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1 Introduction

This paper develops new input and output measures. The approach used to con-
struct these measures relies on earlier work by Chambers (1996) that employed a
version of Luenberger's (1992, 1995) shortage function to develop input, output,
and productivity measures. The measures developed by Chambers (1996), being:,
based on a translation representation of the technology, are to be contrasted di-
rectly with more conventional input and output measures which rely upon radial
representations of the technology: namely, input and output distance functions
(Caves, Christensen, and Diewert 1982a, 1982b).

In what follows, I first briefly discuss the translation measure upon which I
base my new measures of inputs and outputs. Following Chambers, Chung, and
Fare (1996), I refer to it as the directional technology distance function to em-
phasize that it represents a complete generalization of Shephard's (1970) input
and output distance functions. After briefly developing the properties of the di-
rectional technology distance function, I specify two parametric representations
of it which are flexible in the sense of Diewert (1976). The first has the attractive.
property of automatically satisfying the translation properties of directional tech-
nology distance functions. I refer to this form as the logarithmic-transcendental.
The second form is the quadratic, which was studied extensively in Chambers
(1996). Next, I briefly discuss previous work on bilateral input, output, and
productivity measurement and provide a synopsis of the main results in Cham-
bers (1996) on Bennet-Bowley input and output measures. Then, I define new
bilateral measures of input and output aggregates that are particularly appro-
priate for the logarithmic-transcendental technology and show how they can be
calculated directly from observed data on input and output quantities and their
prices. My last substantive section derives necessary and sufficient restrictions
on the technology that insure that the bilateral input and output indicators de-
fined here and by Chambers (1996) satisfy a form of additive transitivity that
Blackorby and Donaldson (1980) refer to as additive circularity. These necessary
and sufficient conditions are so restrictive that I then develop new multilateral



input and output measures which satisfy additive circularity, but which can be
constructed directly from a series of bilateral input and output indicators.

2 Notation, Assumptions, and Definitions

Let x G r denote a vector of inputs and y E Rrn+ an output vector. Superscripts
on input and output vectors are typically used to differentiate vectors either
across time or across firms. (Exceptions are Ok and 1' which denote the k
vectors of zeroes and ones, respectively.) For example, Xh will be interpreted
variously as firm h's input use or as input use in period h. The technology is
defined in terms of a set TCrx

T = {(x G R7, y eRT) : x can produce y}.

T satisfies the following properties:
Ti: T is closed;
T.2: Inputs and outputs are freely disposable, i.e., if (x', > (x, —y) then
(x, y) E T (x', y') E T;
T.3: T is convex.

Slightly modifying Luenberger's (1992, 1995) shortage function and following
Chambers, Chung, and Fare (1996), the directional technology distance function
is defined by:

—4DT (X, y; gx, gy) = sup 10 G (x—Ogs, y+Ogy) E T1, gx E r+, gy E

where (gx, gy) (on, 0m). DT y; gx, gy) represents the maximal transla-
tion of the input and output vector in the direction of (—gm, gy)that keeps the
translated input and output vector inside T. When (—gm, gy) r'n),

the directional technology distance function, therefore, is analogous to Black-
orby and Donaldson's (1980) translation function for T. Figure 1 illustrates
DT (x, y; ln, in)as the ratio 0 it /OA for the point (x, y). All known distance and

directional distance functions can be depicted as special cases of DT (x, y; gx, g,,).
In particular, the directional input distance function defined by Chambers, Chung,
and Fare (1995) is DT y; gx, om), and the directional output distance function

is
An important property of the directional technology distance function is that

it offers a complete function representation of the technology in that:

(x, y) E T .4=> DT (x, y; gx, gy) (1)

(Luenberger, 1992). Points on the boundary of T are characterized by DT (x, y; gx, gy) =
0. Denote input prices by w G Wit+ land output prices by p E ar++. From (1),

1 Nk++ denotes the strictly positive k-orthant.
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it follows immediately (Luenberger, 1992; Chambers, Chung, and Fare (1995,
1996)) that a profit maximizing firm solves:

sup {p- (y+DT (x,Y; gx,gy) gy) w (x—DT (x, Y; gx, gy) gx) / • (2)

Assuming that the directional technology distance function is differentiable in
both inputs and outputs, the first-order conditions for an interior solution to (2)
are:

P = —Vy DT (x, Y; gx, gy) (13 • gY W gx)

W = VxDT (x, Y; gx, gy) (13 gY W gx) •

(3)

In equations (3) the notation V, denotes the gradient of the function with respect
to the vector z.

