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Abstract

Fare and Mitchell (1992) have shown that cost functions for a multi-
output firm obey a particular output-scaling law if and only if the underly-
ing production technology is ray-homothetic. Multi-output firms, however,
frequently change their output mix in addition to their scale. Therefore,
it is important to identify technologies which possess relatively tractable
analytical characteristics when subjected to nonradial changes in the out-
put vector. This paper considers additive changes in the output vector and
shows that the cost function obeys an 'output-translation law' if and only
if the input correspondence is input homothetic. Input homotheticity is
thus shown to be more than just a scaling property.
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Perhaps the most common functional restriction employed in economics is
homotheticity. Apparently introduced into economics by Shephard (1953), ho-
motheticity is routinely used in virtually every field or subfield of economics.
Because its most recognized characteristic is that the isoquants for homothetic
production functions are radial blow ups of a reference isoquant, homotheticity is
often portrayed as a scaling property. One important economic consequence is a
linear expansion path through the origin. Another is that cost functions dual to
homothetic technologies have output separable from input prices. Consequently,
homothetic production and utility functions are very useful in the construction of
input-price and cost-of-living indexes; this separable structure implies indepen-
dence of the resulting indexes from the reference output or utility.

Fare and Mitchell (1993) have shown, however, that linear expansion paths
do not imply cost function separability: As an example, multi-output technolo-
gies with input correspondences homogeneous in the output vector possess linea 
expansion paths but not separable cost structures. Properly defined "input-
homothetic" input correspondences, however, preserve both linear expansion
paths and separable cost structures. So, it turns out in a multi-output setting
that input homotheticity is not a natural generalization of homogeneity: Instead,
input homotheticity and multi-output homogeneous technologies are both spe-
cial cases of ray-homothetic technologies whose defining characteristic is linear
expansion paths.

The foregoing suggests that input homotheticity is more than just a scaling
property: That is, it does more than just preserve marginal rates of substitution
as one proceeds out along rays from the origin in input space. The purpose of this
paper is to show that input homotheticity can emerge from considerations that do
not relate directly to the scaling and rescaling of inputs or outputs. This is done
by considering when one can define a meaningful functional restriction on the way
in which cost is affected by a translation of the output vector, i.e., by adding a new
vector of outputs to an existing vector of outputs. Take, for example, a multi-
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output technology whose input correspondence is homogeneous in the output
vector. Its dual cost function is homogeneous in outputs, and so radial expansions
of the output vector have no impact on marginal-cost ratios. But more than radial
output movements are of interest to the firm. Firms routinely consider changes
in output that are nonradial in character. From both an analytic and empirical
perspective, therefore, it seems interesting to identify technologies which possess
relatively tractable analytic characteristics when subjected to nonradial changes
in the output vector. The ones that I consider are additive changes: It turns
out that input homotheticity is the technical reflection of the ability to specify a
meaningful functional restriction on how cost is affected by a translation of the
output vector.

In what follows, basic notation and assumptions concerning input correspon-
dences, input-distance functions, and cost functions are first introduced. Then
the main result of the paper is demonstrated. An obvious reformulation of the
present treatment in terms of output correspondences, output-distance functions,
and revenue functions will demonstrate that output homotheticity can be viewed
as a consequence of input-translation characteristics.

1 Notation and Assumptions

Technical possibilities are summarized by an input correspondence V: arn+ RT:

V(y) = {x E : x can produce y

Here x ERT denotes a vector of inputs and y En denotes a vector of outputs.
V(y) satisfies properties that guarantee the existence of a duality between cost
and production:

V.1 On V(y), y > Om, y 0'.
V.2 z > x EV(y) z EV(y) for all y ERT.
V.3 V: n_ g2:41_ is a closed correspondence.
V.4 For all y En, V(y) is convex.

Property V.1 says that there is no free lunch for any positive output. Property
V.2 imposes strong disposability of inputs upon the technology, while property
V.3 requires that input sets be closed. V.4 is self explanatory.

