for a risk-neutral individual only if the certain revenue is lower than the risk-

neutral individual's mean revenue. And from the fact that 0 is non-decreasing in

the revenue aggregate, we have:

Corollary 7.3 If the producer has maximin preferences and uses a technology

exhibiting constant relative riskiness, then the producer incurs a greater

level of revenue cost than a risk-neutral producer if and only if her certain

revenue exceeds the risk-neutral individual's mean revenue.

Now consider how a re-scaling of input prices affects the producer's optimal

choice of the non-stochastic revenue. In that instance, Result 2 implies that the

complementary slackness conditions become:

T= 
ao (ii,w,T (rls, P, w) , P) - ( s 

rl , 13, w) ,r 
arr

..
which can now be rewritten as:

r 
, 

ac (w ,T.' (rls ,P,w)  
(rl 

sT ,P,w) ,
il, 8T

so that a radial decrease in state-contingent prices must lead to an increase in
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T (ris, p, w) and in the non-stochastic revenue as well.

Similarly, a radial expansion of the state-contingent output prices transforms

the first-order condition to:

r =
ao (w,i; (rls,AP, w) , PP) - ( sT r 1 41P, w) •arr

By the homogeneity properties of 0 and T, this expression can be rewritten as:

ao (w A 
v

,P) _
T (rls, p, w) ,

from which we conclude that T, and thus r, must rise if 11 > 1.

Corollary 7.4 If the producer has maximin preferences and uses a technology

exhibiting constant relative riskiness, then a radial expansion (contraction)

of output prices or a radial contraction (expansion) of input prices leads

to an expansion (contraction) of both revenue cost and the optimal non-

stochastic revenue.
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7. Generalized Schur-concave preferences

We now turn attention to the general case where the objective function is of the
a

net returns form

W(Y) = W(r — qw, r, p)is)-

and the function W represents risk-averse preferences for some given probability

vector 7r. To make the idea of risk-aversion more precise we introduce the notion

of generalized Schur-concavity. As in Rothschild and Stiglitz (1970), we say that

y' is a mean-preserving spread of y (denoted notationally as y --<, y') if for all y

foo Fy(t)dFy(t) .?_ fie Fy,(t)dFyi(t)

where F(t) = Pr{y <t}, and, following Chambers and Quiggin (1.997b), define

a preference function W to be generalized Schur-concave for 7 if and only if W:

R satisfies:

r<m- 3/ = W(y) ?- W(Y').

Generalized Schur concavity thus encompasses all forms of preferences (including

expected utility) which are risk-averse in our sense for the probabilities 7r. The
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crucial property of generalized Schur-concavity, which is proven in Chambers and

Quiggin (1997), for our purposes is.

Lemma 4 A smoothly differentiable preference function W is generalized Schur-

concave for 7 only if

Y.9 ? Ys' <= Ws(Y-)/irs Ws' (Y)tirs' VY, s, s'

Assuming W is generalized Schur-concave for 7, the producer's maximisation

problem is well-behaved. The first-order condition on r, becomes:

VV, (y) — Cs(w, r, p) E Wt (y) < 0, r, > 0,
tEn

with complementary slackness. The arbitrage condition derived from summing

these first-order conditions is

Ecs(w, r, p) ..?_ 1
sErt

(7.1)

just as in the case of expected profit maximization. We conclude from (7.1) that

a producer maximizing a generalized Schur-concave function of net returns will

choose a revenue vector that is in the efficient set.
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Observe, as we have illustrated with the maximin case above, that condition

(7.1) holds with equality for an interior solution even in the absence of differen-

tiability of W, since, for any r that does not satisfy the condition, there exists an

r' such that y' y > 0 with strict inequality in at least one state. Pictorially, the

production equilibrium is illustrated by a tangency between one of the producer's

indifference curve and one of her isocost curves.

An immediate implication of (7.1) and Result 3 is that an individual with gen-

eralized Schur concave preferences and a technology exhibiting constant absolute

riskiness will incur the same level of costs as a risk-neutral producer (as well as

one with completely risk-averse preferences). Hence, we have:

Result 8 If the producer has generalized Schur-concave preferences and uses a

technology exhibiting constant absolute riskiness in state-contingent rev-

enues, then for an interior solution the producer incurs the same level of

cost as a risk-neutral producer and a producer with maximin preferences.

