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Abstract

Cost functions dual to stochastic production technologies are derived
and their properties are discussed. These cost functions are shown to be
consistent with expected-utility maximization without placing serious struc-

tural restrictions on the underlying technology.
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1. Introduction

Perhaps the most singular aspect of agricultural production is its randomness.
Certainly, the stochastic nature of agricultural production and the economic prob-
lems associated with adjusting to it have provided the most commonly accepted
arguments for agriculture’s ’special nature’, and consequently for its frequently
preferential treatment in the economy. A similar spirit seems to pervade the an-
alytical thinking of agricultural economists: Because agricultural production is
stochastic, and because stochastic production is inherently different from non-

stochastic production, it is often thought that common concepts from economic
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theory no longer apply. Nowhere is this more apparent than in the confusion that

has arisen in agricultural economics over the existence of cost functions for sto-

chastic technologies. A succinct statement of the conventional thinking has been
provided by Pope and Chavas (1994):”...if one restricts attention to cost functions
that are independent of risk preferences,...consistency of cost minimization with
expected utility maximization imposes some structure on production technology.”

Even in the case of a nonstochastic technology, consistency of cost minimiza-
tion imposes some structure on the production technology in the sense that the
existence of cost functions requires some minimal regularity properties. Typically,
these include that the output chosen is technically feasible and that input sets be

closed. This paper shows that closedness and technical feasibility are the only

condilions that a stochastic technology must satisfy in order for well behaved cost
functions, exhibiting all their usual properties in terms of input prices, to exist.
And under the presumption that individuals maximize the expected utility of net
returns, these cost functions are independent of the producer’s risk preferences.
Moreover, if these conditions are satisfied, the cost function is dual to a technology
exhibiting free disposal of inputs and convexity of input sets that is observationally
equivalent to the original stochastic technology. In other words, duality theory

applies exactly for stochastic technologies under the same assumptions required




for it to apply to nonstochastic technologies.

In what follows, we first introducé our notation and our definition of the tech-
nology. For concreteness sake, we use a representation of the technology similar
to that analyzed by Pope and Chavas (1994), but more general in that it applies
to non-differentiable technologies. We show that well-behaved cost functions exist
for this technology, develop the properties of these cost functions, state a duality
result relating the cost function to stochastic technology, and then show that max-
imizers of the expected utility from net returns always minimize cost. After that
we briefly consider extensions of our approach to the more general state-contingent
formulation of production uncertainty found, for example, in Chambers and Quig-
gin (1992, 1996, 1997) and then, for the purposes of illustration, present a simple
example of the formulation of an optimal multiple-peril crop insurance program

using our methods.

2. The Model

Consider a firm whose attitudes toward risk are characterized by a von Neumann-
Morgenstern utility function, U(W), where W denotes terminal wealth. We pre-
sume that the utility function is strictly increasing and continuous. Terminal
wealth is assumed to take the form: W = wg + f(x,€) — W - x , where wy is ini-
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tial wealth, x is an n-dimensional vector of nonnegative inputs committed prior

to the resolution bf uncertainty, w is an n-dimensional vector of strictly positive
and nonstochastic input prices, f is a nonnegative function giving stochastic rev-
enue resulting from the application of inputs x and the stochastic factor £. The
stochastic factor may be variously interpreted as a stochastic random input be-
yond the control of the producer and not known at the time that input allocation
decisions are made, or as an indicator of the state of the world. Unlike most
earlier studies, there is no need for us to assume that the technology is sufficiently
smooth to be differentiable or even continuous. Instead, we only assume that

f is upper semi-continuous!

in x. Because differentiable technologies are always
upper semi-continuous, it follows, for example, that our results cover the entire
range of technologies considered by Pope and Chavas (1994). However, our re-
sults also apply to an even broader class of technologies (specifically those with
closed input requirement sets). An empirically important example of a stochastic
technology that is not differentiable but which is upper semi-continuous is the

class of Leontief technologies. € is assumed to have a fixed support given by the

closed interval = C R with a monotone probability distribution function G(¢)

LA function h(z) is upper semi-continuous in z if its upper contour sets {z :h(z) > h} are
closed sets for all h.




with G'(e) = g(e) > 0.
Under these assumptions, an expected utility maximizer chooses the input

allocation to solve the following problem:
max {/_ U(wo + f(x,€) — wx)dG(s)} .