The other properties of DT (x, y; gs, gy)are summarized by Chambers, Chung,
and Fare(1996):

D.1: (x—agx, y+c-xgy; gx, gy) = DT (X,y;gx, gy) G

D.2: DT (X, y;Agx, Agy) = DT (X,y;gx,gy) , > 0;

D.3: (xi, —31) (x, —y) DT (xi, 3r1; gx, gy) >. DT (x, Y; gs) gy) , i.e., nonde-

creasing in inputs and nonincreasing in output;
D.4: DT (x, y; ga., gy)is concave in (x, y) if T.3 is satisfied.

In what follows, I deal exclusively with a special case of the directional tech-
nology distance function (analogous to Blackorby and Donaldson's (1980) trans-
lation function), and I shall always deploy the more concise notation:

Tt(x, DT (x, y; in, 1m) ,

Ti(X) y) DT (x, y;

To(x, y) 57+- (x, y; On, 1m) ,

and refer to them, respectively, as the technology, input, and output translation
functions.

The first parametric specification of the technology translation function that
I consider is the logarithmic-transcendental. Firm h's technology translation
function is logarithmic-transcendental if it can be written in the form:

vi n 
Xi Xj 1 m m

exp Tth(x, 72- Ea exp(-2) exp(—) —
2 

E bj4k exp(-Ti) exp(—Yk
92 k= j=1j=1 i=

n m

+ E
j=1 k=

) —Yk
khi exp( exp(-

2 ),

where ak3 3k 
= ak for all i and j 

k3
bh • for j and k, and ch • = c

3k 
 for all j andz 3t 7 k3 
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k. The logarithmic-transcendental, being a member of the generalized-quadratic
class of functions (Blackorby, Primont, and Russell, 1978), is second-order flexi-
ble. Also notice that the logarithmic-transcendental form automatically satisfies
property D.1 for the technology translation function.

The quadratic2 k translation function (k= i,o) for firm h is.

TP"(x, y) =

n in

kyk+72 .
t=

1

i PilaYkYi+
3 h

k=1 1=1

in m

i=1 k=1

„,h
fik-t-iYk

with = , 13//:i = 13/11k . If this form is interpreted as an input-translation
function, the following parametric restrictions insure that D.1 is satisfied:

i=1 i=
= O,i = 1, ...,7 •

i=

-0 k • 771.— -- 

And finally if the quadratic is interpreted as an output translation function then
the following insure that D.1 is satisfied:

in in 

E 14,1;= —1; = o, k 1
k=1 1=1

in

• ik = O,i =

k=

3 Previous Work on Input and Output Indexes

Input and output indexes are summary measures of two things: multiple input
use or multiple output production and input and output differences either over
time, place, or firms. For the purposes of our present discussion, suppose that one
is considering how a firm's use of a single input, which we denote as x, changes
over time. There are at least two ways to measure this change: The first and
perhaps the most obvious is simply the difference between input use in period
one, x1, and input use in the base period, x°, i.e., x1 — x°. This approach brings
with it the advantage that changes in the origin from which these two numbers
are measured has no effect on the measure of input change, but it also has the
disadvantage that the input-change measure is not unit free. For example, if we
go from measuring the input in terms of hours to measuring in terms of hundreds
of hours, the input measure changes. A second approach, which remedies the
unit problem, is to consider the ratio of input use in period one to input use in
the base period, i.e., x1/x°. However, this ratio-approach has the disadvantage
that changes in the origin from which these two numbers are measured does
have an effect on the resulting measure of input change. So, for example, if

2 Notice that the logarithmic-transcendental has fewer parameters than the quadratic. How-
ever, the logarithmic-transcendental automatically satisfies D.1, while the quadratic does not..
To see how the quadratic must be further restricted, differentiate D.1, Tt (x—aln,y+aim) =
Tt (x, y)— a with respect to a to obtain— VTt in Vy Tt (x—aln,y+arn)-
lin = —1. Now differentiate this expression with respect to a and evaluate both expressions at
a = 1.
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we are originally measuring input committal in hours worked and then move
to measuring input committal in terms of hours over 5 hours worked, the ratio
measure must typically change, and in some instances the measure will not even
be well defined. To see this clearly, consider the case where x0 was originally 5
hours worked, and the translation of the origin described above takes place. The
new index is not well-defined.

In fact, one of the most common empirical problems that occurs in applying
ratio-based indexes is what to do with zero observations, as ratio-based indexes
are typically not well defined at the origin. Difference based indexes typically
will be well-defined at the origin precisely because they are invariant to changes
in the origin.

