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Abstract

Superlative input, output, technical change, and productivity measures

are derived for quadratic approximations to the directional technology dis-

tance function. Input measures can be computed as cost differences using

appropriately normalized prices. Output measures can be computed as rev-

enue differences, while technical change and productivity measures can be

computed as profit differences.
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L Introduction

Most economists would probably agree that the best indicator of a firm's per-

formance is some measure of its profitability, be it the cost of producing a fixed

bundle of outputs, the revenue generated from a fixed bundle of inputs, or its

profit. If true, then changes in profitability would be natural measures of changes

in the firm's performance. And, in particular, profitability differences should be

a good way to compare inputs, outputs, and productivity over firms or over time.

This paper examines cost, revenue, and profit's role in measuring inputs, out-



puts, and productivity. It shows that profit differences (not ratios) calculated

using appropriately normalized prices can be exact measures of input use, pro-

duction, technical change and productivity. In particular, measures originally

suggested by Bennet (1920) and Bowley (1928) in the context of cost of living

and welfare measurement provide exact indexes when the underlying technology

is suitably quadratic. The Bennet-Bowley measures correspond to cost, revenue,

and profit differences calculated using normalized average prices.

The approach taken in this paper departs from earlier work on indexes by re-

lying on a version of Luenberger's (19921), 1995) shortage function, the directional

technology distance function, to characterize technology. The directional technol-

ogy distance function enables one to construct new representations of differences

in input use, output production, and productivity that I refer to as Luenbeiger

judicators. These Luenberger indicators are novel because they are based on a

translation (not radial) representation of the technology and, thus, are all spec-

ified in difference (not ratio) form. Hence, their basic normalization property is

that they are translation invariant, (i.e., are invariant to the choice of the origin).

It is these Luenberger indicators for which the Bennet-Bowley measures are exact

when the directional technology distance function is quadratic in inputs and out-

puts. And because the quadratic is a flexible functional form, the Bennet-Bowley
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measures are thus superlative in Diewert's (1976) sense.

In what follows, I first introduce my notation and terminology. Then to make

my ideas concrete, I consider the measurement of various types of translation-

neutral technical change using directional distance functions. I show that as long

as the appropriate directional distance function is quadratic, appropriately nor-

malized Bennet-Bowley measures of profit differences provide exact measures of

input- and output-translation neutral technical change. respectively. In the fol-

lowing sections, I consider, successively: input indicators, output indicators, and

productivity measurement. Following Diewert (1976) and Caves, Christensen, and

Diewert (1982a, 19824 I then show that appropriate Bennet-Bowley measures

are exact for the Luenberger input indicator, the Luenberger output indicator,

and the Luenberger productivity indicator provided that the directional technol-

ogy distance function is quadratic.

2. Notation, Assumptions, and Definitions

Let x E V+1 denote a vector of inputs and y E ndenote a vector of outputs.

Superscripts on input and output vectors are typically used to differentiate vectors

either across time or across firms. (Exceptions are Ok and 1' which denote the

k vectors of zeroes and ones, respectively.) For example, xh will be interpreted



I

variously as firm h's input use or as input use in period h. The technology is

defined in terms of a set T C R.7 x n."+' :

T = { (x E R74,' .y E Ir+.) x can produce y}.

T satisfies the following properties:

Ti: T is closed:

T.2: Inputs and outputs are freely disposable, i.e., if (x', —3/) > (x, —y) then

(x,y) E T (x. y') E T;

T.3: Doing nothing is feasible, i.e. (0", Om) E T.

Related to T are the inpulet, V(y) = :(x,y) E T }, and the output sct,

Y(x) = fy :(x,y) E T

Slightly modifying Luenberger's (1992, 1995) shortage function and following

Chambers, Chung, and Fare (1996), I define the directional technology distance

function as:

25r(x,y;g ,g1) = max {/ E : Y+/3g,,) E E gy E g,) (07' , 07"),
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if (x—figs, y+Ogy) E T for some /3 and dT(y, gy) = inf{S E : y-1-6gy E

otherwise'. Here (gx, g„) is a reference vector of inputs and outputs. DT (x, y; gx, gy)

represents the maximal translation of the input and output vector in the direction

gy)that keeps the translated input and output vector inside T. When

, gy) = 1"1, the directional technology distance function, therefore,

corresponds to Blackorby and Donaldson's (1980) translation function for T. Fig-

ure I illustrates DT (x, y; 1, 17")as the ratio 0A/OB for the point (x, y). As

Chambers, Chung, and Fare (1996) show, all known distance and directional dis-

tance functions can be depicted as special cases of DT (x, y; gx, gy) . In particular,

the directional i7q)ut, distance function defined by Chambers, Chung, and Fare

(1995) is

DT (x, y; g,, 0"i) = max {13 E : y) E , E , gx

if (x-13g, E T for some 13 and —oo otherwise2, and the directional output

distance function is DT (x, y; On, gy)

Diewert (198:3) defines a closely related concept in the context of measuring waste in a
production sector.