An input correspondence is input-homothetic (Fare and Primont, 1995) if it
satisfies:

V(y) =h(y)V(1m)

where h : 94 is continuous and V(1m) is a reference set satisfying V.1-V.4.
The input-distance function offers a function representation of the input cor-

respondence. It is defined as

Di(x,y) =sup {A > 0 : —xA E V(y)} .
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The input-distance function satisfies a number of properties (see, e.g., Fare,
1988), but most importantly it is positively linearly homogeneous in the in-
puts and a complete function representation of the technology in the sense that
Di(x, y) >1 4#. x E li(y). If the input correspondence is input homothetic, the
input-distance function can be written

D, , 

=
Di (x) 

i0c, Y)  NY) '

where Di(x) is the input-distance function for V(1').
Under V.1 to V.4, for any nonempty V(y), there exists a cost function for

input prices w E 5r++ defined by:

c(w, y) =min {vvx : x EV(y)}.x

It is well-known that the input correspondence is input homothetic if and only
if: c(w, y) = it(y)E(w) where E(w) is the cost function associated with V(1').
The cost function satisfies a number of well-known properties which need not be
repeated for our purposes. However, I will make particular use of the fact that
the cost function is always positively linearly homogeneous in input prices, i.e.,
c(t9w , y) = 0 c(w , y) for 0> 0.

2 Homotheticity as a Translation Property

This section presents two new characterizations of input-homothetic input corre-
spondences that emerge not from the scaling properties of outputs in the cost or
distance function but from the translation of the output vector. The approach
taken here has two main sources of inspiration: Fare (1975) shows that scalar-
output production functions, g(x), satisfying the functional equation:

g(A • x) =A(A,g(x))

where A • x denotes the n-dimensional vector obtained by multiplying the vec-
tor A (A > On, A On) component-wise by x, must be homothetic Cobb-Douglas
production functions. Later Fare and Mitchell (1992) demonstrated that ray-
homothetic input correspondences can be characterized by the class of cost func-
tions satisfying the following functional equation for arbitrary r:

c(m 7 ,03r) = r(o, y, c(w, y)), 0 > 0

In words, ray homotheticity of the cost function is the technical requirement
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needed to be able to express the cost of producing a scaled output vector as a
function of the cost of producing the unscaled output vector, the unscaled output
vector, and the scaling factor. In what follows, I consider two extensions of the
approach taken by Fare and Mitchell (1992). The first is

c(w, y z) = F(z, y,c(w, y)) (1)

z. y Om where c: Rn++ x R+ is a well-behaved cost function, and F:
Rrn+ x Rrn+ x 94 is continuous in all arguments, but otherwise arbitrary. So
my interest is in expressing the cost of producing a translated output vector as a
function of the cost of producing the untranslated output vector, the untranslated
output vector, and the vector in whose direction output is translated. I also
consider the more general functional equation:

c(w, y z) = G(z, y,w,c(w, y)) (2)

z, y Om where C: x x Rn++ x + is continuous in all arguments.
To better motivate our interest in expressions (1) and (2), suppose for the

moment that output is a scalar. Because all scalar output changes can be rep-
resented as radial changes, a functional equation of the type considered by Fare
and Mitchell (1992) can be derived directly from expression (1): For example,
setting 0 = allows (1) to be rewritten as:

c(w,9y) = F(Oy y, y,c(w,y)).

From this rewriting of (1), it is apparent that expressions (1) and (2) place more
stringent requirements on the technology than the functional restriction used by
Fare and Mitchell (1992) suggesting that ray homotheticity may not be sufficient
to guarantee a solution to either (1) or (2). This happens, of course, because
in the multi-output case all changes in the output vector will not be expressible
as radial changes. Instead all changes in the output vector can be depicted as
consisting of two components, a rescaling of the output vector and a change in
the output mix. The results of Fare and Mitchell (1992) only apply to the first
component—the rescaling of the output vector.

As a practical matter, however, firms routinely contemplate and make changes
in their production plans that cannot be depicted by rescaling of outputs. For
example, many modern firms rather routinely change their output mix by moving
in and out of different product lines in response to perceived market opportunities.
And it is not unusual to encounter firms that were once highly specialized in a
single product line and that have moved into entirely new product lines in an
attempt to capture new markets or to prevent entry by potential competitors.



,

For example, Schmalensee (1978) documents that the six leading producers of
breakfast cereals introduced roughly eighty new brands between 1950 and 1972.
Output changes of this type, which do not preserve the output mix, are modeled
by (1) and (2). Therefore, isolating families of functions which satisfy those
functional equations could provide forms with convenient analytic and empirical
properties for economic problems that involve analysis of a changing output mix.

My first result is:

Theorem 1 The cost function satisfies (1) if and only if it is input homothetic.