Index numbers have almost exclusively been calculated using the ratio ap-
proach. All the traditionally familiar indexes (Laspeyres, Paasche, and Fisher's
ideal) are ratio-based measures. Moreover, these more traditional indexes were
all calculated using a "test" or axiomatic approach to index-number construc-
tion. That is, tests reflecting reasonable properties that an index should possess
were specified, and indexes meeting these tests were then derived. A more re-
cent development has been the derivation of indexes using what Samuelson and
Swamy (1974) have referred to as the economic approach to index numbers. In
the economic approach to index numbers, indexes are constructed from primal
representations of preferences and technology under the presumption that indi-
vidual agents are economic optimizers. Following the original work of Kontis
(1939) and Malmquist (1953), virtually all of these indexes have been calculated
using a ratio approach. Here the basic idea is relatively simple: Take a radial
measure of the technology, a distance function, and then express input and out-
put indexes in terms of ratios of these measures of the technology. Because
radial functional representations of technology are positively linearly homoge-
neous, these economic measures are invariant to the units in which quantities are
calculated.

Perhaps the most influential works in this area have been the papers by
Caves, Christensen, and Diewert (1982a, 1982b) which show that the Tornqvist
approximation to the Divisia index is an exact index that can be derived by
taking geometric averages of Malmquist indexes for transcendental logarithmic
input and output distance functions. Because the transcendental-logarithmic
function is second-order flexible, these results imply that the Tornqvist index is
'superlative' in Diewert's (1976) sense.

The only studies, to my knowledge, which have pursued economic indexes
of input and outputs using the difference approach are Diewert (1992), Diewert
(1993) and Chambers (1996). Diewert (1993) briefly discusses Bennet's (1920)
index as a possible way of accounting for changes in inputs or outputs but does
not develop any such indexes in detail. Although raised in a different context,
the early works of Bennet (1920) on measuring the cost of living and Bowley
(1928) on welfare evaluation are direct predecessors of this difference approach.
In fact, Chambers (1996a) shows that the Bennet-Bowley index is an exact mea-



sure of Allais' (1943) disposable surplus when the consumer's benefit function is
quadratic.

I now briefly survey the results by Chambers (1996) on input and output
measurement. As a starting point, it is convenient to define two measures of
profitability. The cost-based measure for input prices w and input levels x1 and
0 ix s:

C (w; xi xo) w. (x1 _ x0)

The revenue-based measure for output prices p and output bundles y1 and y° is:

R (I); Yi '31 P ' (Y1 y°).

Depending upon where input prices are evaluated, C (w; x, x°) and R (p; y1, y°)are
the analogues in difference form of the Laspeyres or Paasche input and output
indexes.

The Bennet-Bowley cost-based measure is the average of the Laspeyres and
Paasche cost-based measures:

Bc(wi wo; xi xo) = _1 (6, (wi ; xo) (wo; x0))
2

The Bennet-Bowley revenue-based measure is:

BR(P1,P0; Y1,37°) = (R (Pi; Yi, Y°) R (P°; Y1,3r1) •

The Bennet-Bowley measures, of course, are the difference analogues of the ap-
propriate Fisher ideal indexes. Notice, however, that they also have the attractive
intuitive property that they can be interpreted as cost differences, revenue differ-
ences, and profit differences evaluated at average prices (e.g., the Bennet-Bowley
cost-based measure measures the difference in costliness of the two input bundles
x1 and x° at average input prices (w° w1)).

Chambers (1996) defines the 1-technology Luenberger input indicator for
(x°, x1, y1 )by:

x1 (x°, xl, y1) = (x0,y1) -T' (x1,y1) ,

and the 0-technology Luenberger input indicator for (x°, , y1) by:

x° (x°, xl , y°) = Ti° (x° , Yo) TP (xl ,Yo) •

Figure 2 illustrates X1 (x°, x1, y1) in the case where firms operate inefficiently
as the difference between the amounts that one can translate x° and x1in the
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direction of the bisector and still keep both input bundles in the input set for
technology 1. In the case illustrated, X1 (x°, x1, y1) > 0, suggesting that x° is
larger than x1 when the difference in the input bundles is measured relative to
the ability to produce y1 usingtechnology 1. On the other hand, X° (xo, xl, yo)

compares the two input bundles' ability to produce y° relative to technology 0.

It would be desirable to have an indicator that is invariant to the technology
chosen to make the comparison. A natural compromise is to take the average of
these two indicators.

The Luenberger input indicator, denoted X (x°, x1, y0, 
y1) s defined:

(X (pc°, , y°, = :5 X(xo, , yi) xo (xo, , yo))

An obvious consequence of these definitions and D.1 (the translation property)

is

Theorem 1 (chambers, 1996P0 (xo _ can, xl a1fl, yk) = xk (x0, xl yk)

k= 0,1.