3. The Cost Function

The most modern approach to deriving a cost function for a nonstochastic tech-
nology is to specify the technology in terms of input sets or input correspondences
which give the input combinations capable of producing a given bundle of outputs.
Here we pursue a similar strategy except that we infer an input correspondence
for a profile of stochastic revenues from the stochastic technology described in
the previous section. By a profile or trajectory of stochastic revenues, we mean a
relation which gives for every realization of the stochastic factor, € € Z, a level of
revenue which we shall denote by 7 (¢). Perhaps examples based on special cases
of the technology detailed in the previous section best illustrate the concept of

a trajectory. Consider the cases of multiplicative and additive uncertainty given



by:

flxe) = [MXe,
fxe) = fi(x)+e,

where = = [0,Q]. When the input bundle is fixed at any particular level, say x*,
then in the multiplicative case the stochastic technology generates a trajectory of
revenues that is depicted pictorially as a line with slope f™ (x*) emanating from
the origin and stopping at the point f™(x*)Q, while in the additive case, the
stochastic technology generates a profile of revenues that is depicted pictorially
as a line with slope one and vertical intercept f®(x*) which ends at the point
f(x*) + Q (see Figure 1). Hence, choosing a particular input combination is
equivalent to picking a profile of revenues when a stochastic technology prevails.
Or alternatively choosing to produce a profile is equivalent to picking an input
combination if the profile in question is technically feasible.

Now what does it take to be able to produce an arbitrary trajectory R =
{r (e) : € € Z} of stochastic revenues using the stochastic technology developed
above? Clearly, an input vector can produce a particular profile if and only if x

satisfies: f(x,e) > 7(g) for all ¢ € Z. So continuing to denote the profile by R,




its input set is defined by the correspondence:

V(R) = {x:f(x,e)>r(e),e €=}
= Nefx f(xe) 27 (e))

= Nzv(r(e),e),

where v(r (€) ,€) denotes the ez post input set associated with producing the single
stochastic revenue r (g) given that ¢ actually occurs, i.e., {x :f(x,€) > 7 (¢)}. Put
another way, v(r (€) ,€) is the collection of input combinations that will produce
the ex post revenue, r (¢), given that € occurs. Figure 2 illustrates, for graphical
simplicity, the case where = ={1, 2}. When ¢ = 1, the isoquant for the level of
revenue given by 7, is illustrated as the lower boundary of the set v(ry,1) under
the presumption (made for purposes of illustration only) that inputs are freely
disposable, and the isoquant for the level of stochastic revenue rj is given by the
lower boundary of the set v(ry,2). The intersection of these two input sets, V(R),
is given by all input combinations in the shaded area. Notice, in particular, that
the input set for this stochastic technology will typically be kinked at points of

intersection of the frontiers of the ez post input sets.




Because f(x,¢€) is upper semi-continuous, each input set v(r () ,€) is a closed
set, and thus by a standard result, V/(R) must also be closed as it is formed by
taking the intersection of an infinite number of closed sets. Having a clear notion
of an input set it is now an easy matter to define a well-behaved cost function for

the trajectory R. We have:

c¢(w,R) =min {w-x:x €V(R)}

if V(R) is nonempty and oo otherwise. Using well-known arguments one can
establish that because V(R) is a closed set, this cost function actually exists and
possesses all the properties usually associated with cost functions in the vector of
input prices (Chambers, 1988, Chapter 2). Hence, we state, without proof, the

following obvious result:

Proposition 3.1. : ¢(w,R) satisfies: ¢(w,R) > 0; c(uw,R) = pc(w,R),p >

0;w' > w =¢(W',R) > ¢(w,R); ¢(w,R) is concave and continuous in w.