2Note that because y+60"' E sJi.7+". for all real 6 we set dT(y,07n) =—co.



The directional technology distance function satisfies':

D.2:DT (x, y: gs,gy)is upper semi-continuous in x and y (jointly);

D.3: DT (x, y;Ag3., Agy) = DT (x, Y; gx, gy) >0;

D.4: (x', —3/ (x, —y) DT (x1, y'; g, gy) _? DT (x, y; g, , gy) i.e., nonde-

creasing in inputs and nunincreasing in output;

D.3 D T (On . ; , gy) > 0;

D.6: (x, y) E 7' .<#, DT (x, y; gx, gy) > 0;

D.7: If T is convex, DT (x, y; g,,, gjis concave in (x, y) (jointly);

D.S: If 17(y) is convex, DT (x, y; gx, Om) is concave in x,

D.9: If Y (x) is convex, DT (x, y; gl,) is concave in y.

D.6 is particularly important because it implies that the directional technology

distance function is a complete function representation of the technology. Firms

are said to operate efficiently if DT (x, y; gx,g0 = 0. One can establish that:

Lemma 1. If DT (x, y; gy)satisfies D.1 through D.6, then i' = {(x, y) : (x, y; g,,,, gy)

0} satisfies T.1-T.3.

Denote input prices by w E r+4 and output prices by p E RT+. By D.6, the

3T1e..se properties are established in a number of places including Luenberger (1992a, 1992b,
1995, 1996) and Chambers, Chung, and Fiire (1995, 1996). Most are straightforward'.

41Z7+1, denotes the strictly positive n-orthant.



firm's cost minimization problem can be written:

rnp-i {w x : DT (x, y; Orn) 0}

if V(y) is nonempty. However, a convenient consequence of D.6 is that the firm's

cost minimization problem can be rewritten as the unconstrained minimization

problem:

mm {w. (x-- DT (x, y; g, gx) . (2.1)

so long as V(y) is nonempty. This result is easily demonstrated. Let

x' Earg min {w • x : DT (x, y; g,., am) o}.

—+ .
We first establish that cost minimizers operate efficiently, i.e., DT (X' , y; gx, Or') =

0. Suppose instead that DT (x', y; gx, Om) > 0 . If so, there must exist a strictly

cheaper input bundle than x' that is technically feasible thus violating the def-

inition of x' as cost minimizing. Next note that all technically feasible input

8



bundles satisfy x—DT (x, y; g, , 011) g, E V(y) which, in turn, implies w x' <

w. (x—DT (x, y; g, Om) gr)so that the cost minimizing solution provides a lower

bound to the minimand in (2.1). But this lower bound is also achieved because

w x' = w. (x'—DT y; g, , OT") gx) . Similar arguments establish that the rev-

enue maximization and profit maximization problems can be rewritten as the

following unconstrained maximization problems:

and"

max {p• (y+ (x. y; , gy) gy)
?I

(2.2)

max {pi (y+15T (x, y; g,,., gy) gy) — w. (x— DT (x, y; g, gy) gx) . (2.3)
y

Assuming that the directional technology distance function is differentiable, the

first-order conditions for an interior solution to (2.1) are:

w = Vñh (x, y; gx, Om) (w gx) (2.4)

5 See, for example, Lueuhergcr (1992b,1995).
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while the first-order conditions for an interior solution to (2.2) are:

p = VI/DT (x, y; gy) (p • gy) , (2.5)

and the first-order conditions for an interior solution to (2.3) are:

P = —I V' 71 DT (x, y; gs, gy) (p • gy + w • gr.)

w = V, DT (x, y; g,„ gy) (p gy w . gx)

(2.6)

In equations (2.4) through (2.6) the notation Vz denotes the gradient of the

function with respect to the vector z.

Properties D.1 to D.6 let us establish that, although they are alternative char-

acterizations of T and both special cases of the directional technology distance

function, the directional input distance function and the directional output dis-

tance function generally provide different evaluations of a given bundle of inputs

and outputs.

10



Lemma 2. DT (x, y; gx, Om) = DT (x, y; On, gy)for all x E Rri+ and y E RT. if and

only if (x, y) E T (x+-yg, E T, E y-F-ygy) (0", Cra).

Proof. Suppose that DT (x, y: g. Om) -,--- DT (x, y; O, g11). Evaluating this ex-

pression at (x+-yg,, y-1-'),gy) > . Om) yields:

DT (x+-yg,, y+-yg, ; g., , On') = OT(x+7g,, y+7gy; , gy)

= DT (x+-ygx, y; gy) —

ifT(x+7g,, y; 0")—

= DT(x, y; g,

The second equality follows by D.1, the third by the supposed identity, and

the fourth by DA again. This establishes necessity. To prove sufficiency,

notice that if the required property holds:

DT (x, y; g„ Om) = sup {/3 : (x—/3g, y) E T}

= sup { : (x) y Ogy) ET}

= DT (x, y; gy) .
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Hence, the directional input and directional output distance functions only

provide the same evaluation of an input-output bundle if translating a technically

feasible input-output bundle in the direction of (gm, gv) always stays within T.