Corollary 2 (Chambers, 1996) X (x° — al', x1 — Can, y1 , y()) =X (x0, x1, yO, 3,1)

Put in words, the theorem and the corollary say that all the Luenberger input

indicators are translation invariant in inputs. This should be contrasted directly
with Malmquist input indexes' homogeneity of degree zero in inputs. In the case
of Malmquist indexes, zero degree homogeneity emerges from the linear homo-

geneity of input distance functions in inputs. Here, translation invariance follows
from D.1. Effectively, it makes the difference between input aggregates indepen-
dent of the choice of the origin. Chambers (1996) main result on Luenberger

input indicators is:

Theorem 3 (Chambers, 1996) If the firm minimizes cost, the input-translation

function is quadratic with a°= c j for all i and j, then:

(xo yo yi) _BC(*-1, v--vo ; 0x

where iv- =

This theorem is important because it implies that the .Bennet-Bowley cost--
based measure is an exact indicator for a second-order flexible technology. (No-
tice, as Caves, Christensen, and Diewert (1982) point out, that the restriction

cqj= c restricts the flexibility of the technology.) Hence, the Bennet-Bowley
cost-based measure might be thought of as a superlative indicator of input dif-

ferences.
Parallel to the definition of the input indicators, Chambers (1996) defines the

1-technology Luenberger output indicator for (x1, y1, y°)by:

yi (go,y1,x1 = (x1, o)y — V, (x1, yl)
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and the 0-technology Luenberger output indicator for (yo, yl, xo) by:

yo (yo, yi xo) = (x0, y0) _ (x°, y).

yk (yo, 
y1, xk)thus measures the difference between the amounts y°and y1can

be projected in the direction of the bisector and still keep both of them in the xk
output set for technology k . The Luenberger output indicator is the average of
Y1 
(y0, yl - I \

X ) and Y°(y0, yl x0):

y (3,0, yi, x0, xi) = (yi (3TO, xl) yO (yo, x0))

An obvious consequence of these definitions and D.1 is

Theorem 4 (Chambers, 1996yk (y0 + aim, y1 + aim, xk) = yk (y0, y 1 , xk) k

0,1.

Corollary 5 (Chambers, 1996)Y (yo + aim, y1 + x0, xl) = y (y0, 
y1, x°, 

1 \X )

Chambers (1996) also shows that the Bennet-Bowley revenue based measure

is an exact measure (and thus superlative) of the Luenberger output indicator

under appropriate assumptions on the technology:

Theorem 6 (Chambers, 19901! the firm maximizes revenue, the output trans-

lation function is quadratic with 13°.i --. 13lj for all i and j, then

y (y0, yl, x0, xl) 
= 

BR(I51, p0; yl , y0 )

where Pk = 4m. •

4 Exponential Input and Output Indicators

Where Chambers (1996) defines indicators in terms of input and output trans-

lation function, here I want to define input and output indicators in terms of

the logarithmic-transcendental technology translation function. To that end, I

define the 1-technology exponential input indicator for (x°,x1, y1)by:

Exi ()co, yi) exp Ttl (x0, y1) exp Ttl (xl , y1) ,

and the 0-technology exponential input indicator for (x°, x1, yl) by:

EX° (x°, x1, y°) = exp Tt° (x°, y°) exp Tt° , yo) .



.•

The primary difference between the exponential input indicators introduced here
and the indicators studied in Chambers (1996) is that these indicators are spec-
ified in terms of differences of exponentials of technology translation functions,
while those in Chambers (1996) are specified in terms of differences of input
translation functions. However, as with the Luenberger indicators defined by
Chambers (1996), both compare the ability of the two input bundles to produce
different output bundles relative to a different technology.

The Luenberger exponential input indicator is the simple average of the 1-
technology and 0-technology exponential input indicators, i.e.,

EX (x° , xl , y° , yl) = (EX I (x°, xl, yl) -I- EX° (x°, xl, y°)) .

An obvious consequence of these definitions and D.1 (the translation property)
is

Theorem 7 EX' (x° — al", x1 — aln, yk alm) = exp (-0!) EXk (x°, xl, Yk)
k = 0,1,a E R.

Corollary 8 EX (x° al", x1 — y° al", y1 -I- al") = exp (—a) EX (x°
E

I define the 1-technology exponential output indicator for (x1, y1, y°)by:

Eyl (y0, yl xl)= exp Ttl (xl , y°) exp 7;1 (xi , yi)

and the 0-technology exponential output indicator for (yo, y1, x°) 
by:

Eyo (yo, xo) = exp Tto (x0, y0) — exp T° (x0, y1).