At this juncture, it is worth emphasizing that this fundamental result about
the existence of a cost function for the stochastic technology only rests upon the
single assumption that f(x,e) is upper semi-continuous in x.

9




In addition to satisfying these usual properties of a cost function, c¢(w,R) also
satisfies Shephard’s lemma. Namely, if there exists a unique solution to the cost
minimization problem, then the cost function is differentiable in input prices, and
its gradient in input prices is the vector of cost minimizing demands. And, if the
cost function is differentiable in input prices, there exists a unique solution to the
cost minimization problem which is equal to the gradient of the cost function in
input prices (Fare, 1988).

Before turning to the possible dual relation between c¢(w,R) and V(R), it is
worthwhile to divert our attention for a moment and illustrate how ¢(w,R) relates
to the cost functions for the ex post revenue functions, i.e., the cost functions

associated with particular realizations of f(x,). To that end, we define the ez

post cost functions:

C(w,r,e) =min{w-x: x € v(r,e)}

if v(r, €) is nonempty and oo otherwise. Denote:

x(w,R) € argmin{w - x: x €V(R)}.
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By the definition of V(R), it follows immediately that for all r (¢) € R, x(wW,R) €

v(r (€),€). Hence,

w - x(w,R) > C(w,r (E)‘,EI),T‘ (e) € R,

from which we immediately conclude:.
Proposition 3.2. : ¢(w,R) >max {C(w,r(e),e)}

The cost function for the stochastic revenue profile thus provides an upper
bound for all the ez post cost functions, and in particular always provides an
upper bound for the ez post revenue that is the costliest to produce. Sometimes,
the inequality in the proposition can be replaced by an equality. This is always
true, for example, when x is a scalar. And in Figure 2 if the relative input prices
are given by the dashed line segment ww’, the cost function for the stochastic
revenue profile is given by the cost function for the costliest ez post revenue.
More generally, however, it is not. Suppose, for example, that relative input
prices are given by the dashed line segment w*w*. For these relative prices, least
cost over V(R) is given by point A which is not cost minimizing for either ez post

revenue.
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This link between the ex post cost functions and ¢(w,R) also helps illustrate the
role that technical feasibility of a revenue profile plays in determining c(w,R). As
an example, consider the case of multiplicative production uncertainty discussed
earlier and illustrated in Figure 1. If such a technology applies and one chooses a
revenue profile with a positive intercept in Figure 1, no combination of inputs will
be able to produce that profile because no combinations of inputs is capable of
producing a strictly positive output in the worst case, € = 0, under multiplicative
uncertainty even if the revenue profile is achievable in all other states of nature.
Hence, C(w,r (0),0) = co and consequently c(w,R) = co.

Another immediate implication of this Proposition is that the cost function
dual to the stochastic production technology will not generally be smoothly dif-
ferentiable in all the elements of R. The nondifferentiability of ¢(w,R) emerges

from the fact that the output set dual to V(R) :

R(x) = {R:x €V(R)}

1s not strictly convex and its frontier possesses kinks (Chambers and Quiggin,

1998).
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4. Duality for the Stochastic Technology

Arguably the single most important development in the theory of cost and produc-
tion was Shephard’s (1953, 1970) discovery of the dual correspondence between
the production structure and the cost function. This discovery has had important
consequences at both an empirical and theoretical level. In this section, we show
that ¢(w,R) is dual to a stochastic production structure characterized by an input
set V(R) that is closed, convex, and satisfies free disposability of inputs. We start

by defining the shadow input correspondence:

V*(R) = Nyso{x:w-x>c(w,R)}.