I define several different measures of change in profitability. The cost-based

measure for input prices w and input levels x1 and x° is:

C (w; x1, x0) = w — x0) .

The revenue-based measure for output prices p and output bundles y1 and y0 is:

R (ID; Yi Y()) = p. (Y.1 y()).

Depending upon where input prices are evaluated, C (w; x1 , x()) and R (p; y1, y°)are

the analogues in difference form of the Laspeyres or Paasche input and output

indexes. The profit-based Ineaslar is:

p (p, w; yl yO, xl
R (13; Yi , y()) w xl ,

12



The Bennet-Bowley cost-based measure is the average of the Laspeyres and

Paasche cost-based measures:

B owl w0; xo) = _1 (c (w]; x1

\
C (vv°; xl, xo))

The Bennet- Bowie rcycnue-based measure and the Bennet-Rowley prof!: i-based

C(1,8111.0 are defined, respectively, as:

and

1

BR(p 1 p0; yl yO) (f? (p1 yl yO) R (po; yo))

0 = —1 (p) (pi, ; yl,y°,x1 , x°) -+- p (130
\

1 0

The Bennet-Bowley measures. of course, are the difference analogues of the ap-

propriate Fisher ideal indexes. Notice, however, that they also have the attractive

intuitive property that they can be interpreted as cost differences, revenue differ-

13
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ences, and profit differences evaluated at average prices (e.g., (w° w1))6.

The quadratic directional technology distance function for firm h is:

(x, y; gx, gy) = ctici)

with

Ii

11'1

77111 k ajj.gyi
i=

Ti

h
-t-

rn n n

k

= /4h, 4h.
1 I ilk)

=1

ro,

h. m
xix 4 

+1

2

Ti,

k=1 4J1:1 k i=1

In. fl

01 = I • • • li; E -

In. n m

okhiykyi+E
i=1 k=

—1;

0 k = 1, ... 7n.

This form can be interpreted as a quadratic directional input distance function

when 91m, = 0, k = 1, ..., ?it and as a quadratic directional output distance func-

tion when gxj = 0, j = 1, ..., 71. The following lemma will prove useful in later

developments:

Lemma 3. The quadratic directional technology (input, output) distance func-

tion can provide a second-order approximation in (x, y) to any twice-continuously

6 In a consumer context, the Bennet-Bowley cost measures correspond to Flicks  many- market
consumer surplus measure and to Ilarberger's welfare indicator.
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differentiable technology directional technology (input, output) distance function

with the same reference vectors.

Proof. The result is demonstrated for the directional technology distance func-

tion. The extension to the directional input and output distance func-

tions is straightforward. By D.1, any directional distance function must

satisfy: DT (x—ag, , y+agy; gy) = DT (x, y; g, gy) —a. Differentiation

of this expression with respect to a at a = 0 gives:

Vy DT (x, y; g.,,) • gy Vx DT (x, y; gy) • gx = —1. (2.7)

Differentiation of (2.7) with respect to x gives:

Vyx DT (x, y; g gy) gy - v25T (x, y; gr, gy) g„ =-- 0, (2.8)

while differentiation with respect to y gives:

Vyy DT (x, y; gll) • gy Vxy DT (x, y; gy) 9 g„ =0. (2.9)

15



Therefore, any twice continuously differentiable distance function must sat-

isfy (2.7)-(2.9)7 .Differentiation verifies that the quadratic directional tech-

nology distance function satisfies (2.7)-(2.9). To complete the demonstra-

tion of the result, we need to show that there exists a set of parameters for

the quadratic directional distance function for which the quadratic function

value, and first and second-order partial derivatives coincide with those of

the original directional distance function at a particular point. Let the point

in question lie (x*, y*). We start with the Hessians: Set

h. 1)7, (x* , y* g, , gy)

arie)xj

fur j = 1,2, ...,n —land all i,

„ a D T (X* Y*;gs,gy) 
= as ayk

Luenberger (199(i) obtains (2.8) and (2.9) by using a duality argument.
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for all i and k,

fur all i,

(')DT (x*, y*; gx, gy),D * *( x gy)

i=

f_fh. D (X* 
y*; gx

k /
(9:11k Thut

fur 1 = 1, 2, ..., 7o, — 1 and all k, and

--+
7,1.— 1 IIDT (x* y*;

01,1:17r1gli
7
i = E aykom1=1

(x* 31*; gx gy) 
gxi

Oxi tayk

fur all k. At these parameter values direct computation of the Hessians for

the two directional distance functions shows that they coincide and jointly

satisfy (2.8) and (2.9). Now using the values of the second-order parameters

defined above set

DT
bh = x* y*; gx gy)

07/k

17

i=



k = 1.2, ...,m,,

h 8DT (x*, y*; g, gy) 
=

aXi

IL,
,*

Ltik :bk

In

:=

fur i = 1, 2, ...,n — 1, and using these parameter values set:

h _—
711.

k=1

74.- 1
h, h,
k k ag+ 1.

i = 1

Direct computation using these parameter values of the gradients of both

functions reveals that they are equal and satisfy (2.7). The constant term

of the quadratic directional technology distance function, a, can now be

chosen to insure that the function values coincide.
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3. Profit as an Exact Indicator of Technical Change

I first consider the case where the index h is an indicator of the state of the

technology for the same firm. Technical change is input-translation neutral if:

(x, y; g, Om) = DT (x+ A(10g,-, Y; g, .