Eyk (y0 y1, xi') thus measures the difference between the amounts y°and y1 can

be projected in the direction of the bisector and still keep both of them in the xk
output set for technology k . The Luenberger exponential output indicator is the
average of EY1(y°, yl, xl) and EY° (yo, yi xo):

EY (y0,y1, xo, xi) _— (Eyi (yo, xi) + Eyo (yo, x0))

An obvious consequence of these definitions and D.1 is

Theorem 9 EYk (y° + al", yl + al", xk — al") = exp(—a)EYk (y°, yl,x9

k = 0,1.

Y0, 3r1)

Corollary 10 EY (y° al.', y1 + a1",x° — al', x1 — al") = exp(—a)EY (y°, y1, x°, x').

9



5 Exact Measures of the Luenberger Exponential Input and
Output Indicators

This section derives exact measures of the exponential input and output indica-
tors introduced in the previous section that can be calculated without economet-
ric estimation. My first result is:

Theorem 11 If the technology translation function is logarithmic-transcendental
with ai ° = for all i and j, and firms maximize profit, then:z ti

n / (
EX (x°, , yo ,y1) = exp exp

\ 2
k=1

where 111;1/,!' =  h 
wh

w h = 0, 1.

(X° \ (Xlk
k/14) (eXP —exp

Proof By Diewert's (1976) quadratic identity:

i 1exp 711 (x°, yl) — exp T — tl (x1, y1) 1 [\7 exp. e) xp Ttl (x°, yl) + Vexio) exp T, (, x1 , y )1]— -- 

xo \xl
• [exp -T. — ex p (—i2--)1 .

Similarly,

exp (x°, yo) — exp Tto (xi, yo) = 5.1 [Vexp(s) exp Tt° (x°, yo) + Vexp(S) 
exp 

71) (x1' Yo)]

- [exp —exp (7x1)1

Adding these two equalities gives:

[Vexp(a \ exp 7::' (x°, y°) + V exp( al exp 711 (xi, ii)]. 
x° xl

exp —
2 

— exp —
2 

+
\ 2 /

1 Vexp( i ) exp V (x°, y1) + Vexp(i) exp T° (x1, y°)
exp --I — exp

2 —Ve ()A N exp
xl)k 2 I 

jit( ) (x0, 3,0\ _
) Vexp(i ) exp Ttl (x1, y1) 

x° xl
-

[ 
 75--

Under  the assumption that a° = alj for all i and j the second term in this
expression is zero. Hence,

EX (x0, x1 YO, Y1) = [Vexp( 21-

X
• [exp

exp TIP (x° , y°) + V exp(i) eXp Ttl (XI , yi)]

—x(l (4)
2

10



Differentiation establishes that:

1 x
exp Tt(x, y) • VxTt(x, y) = exp(-) o Vexp(i exp Tt (x, y)

where z o v denotes the vector consisting of the component-wise products of
the vectors z and v. When the ,firm maximizes profit, this last expression
upon using (3) reduces to:

x _ 1
exp(-) o w =(.) exp Tt (x, y).2 exp

This last expression when substituted into (4) establishes the theorem.

A parallel argument establishes:

Theorem 12 If the technology translation function is logarithmic-transcendental
with b9 = bl for all i and j and firms maximize profit, then:zi

0
-oE [exp (-9 pk exp (Y-kEY (y0, y1, x0, x1) = [exp

2 )
k=1

-h  Pk  h = 0 , 1.where pk ph.rn +wh.in

Proof By Diewert's 976) identity:

-1/1!) - exp
)

exp Ttl (x1, y0) - exp Ttl , yl) = -
1 
[V 

exPl 
exp 71,1 (xl , y°) + V -v exp Till (x1, y1)]

2 2- -

• [exp   
2

Vexl)

Similarly,

(x0 y 0) ex p 0 Tt° (X° , y ) exp 713 x0, yo , x-7 rn0 0 1)1exp Tt° = - v ex,( exp it (x , y
'k 2 /

-Y - [exp (-2 exp
(2 )1

Adding these two expressions together and rearranging under the assump-
tion that b9. = gives:z3

o
-Y -Y 

[Vexp( _7_,y) exp 711.)x
0, yo Vex 

i3k 
f .Ly exp Ttl (x1, y1)] • [exp (-2 - exp I )]2  2 9

Differentiation establishes:

exp Tt (x, Tt, y = -exp 
(-) 

0 Vex() exp Tt (x, .

11



Together with (3), this last result establishes for a profit maximizing firm that:

v Y1, 

exn Tf (X y) = po exp (72
-) 

•_ 

The result follows immediately.