Because V*(R) is defined by the intersection of closed half spaces, it must be closed
and convex by standard results on convex sets (Rockafellar, 1970). Furthermore,
it is also apparent that x' > x €V*(R) = x'€V*(R), i.e., the shadow input
correspondence satisfies free disposability of inputs. By standard duality theorems

(e.g., Fare, 1988), it follows immediately that:
Proposition 4.1. : If V(R) satisfies the following properties: 0™ ¢ V(R) for all
R={r(e) >0:¢e€Z}, V(R) is a convex set, X’ > x eV(R) = x'€V(R), and

13




V(R) is closed, then V(R) = V*(R).

An immediate implication of the proposition is that a cost function derived
from a stochastic technology characterized by closed input sets (upper semi-
continuity of f(x,e)) is dual to a stochastic technology characterized by closed
and convex input sets satisfying free disposability of inputs. Thus, even if the
technology from which ¢(w,R) is derived does not satisfy these properties®, there
will exist a stochastic technology satisfying these properties which is observation-
ally equivalent to the original technology in the sense that a cost minimizer will
make the same economic choices from this technology (the one corresponding to
the shadow input correspondence) as he or she would from the original technol-
ogy. Hence, if one can establish (as we do in the next section) expected-utility
maximizers minimize cost, then it follows immediately that no true generality is
lost from an economic perspective in operating with a technology satisfying the
same properties as V*(R).

We have already established that V' (R) satisfies one of the properties in the
proposition (closedness). We now briefly discuss conditions on f(x,e) which guar-

antee the existence of this duality. Free disposability of inputs is guaranteed by

2As a reviewer points out, the empirically appealing Just-Pope technology can violate free
disposability of inputs.

14



assuming that f(x,e) is nondecreasing in x, while convexity of V (R) is ensured by
assuming that f(x,) is quasi-concave in inputs. (Quasi-concavity of f(x,) im-
plies that each v(r,¢) is convex, and standard results on convex sets then implies
that V (R) is convex (Rockafellar, 1970).) The final property in the proposition
we might refer to as 'no free lunch’ in accordance with standard terminology in
the nonstochastic production literature. A sufficient condition for the technology
to satisfy this property is that f(0", <) not be capable of producing a positive
revenue, i.e., some inputs must be committed if a positive revenue is to be had in

any state.

Corollary 4.2. If f(x,€) is a nondecreasing, upper semi-continuous, and quasi-

concave function of the inputs that satisfies 'no free lunch’ then V(R) = V*(R).

5. Expected Utility Maximizers Do Minimize Cost

Now that we have derived a cost function for the stochastic technology that is dual
to a stochastic technology possessing closed and convex input sets exhibiting free
disposability of inputs, we shall demonstrate that the expected-utility maximiza-
ton problem can be broken down into two stages. In the first stage, the producer

acts to minimize cost of a revenue trajectory or profile, and in the second stage
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the producer picks the utility maximizing revenue profile. Define:

x(wW,wp) € arg max {

o~

Ulwo + f(x,€) — wx)dG(s)} ,

and let

r(w,wo, &) = f(x(w,wp),

m
~—

denote the stochastic revenue that would occur if € is the realization of the stochas-
tic factor and inputs are evaluated at their expected-utility maximizing levels. Put
another way, r(w,wp, €) is the optimal ez post revenue contingent upon the real-
ization of €. In this sense, it can be interpreted as e-contingent or state-contingent
revenue. With these definitions in hand, it is now easy to establish that the ex-
pected utility maximizing producer, in fact, acts to minimize cost. In particular,
our claim is that the expected utility mazimizing producer chooses the input bundle

so as to munimize the cost of producing the profile of stochastic revenues given by:

R(wawp) = {r(w,wp,€) : € € Z}.