Input-translation neutral technical change is illustrated for the rase g, = (1, 1) in

Figure 2 where it is seen to project the frontier of the input set (the isoquant) to

the southwest in the direction of (-1, —1). Intuitively, it is quite similar to quasi-

input homutheticity in the sense that cost minimizing input ratios for all states of

the technology (i.e., for all /0 can be found by finding the cost minimizing input

ratio for the reference technology (DT (x, y; gx, Om)) and then projecting that

input ratio inwards (for progressive technical change) or outwards (fur regressive

technical change) along the reference vector. Notice, in particular, that input-

translation neutrality generalizes the more familiar concept of Harrod neutral

technical change. (If there are two inputs, capital and labor, Harrod neutrality is

the special case of input-translation neutrality where g, = (0, 1).) When technical

change is input-translation neutral, the cost function for the D14% (x, y; gx, Oin)

19



technology can always be written:

ch (w. y) = c (w, y) — A(h)w

where c (w, y) is the cost function for the reference technology. Hence, input-

translation neutrality can always be interpreted as shifting the intercepts of the

cost minimizing derived demands downward.

Technical change is output-translation neutral if

D171% (x, y; 07' g,) = DT (x, y— A (h)gy; 01, gy)

which can be visualized (although it is not drawn) as projecting the frontier of the

output set to the northeast in the direction of g„. Intuitively, it is quite similar

to the notion of quasi-output humotheticity. Economically, it requires that the

intercepts of the revenue maximizing supplies be shifted upwards, as reflected

by the fact that the revenue function for the LA., (x, y; O, gy) technology can be

20



written:

(p, =7.(p, x)+A(//,)p • gu

where 7.(p, x) is the revenue function for the reference technology. Note that the

A(h) functions in the input and output directional distance functions will not, in

general, coincide.

Our input-based technical-change indicator is the shift in the directional input

distance function that can be associated solely with changes in the index of the

state of the technology:

t,(x, y,1 , 0) = D)1,(xy; g,, Om) — 14, (x, y; g, Oni)

The output-based technical-change indicator is the shift in the output directional

distance function associated solely with changes in the index of the state of the

technology:

to(x, y,1, 0) = (x, y; , gy) — 0), (x, y; On , gy)
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So when technical change is either input- or output-translation neutral, D.1 im-

plies that the respective technical-change indicator is independent of the level of

input and outputs and is expressible simply as: A(1) — A(0).

I am now ready to state my results on measurement of translation neutral

technical change:

Theorem 1. If the firm maximizes profit, technical change is input-translation

neutral, and D. (x, y; g, ow) is quadratic then

with 15k =

Rpow, 150, vv0; 0ti(x, 0) =

(pk)
  ,--x-rk (wk) 
wk 1 " wk •

Proof: The proof follows Diewert (1976). If the technology is input-translation

neutral and the firm is a profit maximizer then:

D,1;, (xl ,y ; gx, Om) = DT (xl -+A(1)g,, yl; g3., 0"i) = A(1)+15T , yl gx, 0"1 =

22



where the second equality follows by D.1 and similarly

M-• (x0, y(); g.1, Om) = A(0) -I- DT (x°, y(); gni., 0") = 0,

whence

ti(x, y,1, 0) = A(1) — A(0) = 5 (x°, y(); g, , 0") — DT 1 yl ; gx, om)

Applying Diewert's (1976) quadratic lemma to this expression establishes:

1

ti(x,y,1,0) = —
2 
(V, OT (x(),y";gx, Om) vxDT yl; gx, 01) •

1 .)
+- (\71 DT (X0 , y0 ; m

j

X — X
( 1)

(x I y ; gy, 01) •

Using (2.6) in (3.1) with gil = Ornestablishes the theorem.

(yo —(#.11)

Having established this result, applying an exactly parallel argument in the

case of output-translation neutral technical change leads to an analogous result.

Hence, I give it without proof.
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Theorem 2. If the firm maximizes profit, technical change is output-translation

neutral, and D14, (x, y; Om g„) is quadratic then

with =

to(x, y,1, 0) =

(
P
k)

k 
(wk)5W =Pk 

*gy P *gy

These theorems establish that the difference in profitability between (x1 , y1)

and (x°,3flcalculated using the average of normalized prices for 1 and 0 is an ex-

act measure of the technical-change indicator if technical change is either input-

or output-translation neutral and if the directional distance function is quadratic

in inputs and outputs. Hence, the Bennet-Bowley profit measures provide su-

perlative measures of translation-neutral technical change, and rather intuitively,

technical change is progressive when (xi , y1) is more profitable than (x°, y°) . The

only difference that emerges in the computation of the technical change indicator

in the two cases is in the normalization used in the case of input and output

neutrality. (As we shall see later, this difference reflects how translation of the

input-output vector in the direction of (gm g„) affects production feasibility.) The

main restriction embodied in these theorems is that embodied in most superlative
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indexes of technical change: Firms must operate efficiently and maximize profit.