6 Transitivity of Input and Output Indicators

So far, all the indicators studied only make bilateral comparisons either across
firms or time. More generally, however, one will want to make multilateral com-
parisons. For example, one potential application of the input and output indica-
tors is for the construction of a time series of an aggregate input from multiple
time series of single inputs. A property that is usually deemed desirable in the
construction of multilateral indexes is Frisch circularity. Here the analogue of
Frisch circularity corresponds to what Blackorby and Donaldson (1980) have
referred to as additive circularity. A multilateral indicator G(Xh, Xk , yh, yk) sat-
isfies additive circularity if:

G(xii,x4.,yh,yk)=G(xh, X), yh, y3) G(x3, xk, y, k)

for all h, j, and k. From this definition, it is apparent why additive circularity
might be a desirable property for an indicator to possess. Consider using a multi-
lateral indicator G(Xh, Xk, yh, yk) to construct a series of observations on aggre-
gate inputs across firms. Let the observation on the base firm's (denoted now by
a superscript 1) aggregate input be normalized to Cd1. Notice, for example, that
there are at least two ways to construct the aggregate input for firm 3: First, one
can construct it directly by using the formula: C713 = G1 + qx3, x1, y3, y1). Or,
one could construct it more indirectly by first constructing G2, and then com-
puting G12 qx3, x2, y3, y2). Unless the indicator satisfies additive circularity,
there is no reason for the result of both computations to be the same.

The reason, of course, that this happens is that the choice of a base observa-
tion here is essentially arbitrary. Generally speaking, when looking at compar-
isons across firms (or across countries for that matter), there is no natural way
of ranking firms. However, in some applications, there is a natural ordering, and
when there is, additive circularity becomes a less compelling property to possess.
A clear example of this is in the construction of a time series of aggregate inputs.
In that case, the ordering is clear, and one can usefully construct meaningful
aggregates by making successive bilateral comparisons from the base period.3

When additive circularity is important it comes at a severe cost in terms of
restricting the technologies to which it implies. My first result of this section is
that:

31n the literature on time-series aggregates, this is referred to as chain linking.
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Theorem 13 The Luenberger input indicator satisfies additive circularity for
all x E , y E if and only if:

Tih (X, y) = ah (y) b(x),

where b(x+aln) = b(x) + a.

Proof By Lemma 1 in Blackorby and Donaldson 0.980, the Luenberger input
indicator satisfies additive circularity if and only if it can be expressed as:

X (x°, xI, y0, y1) = v (x°, yo) — v (x1, y1)

where v (x°+a1n, yo) v (co, yo) ka. Substituting into the definition of
the Luenberger input indicator and setting x1 = On and y1 = Orngives:

Tio (xo, y Tio (on, y0)+2v (xo, yo) _2v (on, om)+Til (x0, orn) (on, Om).

Performing a similar operation for X (x°, Xh y°, yh) establishes that:

7,2 (x0 0 _ TI (on, om) Tih (x0, om) n (on, om)

so that we can rewrite the above in the obvious renormalization:

Tio (xo, yo) .t? (yo) + in (x0 yo)

Because this same argument can be applied for arbitrary h and k it follows
immediately that:

Tih (x, y) = (y) (x, y) . (5)

where 771 (x, y)rnust satisfy D.1 in x. Substituting this result into the addi-
tive circularity condition and simplifying yields:

_rn (xi , yO) +in (x0, yi ) _in (x2, yi ) +in (x1 , y2) _Tit (x2, yo) +in (x0, y2)

= x2 = on, yi = —0Now set x1 y = Om to obtain:

so that:

rn, (x° Om) — m77/, (0n 0 , ) (0n, y2) = 771 (x°, y2)

rn, (x, y) = b(x) n(y)

in an obvious renormalization. This result along with (5) establishes ne-
cessity. Sufficiency is obvious.

13



I.

Corollary 14 If the Luenberger input indicator satisfies additive circular-
ity for all x E y E RT, then it is independent of output.

Hence, transitivity in the form of additive circularity places severe restric-
tions on the classes of technology which will permit one to construct meaningful
Luenberger input indicators: All firms must possess a technology whose input
translation function is additively separable in inputs and outputs, and where
only the function dealing with outputs can be specific to firms. Some intuitive
insight into the form that this technology assumes can be had by noticing that
applying D.1 to the form in the theorem yields:

Tih (x, = ah (y) b (x) = qx-1-ah(y) • 1n).