16



The easiest way to see that this must be true is to suppose the contrary and
assume that there exists a bundle of inputs cheaper than x(w,wp), which when
combined with the stochastic factor € is capable of producing R(w,wg) . Call
this bundle of inputs x'. Now the fact that U is strictly increasing in W and x’

produces R(w,wp) implies

i

U(wo + f(X',2) — w-x)dG(e) >

i

U(wp + r(w,wp, ) — w - x(w,wy))dG(e)

thus violating the definition of x(w,wg) as the expected-utility maximizing input

choice. This argument establishes that:

Proposition 5.1. : w - x(w,wg) < w: x for all x capable of producing the tra-

Jectory of optimal stochastic revenues R(w,wyp).

Corollary 5.2. :An expected-utility maximizer solves:

max {/5 U(we +7 () — c(w,R))dG(e)}
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In evaluating this result, it is important to recognize several things. Most
importantly, the only restriction that is placed upon the producer’s preferences
(apart from those imposed by the expected-utility model) for the cost function
to exist is that his or her utility be increasing in er post wealth®, and the only
condition that consistency of cost minimization with expected-utility maximiza-
tion imposes on the stochastic technology is that its input sets be closed. There
is no need to make any presumption about the individual’s degree of risk aver-
sion, any degree of differentiability of the technology or the preference structure,
or any other common measure of his or her attitudes toward risk. Thus, the
proposition is more general than, say, those presented by Pope and Chavas (1994)
which impose more structure upon both producer preferences and the technology.
Second, by our duality results, the cost function that results from choosing in-
puts so as to minimize the cost of producing the stochastic revenue trajectory can
be used to exhaustively characterize the economically relevant technology. Next
this decomposition of the expected-utility maximization problem is distinct from
those presented by Pope and Chavas (1994)%, and hence our Proposition does

not invalidate their claims about their cost functions. However, it does invali-

3The Proposition is valid for even more general preference structures than expected utility.
All that is required is that the producer’s preferences be nondecreasing in w - x.

4We would also argue that ours is the more natural decomposition of the producer maxi-
mization problem in the context of stochastic production
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date the naive conclusion that one might draw from their analysis, and that is,

that expected utility maximizers do not minimize cost. Rational expected utility

mazimizers always minimize cost. Finally, and most importantly, the Proposition
suggests a natural two-stage procedure to pursue in analyzing decisionmaking for
a risk-averse producer facing a stochastic technology: First, find the minimum
cost of producing all feasible revenue trajectories, and then choose the expected

utility maximizing trajectory (trajectories).

6. Extensions and Applications

To keep our arguments as close as possible to the model of producer decisionmak-
ing under uncertainty most familiar to agricultural economists, we have assumed
that the individual producer maximizes expected utility. However, the only prop-
erty of expected-utility maximization that we have explicitly employed in our
arguments is the monotonicity of the von Neumann-Morgenstern utility function.
It turns out that all our arguments continue to apply under even more general
preference structures such as rank-dependent expected utility (Quiggin, 1993) or
general smooth preferences (Machina, 1982) so long as producer preferences are
at least weakly decreasing in producer input cost in the case of linear input prices

or weakly decreasing in a separable function of inputs under more general pref-
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erence structures, for example, generalized Schur-concave (Marshall and Olkin,
1979; Chambers and Quiggin, 1998) préference functions.

A more significant generalization is to proceed along the lines investigated by
Chambers and Quiggin (1992, 1996, 1997, 1998) and extend the analysis beyond
the case of stochastic revenue or production functions as considered in the present
paper (as well as in most applied work on production under uncertainty) to the
Arrow-Debreu model in which production possibilities for state-contingent com-
modities are described by technology sets. In this more general framework, the
only restriction on the technology required for the existence of a cost function is
that its input sets be closed®. The key advantage of this extension is that if R (x)
1s strictly convex, its dual cost function will be smoothly differentiable avoiding
the potential nondifferentiability of ¢(w,R) that plagues the stochastic production
function technology®. (As Chambers and Quiggin (1992, 1997) have pointed out
the stochastic production function technology is degenerate in the sense that it
leads to state-contingent output sets which are characterized by fixed coefficients.)