Hence, there is an implicit presumption that the technology does not manifest

increasing returns to scale, i.e.. T is convex. However, there is no need to assume

that inputs or outputs are separable, or that separate aggregators exist for inputs

and outputs. Finally, these two theorems should be recognized as the natural

extension of Diewert's (1976) results on superlative measures of technical change

(especially his equation (3.8)) to the rase where the technical change indicator is

specified in difference and not ratio form.

4. Luenberger Input Indicators and the Exactness of Cost

The basic idea behind the construction of input-index or output-index numbers

is to create a summary measure of inputs or outputs that can be used to assess

how these quantities vary over time or over place. In the case of a scalar input,

for example, there are at least two natural ways to create an index of input

utilization by firm 1 relative to input use by firm 0: The first, and by far more

common, is to use the ratio 4. A natural advantage of this approach is that

the index is independent of any resealing of the inputs. A second approach is
•••

to use the difference x1 — x0. This has the advantage of being independent of

any translations, i.e. changes in origin, of both inputs, but it is not invariant to

25



any resealing of the inputs (it is however linearly homogeneous in any resealing

of the inputs). And because economists routinely prefer to work in terms of

quantities which are unit free, as a rule, most practical indexes have used the ratio

approach.8 And when indexes for multiple inputs and outputs were developed,

a natural progression, therefore, was to define these indexes in terms of ratios of

linearly homogeneous aggregator functions. In recent years, Malmquist indexes

have become very popular because a number of commonly computed indexes

including Fisher's ideal index and Tornqvist's index can be rationalized as exact

measures of ratios of radial representations of the technology.

Notice, however, that the ratio-based measure is not independent of changes in

origin: Suppose for example that one was originally measuring input committal in

terms of hours worked and then moved to measuring input committal in terms of

hours over 5 hours worked. In this case, the ratio measure must typically change,

and in some instances the new ratio measure may not even be well defined. This

is most clearly illustrated, for example, by supposing that x0 was originally 5

hours. The new ratio is not well defined. In fact, one of the most common

practical problems with ratio-based indexes is what to du with zero observations,

as ratio-based indexes are frequently not well defined in the neighborhood of the

811)iewert (1993) is an exception. He briefly considers indexes expressed in difference form.
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origin. (For example, TOrnqvist's index is not well defined if some input or output

quantities have zero values for some observations.)

Although directional distance functions can always be interpreted as radial

measures of the technology (relative to a translated origin), they are more natu-

rally thought of as translation measures. Hence, when working with a translation

representation of the technology, it seems more natural to specify measures of

input use in difference form. In all that follows, I pursue this approach. and fol-

lowing Diewert (1993) I refer to them as indicators to distinguish them from the

more familiar radial measures.

I define the 1-technology Luenberger i”put indicator for (x(), x1 , y1)by:

.X 1 (x0, x1 , y1) -= (x0, y1; g, — (xl , yl ; , Om) ,

and the 0-technology Luenberger input indicator for (x°, x1 , y1) by:

x° (x0, x1 , = r4 (x0, yO oirt) in (x1 , y0; gx orn.) 
(4.1)
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Figure 3 illustrates X1 (x°, x1 , y1)for g, = as the difference between the

amounts that one can translate x° and xi in the direction of the bisector and still

keep both input bundles in the input set for technology 1. In the case illustrated,

X1 (x°, yi) >0, suggesting that x° is larger than x1.

The Lumber-gerinpuinput,(xo, indicator, denoted X , yO is the average of

X° (xo- ,X1 (3e) 3C1 y') and A y°), • N, • 5

X (x°, xl , y°, yl) = —1 ( (x", xl y') (x", xl. .

An obvious consequence of these definitions and D.1 (the translation property) is

Theorem 1. .X4: (x° g:,, x1 yk) = XA (x°. x' yk) k = 01.