An immediate implication of this result is a 'separation' result:

Corollary 8.1 If the producer has generalized Schur-concave preferences and

uses a technology exhibiting constant absolute riskiness, her optimal cost

level is independent of her risk preferences.
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Result 8 can also be illustrated with the use of Figure 2. A person with

generalized Schur-concave preferences and a technology with constant absolute

riskiness will produce on the isocost curve between the bisector and the point of

risk-neutral production. In particular, since a risk-neutral producer maximizes

expected profits at given 7r, any other producer operating on the efficient set

with the same level of cost must have lower expected profit and, therefore, lower

expected revenue. Therefore, under these conditions, the expected-profit maxi-

mizing vector of net returns must be riskier (that is, have a higher risk premium

in terms of the risk averter's preferences) than the vector of net returns chosen

by the risk-averse producer. To confirm this statement, let the optimal state-

contingent revenue vector for the risk-neutral individual be denoted rN and the

optimal state-contingent revenue vector for the risk-averse individuals be denoted

rA. The risk premium associated with rN from the risk-averter's perspective is:

E 73 (r3N _ c (w,rA, p) ) _ e (yA) = E 713 (rBN _ 71) 4_ E 73,,,sA _ e (NA) .
3E12 sEft sEfi

The term on the right-hand side of the equality represents the difference between

the risk-neutral individual's expected revenue and that for the risk-averse individ-

ual plus the risk-averse individual's risk premium for his state-contingent revenue
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vector. In terms of Figure 2, the difference between the two risk premiums can be

visualized as the difference (not drawn) between where the fair-odds line through

the risk-neutral individual's choice intersects the bisector and where the fair-odds

line through the risk-averter's choice intersects the bisector. Summarizing, we

have:

Corollary 8.2 If the producer has generalized Schur-concave preferences and

uses a technology exhibiting constant absolute riskiness, then a risk-neutral

individual using the same technology adopts a riskier state-contingent rev-

enue vector (from the risk-averter's perspective) than the risk averter.

We have seen that an individual with generalized Schur-concave preferences us-

ing a technology exhibiting constant absolute riskiness will adopt a state-contingent

revenue vector that is more risky than that for an individual with maximin pref-

erences but less risky than of a risk-neutral individual.Combining Lemma 4 with

the first-order conditions for an interior solution shows that an optimally chosen

state-contingent revenue vector must be risk-aversely efficient (in the sense of

Peleg and Yaari, 1978) with respect to 7r:

T3 > rt 4#c• Cs(w, 13)/7.5 Ct(w, P)/7rt,
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or

(Cs(w, r, p) Ct(w, P)) rt) < O. (7.2)

The notion of risk-averse efficiency is due to Peleg and Yaari and can be heuris-

tically identified with the notion that for any state-contingent revenue vector

satisfying it there will be some risk-averse individual who would optimally adopt

that vector if she incurred the same level of revenue-cost.

Once again, the result may be extended to the case where W is not differen-

tiable but still generalized Schur concave by using the observation that for any r

that does not satisfy the condition, there exists le' such that yi-cy. We define

the risk-aversely efficient set for 7 as consisting of those elements of the efficient

set satisfying (7.2).

By complementary slackness, so long as the preference function is differen-

tiable, we have:

EsEciW3 (3r) rs 

E W3 (y)sEn
EC,(wr, 10)r3.
sE

From Lemma 4, generalized Schur-concave preferences W satisfy:

EW3 (y) (ys --sEn
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Substituting y, = r, — qw, r, p), this last inequality implies:

EsEci Ws (y) r,

3Es-i E W8(y)sEri

which when combined with (7.4) establishes that:

E7,r, — E Cfs(w, r, p)r, > 0.
sESI sEft

(7.4)

Direct calculation establishes that this last expression equals the marginal change

in expected profit associated with a small radial expansion of the revenue vector.

Because it is non-negative, we have:

Result 9 If r is a risk-aversely efficient revenue vector, a small radial expansion

in r leads to an increase in expected profits.

An early analogue of Result 6 was first proved by Sandmo (1971) for the

expected-utility model with a non-stochastic technology and stochastic prices.

Much later, we generalized his result for the expected-utility model with state-

contingent production in Chambers and Quiggin (1997).

A comparison of Result 9 with Result 8, and especially with Corollaries 8.1 and

8.2, shows a crucial difference between the analysis of a general state-contingent
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production technology and the special case of a stochastic production function.