So transitive Luenberger input indicators are only available if the technology dif-
ferences across firms can be summarized by a common input-translation function
that is independent of the level of output, b (x), and actual differences emerge
as a result of a firm-specific translation of inputs along the unit vector, where
the magnitude of the translation depends upon the output choice. In a sense,
the differences across firms are restricted to changing the efficiency with which a
given vector of inputs is utilized. Figure 3 illustrates: The base technology (1=1)
is represented by the input set characterized by the isoquant labelled V'. The
technology for h=2 is found by translating every element of the base isoquant by
a2 (y) — a1 (y)along the unit vector.

Turning to the quadratic input translation function, it follows immediately
that:

Corollary 15 If the input-translation function is quadratic, it satisfies additive
circularity for all xEr,yE aZT if and only if a = a for all h and k and
i=1,2,...,rt,a.=c4. for all h and k and id = 1 , 2, ..., in, and '7 = 0 for all h,

k.

An exactly parallel argument establishes:

Theorem 16 The Luenberger output indicator satisfies additive circularity for

all xEr,yE R_T: if and only if:

(x, y) = a(y) +

where a(y+Prn) = a(y) — (3 for all h.

Corollary 17 If the Luenberger output indicator satisfies additive circularity

for all x E y E RT, it is independent of inputs.

14



Corollary 18 If the output-translation function is quadratic, it satisfies additive
circularity for all x E aZn+) , y E Rifand only if 14,1" = bik for all h and j, k =

1,2, ..rn, = 03  for all h and j, k,l = 1,2,..., rn, and 71:k = 0 for all 11, i, k.

So for Luenberger output indicators to be transitive it must be true that the
technology can be described as though there exists a single reference output set
common across firms with the only effect that inputs have on production to be
in terms of translating outputs; by a firm-specific amount that depends on the
input mix, along the unit vector.

Similar results apply for the Luenberger exponential indicators:

Theorem 19 The Luenberger exponential input indicator satisfies additive cir-
cularity for all x G , y E9?-71 if and only if:

exp y) =a' (y) b(x),

where ah(y+ 01") b(x—f31) = exp(-0) (ah(y) b(x)) for all h.

Corollary 20 If the Luenberger exponential input indicator satisfies additive
circularity for all xERT,y ER.T, it is independent of output.

Corollary 21 If the technology translation function is logarithmic-transcendental,
it satisfies additive circularity of the Luenberger exponential input indicator if and
only if: aj = atij all h and t, i,j = 1, 2, n, and 4j = 0 for all h.

Theorem 22 The Luenberger exponential output indicator satisfies additive cir-
cularity for all x E , y esR-T- if and only if:

exp Tth(x, =a(y) bh (x) ,

where a(y-1-01m) bh(x--131n) = exp(-0) (a(y) bii(x)) for all h.

Corollary 23 If the Luenberger exponential output indicator satisfies additive
circularity for all x E grit y E Tit is independent of inputs.
Corollary 24 If the technology translation function is logarithmic-transcendental,
it satisfies additive circularity of the Luenberger exponential output indicator if
and only if. b = vfi all 11 and t, i,j = 1, 2, ..., in, and c = 0 for all h.

The primary implication of the preceding theorems and their corollaries is
that it is highly unlikely that any technology will satisfy the restrictions required
for additive circularity of the bilateral indicators to hold. Hence, using the bi-
lateral approach that we have developed so far will not be sufficient to ensure
the existence of multilateral input and output indicators that satisfy this form of

15



j.

additive transitivity. However, by suitably redefining the indicators previously
developed, it is possible to generate both multilateral input and output indica-
tors that satisfy additive circularity. Following Caves, Christensen, and Diewert
(1982a, 1982b), we consider two separate approaches: In terms of constructing
input indicators, the first approach is to take an arbitrary observation on inputs
and outputs, call it (x*, y*), and to construct all bilateral input indicators rela-

tive to this observation, i.e., create as the case warrants either X (xh, x*, yh, y*)

or EX (xh , x* , yh, y*) . Once these indicators relative to a common base are con-

structed, new indicators expressed relative to this common base can be defined
as:

and

(Xh, Xk, 
yh, yk) = X (xh, x*, yhi, y*) (Xk X*, yk y*) ,

E .3? (Xh, xk, yh, yk) = EX (x', yh y*) — EX (xk , f, yk, y*) .

It is easy to verify that these new indicators are, in fact, transitive and satisfy
the additive circularity property.