Corollary 2. X (x° — ag,x1 — agx y y0 = X (x0 xi y0 y 1 )

Put in words, the theorem and the corollary say that all the input indica-

tors are translation invariant in iwyttts. This should be contrasted directly with

Malmquist input indexes' homogeneity of degree zero in inputs. In the case of

Malmquist indexes, zero degree homogeneity emerges from the linear homogeneity

of input distance functions in inputs. Here, translation invariance follows from D.1

and plays the same role for these indicators as homogeneity plays for Malmquist

indexes. With these definitions, I am now ready to state my next result:
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Theorem 3. If the firm minimizes cost, the directional input distance function

is quadratic with ct,?:i = al. • for all i and j, then:zi

X (x° ,x1 , y() ,y1) — B .v-vo ; , xo

where =  .w

Proof. The proof is inspired by the method of proof in Caves, Christensen, and

Diewert (1982a, 198214. By Diewert's (1976) quadratic lemma:

x.1 (x0, x1 , yl) = (V air (x0, yl ; g, ± V (xl , ; g,

and

x0 ,x1 , y()) -(vri7 ( 0
T Y ; gx Om) + V

itt 0 — xi) ,

1 , y0; gx, ont)) (x0 xl

Adding these two expressions together and rearranging using the assump-
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tions on the parameters gives:

1 (X (x°, xl y°, yi) =-2- 't7,1), (x1 , yl On) + D9r (x°, y°: Om)) • (x° — xl) .

Applying (2.4) yields the result.

Several comments should be made about this result: Most importantly, Lemma

3 and this theorem imply that the Bennet-Buwley cost measure is a superlative

input indicator. Second, the Bennet-Buwley rust measure calculated using nor-

malized input prices is an exact input indicator regardless of whether the tech-

nology exhibits constant returns to scale and regardless of whether the entities

involved choose outputs optimally. Also, because this cost difference represents

the natural analogue of Fisher's ideal index for ratio measures, this result corre-

sponds to the result that Fisher's ideal index is exact for a quantity aggregator

that is the square root of a quadratic function. Next. although the cost-based

measures themselves are positively linearly homogeneous in prices, the measures

here defined have the attractive property of being homogeneous of degree zero in

••

observed prices because they are specified in normalized form (the normalizing

factor is the value of the reference input bundle). Because these measures are
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linearly homogeneous in normalized prices, however, they are not invariant to the

choice of the reference vectors. Therefore, for practical application it will usually

be important to pick the reference vectors with some care. Obvious candidates

for g, include either x1 or x0, or some average of the two. Finally, if the 0 and 1

refer to two distinct firms operating in the same market at the same time. then it

is reasonable to presume that they fare the same price, and it is immediate that:

Corollary 4. If the firm minimizes cost, the input-directional distance function

is quadratic with = (4i fur all i and j then:

0 1) =-0 (iv' xl x°) .

These results on input-change indicators also have immediate applications out-

side of production economics. Suppose that we now take both y() and y1 to be

scalar welfare indicators, the inputs to represent commodities consumed, and T

to be a preference set instead of a technology set. Then it follows from the stan-

dard analogy of producer and consumer theory that our input indicators are also

interpretable as commodity indicators without any change in the mathematical

analysis. Hence, under the assumptions that we have laid out so far, perfectly

legitimate indicators of consumption can be constructed by using the cost, now

31



expenditure, formulae developed above. And, in this context, it is particularly

interesting to note the similarity of BC(irl , V; x1, x°) to Bowley's (1928) utility-

change indicator for a quadratic utility function. Although the two indicators are

virtually identical in form, there is an important difference': BOW' , V); x1 , x°)

can be computed using only observed data on prices and quantities. Bowley's in-

dicator requires observed data on prices and quantities plus the marginal utility of

income. Su even with the assumption that marginal utility of income is constant.

Bowley's measure only provides a measure of welfare change that is accurate up

to a factor of proportionality, while our measure would be exact.

5. Luenberger Output Indicators and the Exactness of Rev-

enue

I define the 1-technology Lucnberger output indicator for (x1 , , y°)by:

yl (yo, , xi) Drir (xi , yo; gp) _ (xi , yi ; on , gu)

9 DiCWert (1976) obtains Howley's measure as a corollary to his quadratic lemma which was
used in the proof of theorem 1.
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and the 0-technology Luenberger output indicator for (y°, y1 „ x()) by:

----> ->

Y0 
(y0, y1 , x0) (x0 

y°; 

gv) (xo, 
y'; 

on, ,

y' (yo, y1 , x")thus measures the difference between the amounts y°and 3,1 can be

projected in the direction of the the reference vector and still keep both of them

in the output set for technology k . The Lilo/her:ger output indicator- is the

average of Y (y°, y1 , x1) and Y° (y°, , x°):

Y 
(y0 , y 1

1 (y1 (y0, y1 xl 1/0 (y0, y 1 , x0))

2

An obvious consequence of these definitions and D.1 is

Theorem 1. Yk (yo agy, y' agy, xk)= yk (yo, 3T1 xk) , k = 0, 1.

Corollary 2. Y (y° agy , y' (gy x°, x1) = Y (y°, 3r1 , x°, x1) .