Proof By the positive linear homogeneity of the cost function, (1) implies F(z,y ,9c(w, ,y)) =
OF(z,y,c(w,y)) for 0 > 0, whence F(z,y,c(w,y)) . c(w,y)F(z,y,1) .
c(w, y)f(z, y). Using this result in (1 ) establishes that c(w, y) f (z , y) =
c(w, z) f (y, z). Set z = 2, a reference value chosen so that Z >0. V.1 implies
c(w,y + z) >0, and it follows immediately that c(w, y) = c(w, 2)f0 =
h(y)e(w). This establishes necessity. Sufficiency follows by choosing f (z, y) =
it(Y+z) 

NY)

Corollary 2 The cost function satisfies (1) if and only if Di(x, y) = r3;-e) .

My next result extends this theorem to the more general case covered by
functional equation (2). As in Fare and Mitchell (1992), functional equation (2)
has proven too general for me to solve'. However, following Fare and Mitchell
(1992) one can solve (2) after placing some further structure on its behavior in
input prices.

Theorem 3 If G(z, y, w,c(w, y)) is nondecreasing in w, then a cost function
satisfies functional equation (2) if and only if the technology is input homothetic

Proof I demonstrate that functional equation (2) is equivalent to functional equa-
tion (1) under this restriction. The positive linear homogeneity of the cost
function and (2) establishes that

G(z,y,Ow,Oc(w,y))=. OG(z,y,w,c(w,y))

for 0 > 0. Hence, G(z,y ,w ,c(w , y)) = c(w ,y)G(z,y , c(Zy),1) = c(w ,y)g(z,y , c(ww ,y)).

Substitute this result in (2) to obtain

w
c(w , y ± z) = c(w , y) g (z , y , 

c(w , y)
) ,

'Fare and Mitchell (1992) .(their footnote 11) point out that Aczel (1969) has described
functional equations of this type as being "too general" to solve.
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or
c(w ,y z) w

c(w, y) g\z'Ytc(w, y) •

Now multiply the left-hand side of this last expression by one in the form of
(') and then use the positive linear homogeneity of the cost function in
input prices to obtain

c(c(w7y),y z)

c(c(ww,y),Y)

, y +
  g(z,y, -W-) g(z,y,

c(w,y)
),

c(fy ,y)

where iTv =c( 'y) . Because the cost function is positively linearly homo-
geneous in prices, the left-most expression is homogeneous of degree zero
in  w 

c(w,y) 
establishing that g(z,y ,N\T-) is homogeneous of degree zero in *.

Now use the lemma reported in Fare and Mitchell (1992) to establish that
g(z,y, -*) must be independent of *, and hence functional equation (2) is
equivalent to (1).

Although no formal proof is presented, it is obvious from the preceding the-
orems and the corollary that input homotheticity can also be characterized by
requiring the input distance function to satisfy equations analogous to (1) and
(2) with inputs replacing input prices and the distance function replacing the
cost function. Results completely analogous to Theorems 1 and 2 with obvious
corollaries can be easily established. Moreover, a completely parallel argument
demonstrates that an output correspondence is output-homothetic if and only if
its dual revenue function satisfies functional equations in inputs, output prices,
and revenue which are analogous to (1) and (2).

3 Conclusion

Fare and Mitchell (1992) showed that an input correspondence is ray homothetic
if and only if its dual cost function satisfies the functional equation:

c(w,0y) = F(O,y,c(w,y)),O > 0

regardless of whether the technology has a single or multiple outputs. Following
in this line of research, this paper shows that an input correspondence must
be input homothetic if its dual cost function is to satisfy the more restrictive
functional equation:

c(w, y z) = F(z,y,c(w, y)).

7



.

Reference List

1. Aczel, J. "International Meeting on Functional Equations--What Are They
Anyway?" On Applications and Theory of Functional Equations.New
York: Academic Press, 1969.

2. Fare, R. "Functional Equations and Production Functions, A Note." Jahrbuchern
Fur Nationalokonomie Und Statistik 189 (1975): 143-45.

3. Fare, R., and T. Mitchell. "Multiple Outputs and "Homotheticity"." Southern
Economic Journal 60, no. 2 (October 1993): 287-96.

4.  . "Output Scaling in a Cost-Function Setting." Journal of Productivity
Analysis 3 (1992): 417-25.

5. Fare, R., and D. Primont. Multi-Output Production and Duality: Theory and
Applications. Boston: Kluwer Academic Publishers, 1995.

6. Schmalensee, R. "Entry Deterrence in the Ready-to-Eat Breakfast Cereal
Industry." Bell Journal of Economics 9 (1978): 305-27.

7. Shephard, R. W. Cost and Production Functions. Princeton, NJ: Princeton
University Press, 1953.

8.  . Theory of Cost and Production Functions. Princeton, NJ: Princeton
University Press, 1970.

I..