Chambers and Quiggin (1997) use such a state-contingent production model in the

STechnically, this is an extremely mild restriction because it can never be contradicted
empirically.

8 Alternatively, nondifferentiability of the cost function can be avoided by placing enough
structure upon the stochastic production function or revenue function to ensure that R (x) is
strictly convex.
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finite-state case to analyze producer decision making in the presence of forward

and futures markets exploiting the smoothness of the associated cost function to
derive a range of arbitrage conditions and new results on hedging.

To illustrate this point, consider the problem of multiple-peril crop insurance
as studied by (among others) Nelson and Loehman (1987) and Chambers (1989)
under the assumption that ¢(w,R) is smoothly differentiable. Assuming that the
stochastic factor, €, is contractible’, an insurance company can write an insurance
contract in which the ez post net indemnity depends upon the realization of the
stochastic factor. Denote the net indemnity associated with the realization of the
stochastic factor € as [ (¢). Then assuming that the insurance company is risk-
neutral, the socially optimal insurance contract solves the following maximization

problem:

/Vll,clz{:c {/E U(wo + 7 (€) + I (¢) — ¢(w,R))dG(g) —

o

1(e) dG(e)} .

Letting 7 (¢) = wo + 7 (€) + I (¢) — ¢(w,R), we obtain the following first-order

"This is equivalent to assuming that there is no problem of moral hazard or adverse selection.
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conditions for the socially optimal multiple-peril crop insurance problem:

U'(r(e)-Dgle) = 0,

U (x @9 () - 575 [V n (@) a6t

IN

0, r(e)>0, foralle €=,

in the notation of complementary slackness®.

Assuming that the farmer is strictly risk-averse, i.e., U is strictly concave, the
above equality implies that a socially optimal multiple-peril crop insurance policy
stabilizes farmer income at 7 which is determined as the implicit solution to
U'(m*) = 1. Substituting this result into the second expression then yields that

the optimal production pattern is determined by:

g(a)—g%lgo, r(g) >0,

which is the production pattern which maximizes expected profit from farming.
Hence, in a very simple and straightforward fashion we are able to reconfirm

the Nelson and Loehman (1987) result that socially optimal crop insurance in

. ) . . - .
$The notation, 5%(;"%2, is exact in the case where the state space is discrete. For the contin-

uous state-space case, this derivative should be interpreted as the Fréchet derivative of ¢(w,R)
evaluated at €.
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the absence of moral hazard and adverse selection involves full insurance for the
farmer® while having the farmer produce at the point which maximizes expected

profit from farming. Other generalizations are straightforward and are left to the

interested reader.

7. Concluding Comments

State-contingent production under uncertainty, like production of commodities
differentiated in time and space, is merely a special case of a general multiple-
input, multiple-output technology. Hence, as we demonstrate above the duality
tools developed for the latter automatically apply to the former. This propo-
sition stated in this way appears self-evident, but the issue of whether duality
methods are applicable under uncertainty has remained shrouded in confusion
and conflicting claims. In this paper, it has been shown that provided input sets
are closed and nonempty, a well-behaved cost function can be derived from any
stochastic production or revenue function. The resulting cost function, in turn,
is always dual to a stochastic production structure exhibiting convexity of input
sets and free disposability of inputs. Hence, any stochastic production structure

possessing closed and nonempty input sets will be observationally equivalent for

9This manifests Borch’s (1962) well-known rule for optimal risk sharing.
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cost minimizers (and hence maximizers of the expected utility of net returns) to
a stochastic production structure possessing closed, convex, and input disposable
input sets.

Historically, the dual approach to economic analysis has proven a powerful and
tractable tool in the analysis of non-stochastic production problems yielding many
new insights and analytical results. The results of this paper suggest that similar
progress in the analysis of problems involving production under uncertainty is

possible.
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