The derivation of an exact indicator for Y (y° x1) now follows exactly

the same steps used to establish that cost differences were an exact indicator for
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X (x°, 3(1 , y°, y1)except that )71 (y°, y1, x1) and Y° (y°, y, x°)and (2.2) and (2.5)

are used. Thus,

Theorem 3. If the firm maximizes revenue, the output directional distance func-

tiun is quadratic with 13(i),i = 1-n. for all i and j, then

y (yo, y1 , x0, xl = BR(pl , 150; yl yO)

P where pk = k •P

Corollary 4. If the firm maximizes revenue, the output directional distance film-

tion is quadratic with = to. fur all i and j and p° = Ip1 for /1/> 0,zi

y (y0 y 1 = R (f) ; y 1 , yO) R (po; y0 )

As with the results on the input-change indicators, these results apply regard-

less of whether the technology exhibits constant returns to scale and regardless of

whether, in this case, inputs are optimally chosen.
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• •

6. Productivity Indicators

One obvious approach to take in constructing a productivity indicator is to follow

Caves, Christensen, and Diewert (1982a, 1982b) and define both output-based and

input-based indicators using the output- and input-directional distance functions,

respectively. Computable formulae for the resulting Luenberger output-based

productivity indicator (assuming firms operate efficiently)

--+
1 ( ( 0, y 0 71—
2 

Drir x ; , gy) — (xl, yl; 0" . gli))

and the input-based productivity indicator,

1
72- ,i);, (x°, y0;g, Om)— (x1, y1; g,, 01)

then correspond to the Bennet-Bowley profit-based measures B P (f)' , *11 , , \WI° ; 3r 1 , y(), x1 , x°)

and BP(pl vv1 , po, w;y1, yO, , x0), respectively, under the assumption that the

second-order terms of the respective quadratic directional distance functions are

the same across technologies 0 and 1. These measures, which I shall refer to as

the Bennet-Rowley input- and output-based produ,divity measures, correspond to
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the technical-change indicators derived in Theorems 2 and 3.10 Hence, under the

assumption of profit maximization and the appropriate form of neutral technical

change, these productivity measures exactly measure technical change.

However, another approach, for which there is no analogue in the Caves, Chris-

tensen. and Diewert framework, is pursued in this paper: Construct the produc-

tivity indicator directly from the technology directional distance function.

The technology-1 Luenberger productivity indicator for (x°, x1 , y°, y1) is de-

fined lay:

0 0
= DT' (x() 0; , gy) — 1 , gr, g,/)

while the technology-0 Luenberger productivity indicator is

LO (x0 , 310 y = In (x0 yfi 
gy) , y1; gx, g,) •

thThe Bennet-Bowley input- and output-based productivity measures, of course, are quite
similar, but they are not identical. Below it is shown that their diftrences can be characterized
in terms of how the technology re.sponds to a translation of the input and outputs along the
referelice vectors.
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And finally the Luenberger productivity indicator is the average of L1 (x(), x1 , y°, y1)

and L° (x° , °)34 ):

(x°, xl , y°, y1) = (L1 (x°, xl y°, 371) + Li° (x°, , y°, y1)) .

Naturally, these indicators are translation invariant.

Theorem 1. Lk ()co agx,x1 ags, yO g11 1 + agv Lk 

(x°, x1, 

y0

0,1.

Corollary 2. Ti (x° — agr, x' — ngr, y° + ag„, y1 + (vg„) = Li (x°, X1 , 3r0, y' ) •

In Figure 4, Li (x°, x1 , y°, y1)measures the difference between the amount that

(x°, y°) can be projected in the direction of (-1,1) while keeping it in technology

1 and the amount that (x1 5 y1) can be projected in the same direction and keep it

in technology 0. The next result is now obvious from previous developments. All

that is required is to follow the path established in the calculation of the input

indicators and then in the calculation of the output indicators, but now under the

presumption of profit maximization.

Theorem 3. If firms maximize profit, the technology directional distance func-
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tiun is quadratic with (179‘j = cqj for all i and j, = fur all i and j then

L (X°, 

xl yO, yl) = Bp(pl cy' 1 150 *0; yi yO, xl x0)

^where pk = pkgv1:1 wkg, •

Exact and superlative productivity indicators can be computed as Bennet-

Bowley measures of profit differences. And, as a moment's reflection will estab-

lish, these productivity indicators correspond to the indicators that would emerge

if we first computed Luenberger input and output indicators using the technology

directional distance function (instead of the input- and output-directional dis-

tance functions) while assuming profit maximization and then took the difference

between the output indicator and the input indicator.

7. Comparing the Productivity Indicators

Computationally, it is obvious that the three Bennet-Bowley productivity mea-

sures differ by the way in which prices are normalized. Thus, generally they will

be distinct, and, in fact, by inspection it follows that so long as all prices are

strictly positive, the Bennet-Buwley productivity measure derived from the tech-
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nology directional distance function. BP(f)1 , Vvi , 15°, Vv°; y1,3/. ,x1 ,x ), will never

equal either BP(151 \Tv' fi° 7 "' 5. 7 )J‘,(-) ,X1 , xi)) B P(151 v-v# 1 *40; , x0).

Before turning to a comparison of the Bennet-Buwley productivity measures, it

is first instructive to compare the Luenberger output-based and input-based pro-

ductivity indicators assuming that firms operate efficiently but without presuming

profit maximization.