Another alternative is to make all input comparisons relative to the average

technology by taking the average of either X (Xh xk yh yk)or EX (xh, Xk, yh, yk)

as appropriate, over all possible k, i.e., define new indicators:

and

g(xh, yh) (ch, xk, yh, yk)

1
E X (xi' , yh — E EX (xh , xi , y h yi)

N i=1

(xh, yh) and Eg(xh, yh) can be thought of as indicators of input usage for
firm h relative to the average of input usage by the firms considered. Once these
average indicators are constructed new bilateral indicators can then be derived
as the difference between these average indicators. That is, as

(xit xk yk) = g(ch, yh) g(xk yk),

and
EX (xh xk yh, yk) = E X (xh , yh) — E X (ck , yk).

Both 5( (Xh, Xk yh, yk) and E (xh , Xk, yh , yk) satisfy additive circularity, and

are thus transitive.
We thus have,
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•

Theorem25 If the firm minimizes cost, the input-translation function is quadratic
with ail' = ak for all h and k, then:

and

(xh, Xk, yh, yk) = BC (*k W*; Xk x*) — BC(**, ; x*, xh),

(xh,xiz yh k
» Y = —

N i=

where *k Wkk •
•in

(BC(*i ,*h; Xi, xh) — BC (*i ,*k; Xi, Xk))

Theorem26 If the technology translation function is logarithmic-transcendental
with a!' — a i!' for all Ii and k, and firms maximize profit, then:z 

n ,h
• 1.

ag (X", Xk, yh, yk) = E (exp  
2
k wtk + 

ex 
p   coi*,) (exp exp

(6))

k=1

+ E exp
2

)ti, + exp (-4) zo -k—
2 

k exp —
2 

(X*k) 
exp 
(4))
—
9

x,*

k=1

and

N n

Ek 
N
E (exp —x 

tbkh + exp 14) (exp —2 exp (7))(xh ,xk ,y",yk) = - 
(- 

9 

xik) xik1

i=1 k=1

— X _x 4 xik:EkkN n (exp ( 
2 

ill ibkk + exp  
ik

exp ) exp ())9
i=1 k=

where 72311,!' =Wk wh.in+ph.im •

Construction of output indicators satisfying additive circularity follows a sim-
ilar procedure: Either define a common base against which all outputs are com-
pared, or use the average output indicator as the common base. Therefore, we
have:

•1-; (yh, yk, xlt xk) = y (yh, y*, xh, x*) _ y (yk y*, xk, x*)

EY (yh, yk, Xh, Xk) = EY (yh, y*, xh, x*) — EY (yk y*, xk x*)

(yh, yk, xh, xk) (y",
N . __Ey y y , X ,

1 ( k xi

3=1 
N j=i
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and

EY (3Th yk xh xk)= —
1 

EY (3T
hj 

x
h xj —

N 3=
EY y

k j xk xj)

N j=1

Each of these new indicators, which we shall refer to as Luenberger multilat-
eral output indicators and Luenberger exponential multilateral output indicators,
respectively, satisfy additive circularity, and we obtain as before:

Theorem 27 If firms maximize revenue, the output translation function is quadratic
with 137irj = Ori'i for all in and n, then

(yh, yk xh, xk) BR(Y, 15h; 3rh, y*) — BR(15*

and

N
(yh yk, xh xk) 1

= B R(Ph 15i; Yh) — —N N .
3= 3=

where Pk = k
p *•lm •

BR(i53 ,I5k;y3 ,Yk),

Theorem 28 If the technology translation function is logarithmic-transcendental
with blrjt = bZi for all in and it, and firms maximize profit, then:

Ef (yh yk xh xk)

and

EY 

k, h yk xh

rn 

= [exp
k=1

771

j=1 k=

t'k where Pk = ph.im+wh., •

[exp

-h
P k exp (Y-i) 75k* exp —Yk 

2

(yt) -1
9 k eXp

9 k ex

exp 1
\ 2 

pk + exp)—
2 

pk  [exp
(Yik -h

—J I 
uk) k — exp

2 9

exp pk + exp pki [exp exp

These last theorems show that it is possible to define multilateral Luenberger
indicators which satisfy the additive circularity property, and for which there.

exist superlative measures which can be calculated without the need for econo-
metric estimation.

9
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7 Conclusion

This paper has studied the construction of new input and output indicators along
the lines suggested by Chambers (1996). Bilateral indicators analogous to those
developed in Chambers (1996) have been defined and shown to be calculable
under suitable behavioral assumptions directly from observable market data.
However, these bilateral Luenberger input and output indicators will only satisfy
additive circularity under extreme restrictions on the technolou. Consequently,
multilateral Luenberger indicators, which satisfy additive circularity and which
can be calculated directly from the bilateral indicators, have been defined and
shown to be calculable using only data on market prices and quantities.
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