Result 9, when applied to the case of a stochastic production function with a scalar

input (effort), implies that a risk-averse producer will always commit less effort

than a risk-neutral producer. Similarly, in the Sandmo model of non-stochastic

technology and stochastic prices, price stabilisation or price insurance always gen-

erate an increase in output and costs. For a general state-contingent production

technology a risk-averse producer will typically produce less, and, therefore, in-

cur smaller production costs, than a risk-neutral producer constrained to choose

a point on the same output ray. However, a risk-averse producer will allocate

resources to reducing risk at the expense of a reduction in expected net returns.

Result 8 shows that for technology displaying constant absolute riskiness these

effects will cancel out as far as costs are concerned, so that the level of costs is

determined solely by the arbitrage condition.

Now consider what happens when an individual uses a technology displaying

constant relative riskiness. By the first-order conditions, complementary slack-

ness, and Result 2, we have that

EsEci Ws (y) r, ac (w,T (r, P, w) , 13) _
E 

T (r, p, w) . (7.5)
Ws (Y) 61" 

sEs-i
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Expression (5.5), on the other hand, indicated that a risk-neutral individual using

the same technology would choose expected revenue so that:

ao (w ,T (r, p, w) , p) _
aT T (r ,p ,w) = E7r3r3.

3
(7.6)

Because 0 (w,T. (r, p, w) , p) is convex in T, a risk-averter will incur more effort

cost than risk-neutral individual if and only if their directional derivative of 0 in

the direction of T (the right-hand side of (7.5)) is greater than the left-hand side

of (7.6). When this fact is used in conjunction with (7.4), we see that:

Result 10 If the producer has generalized Schur concave preferences and uses

a technology exhibiting constant relative riskiness in state-contingent rev-

enues, then the producer incurs a greater level of revenue cost than a risk-

neutral producer only if her mean revenue exceeds the risk-neutral individ-

ual's mean revenue.

8. Concluding comments

The analysis of the problem of the firm under uncertainty presented in this paper

represents a synthesis of the modern theory of production, based on the exploita-

tion of duality, with the idea of state-contingent production sets pioneered by
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Arrow and Debreu. This approach is sufficiently flexible to encompass the results

of the earlier literature based on the concept of the stochastic production function

and to deal with a wide range of relationships between effort-cost and the riskiness

of returns.

As has already been observed, the concept of production under uncertainty

is central to a wide range of recent developments in economics. Recent papers

including Chambers and Quiggin (1996, 1997) have addressed issues including

futures markets, pollution control and agrarian exploitation. An application to

the problem of moral hazard is presented by Quiggin and Chambers (1998). But

the range of application of the approach outlined above is essentially unlimited.

9. Appendix

Proof of Lemma 2: From the definition of the certainty equivalent revenue

ec p,Aw) = suple C(Aw, els, p) ▪ C(Aw, r, p)}

= suke : Aqw, els, p) ▪ Aqw, r, p)}

= suke : els, p) r, p)}
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where the second equality follows by the positive linear homogeneity, CR.1, of the

revenue-cost function. Also by CR. 7:

ec (Ar,Ap, w) = sup{e : C(w, els,)p) 5.. qw, Ar,Ap)}

= sup{e • qw, -A-e is, p) .. C(w, r, p)}

= A sup{-;\.e : qw, ---e ls, p) qw, r, pil

= Aec (r, p, w) .

The propertieS of the production risk premium follow straightforwardly.

Proof of Result 1:By constant absolute riskiness,

p (r + t ls , p , w) = p (r, p, w)

which by the definition of the risk premium requires

whence

-

j+ t — ec (r-l-tis , p, w) = f — ec (r, p, w)

ec (r+tls , p, w) = ec (r, p, w) + t.

55



•

Applying Lemma 1 establishes that the revenue-cost function must be a monotonic

transformation of the certainty-equivalent revenue having this last property. Let-

ting T (r, p, w) = ec (r, p, w) and using Lemma 2 establishes the homogeneity

properties of T. The convexity and monotonicity propertries follow from the prop-

erties of the revenue-cost function CR and the properties of the directional dis-

tance function.

Proof of Result 2: Directly parallels the proof of Result 1 upon noting that

constant relative riskiness requires

ec (Ar, p, w) = Aec (r, p, w)

which together with Lemma 2 establishes that

ec (Air, p, w) . ec (Ar,Ap, w)

..

implying that the certainty-equivalent revenue is homogeneous of degree zero in

the stochastic output prices.
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