Theorem 1. 11 firms operate efficiently, the input-based productivity indicator,

1. (
T 
DI (x0
" 

y(). g, — (x' . y ; g,. 01)

and the output-based productivity indicator,

1
----+ 

CT+ ( 0 71—
2 

x , y0 ; 0 , „) 91 D. y 071 g )

coincide if and only if for all (30 +(Tr, y +agy) > (On , , (xl g, y1 , gy) =

--+
1)3, (x1, y1; 0, gy) , and for all (x°+ag, , 3P+ag1) > (On, Or"), 13,11, (x° + Ug, y() + ag11; On, g)/)
--+

DrIT (x°, y(); O, gy) •
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Proof For the indicators to coincide, it must be true that:

Set

1 (
(x° Y° ; , g„)

= 
(x0 y°; gx

D(7), (xl yl Or' g,„))

— (xl yl; , Om))

- -x0 y}equal to the reference vector o o y )su that

(xi, y'; O'' gy) = (xi, y 1 ; g„. o'n) ± (RO  O' gy) — (RO, s-TO; g, Om)

=

Now consider the set Z C x 1?.uf translations uf

= (5c Ear+' , Sr E WI!): Sr) = (x1 + yl üg1),c E .

Now pick (*1,1)E Z and note that (x' ,y1) (5c1 ag, —agy) for some

a. Substituting into (7.1) gives:

D70, (sc1 ag„., Sr' —agy; 07 g„)

40

- -)
n (7), ( St 1 (.1 g Sr 1 g g x )

DPF , ST1 —agy; g, , z —

D9r (5Z1 , ST1 —(gy; Or", gy)

z

(7.1)



D
-->

?r, (5t1 ,ST' l ; On, gy)

The second equality follows by the translation property of input-directional

distance functions while the fourth follows by the translation property of

output-directional distance functions. This result and an exactly parallel

argument fur the 1-technology establishes necessity. Sufficiency follows from

Lemma 2.

The technologies characterized in the theorem, in a sense, satisfy a translated

version of constant returns in the direction of the reference vectors. So this result

parallels Caves, Christensen, and Diewert's (1982a) finding that their input-based

and output-based productivity indicators coincide in the presence of constant re-

turns to scale. Under profit maximization, this basic result becomes particularly

transparent for differentiable technologies. Consider the derivative of the technol-

ogy directional distance function in the direction (gm. g„)

8 --+11(x, y) = DT (x±ags , y+agy; g,,gy) 1„=0

= V,DT • gx VyDr• • gy•
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If the directional derivative. 71(x, y), is positive, we might say that the tech-

nology exhibits increasing returns to a reference-vector translation in the sense

that outward movement in the direction (gm, gy)places a technically feasible input-

output combination farther away from the boundary of T, while movement in the

direction —(gx.g„)plares a technically feasible input-output combination closer

to the boundary of the technology. And if it is negative, we might say that the

technology exhibits decreasing returns to a reference-vector translation. Finally,

if 71(x. y) is zero one might say that the technology exhibits constant returns to a

reference-vector translation. Using (2.6) establishes for a profit maximizer that:

71(x, y)(p•gy + wigx) = w•gx — p.gy,

from which it follows immediately that for a profit maximizer,

Theorem 2. If firms maximize profits, the Bennet-Bowley input- and output-

based productivity measures coincide if , y1) =7/(x(), y()) =0.
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8. Conclusion

I have shown that appropriate Bennet-Bowley measures offer exact indicators of

technical change, output production, input usage, and comparative productivity

for a quadratic representation of the technology. Because the quadratic is second-

order flexible. these Bennet-Bowley indicators, thus, are all superlative. Perhaps

the most attractive thing about these results is that they are simple and eco-

nomically intuitive. Consider, for example, the productivity indicator: (x1 ,371)

is judged to have higher productivity than (x°,37°) if it is more profitable using

an average of the normalized prices. Su an input-output bundle is judged more

productive if it profit dominates another. Similarly, an input bundle is judged to

be larger than another if, on average, it is costlier, and an output bundle is larger

if it yields, on average, higher revenue.

Up until the work Luenberger (1992b), almost all function valued representa-

tions of technology had been radial measures and not translation measures. Lack-

ing the notion of a directional distance function, the type of indicators that I have

derived are not obvious. However, having the notion of a directional technology

distance function, these indicators become relatively transparent upon pursuing

the path set by the earlier work of Diewert (1976) and Caves, Christensen, and
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Diewert (1982a, 19824 These indicators are not interpretable as indexes in their

usual sense. For example, if one wanted to construct a time series of aggregate

input use using traditional input indexes, one would start by picking a base pe-

riod and developing later observations multiplicatively. Here, one would start

by finding a base period and then constructing later time periods by addition

or subtraction. This is a distinctly different way of looking at things. Perhaps

the most obvious mathematical reflection of this fact is that our indicators are

not homogeneous of degree zero in inputs and outputs as Malmquist and related

indexes are. Instead they are translation invariant: a property which they inherit

from the basic properties of directional technology distance functions. However

different they may be, their very simplicity suggests they will prove extremely

useful in practical productivity comparisons.
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