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PROFIT, DIRECTIONAL DISTANCE FUNCTIONS, AND NERLOVIAN EFFICIENCY

by

R.G. Chambers, Y. Chung, and R. Fare.

1. Introduction

Quite some time ago, Nerlove (1965) suggested a relative efficiency measure based on profit.

The essential idea behind Nerlove's (1965) efficiency measure is to decompose profit

maximization into two stages: In the first, profit is maximized for a given production function,

while in the second stage, the maximum maximorum of profit is found by maximizing over all

possible production functions. Overall efficiency is then judged by comparing observed profit for

a decisionmaking entity to the maximum maximorum profit. And, following Farrell (1957), this

overall efficiency measure is decomposed into two subsidiary measures: a measure of price or

allocative efficiency which consists of comparing observed profit to the profit function for the

siven production function and technical efficiency which measures the difference between the

profit function for the given production function and maximum maximorum profit.

A particularly striking aspect of Nerlove's (1965) efficiency measure is that, unlike

virtually all other existing efficiency measures, it is expressed in difference (as opposed to ratio)

form. Perhaps this explains why Nerlove's (1965) contribution, despite its obvious intuitive

appeal, has remained dormant for so long. Apart from a passing reference by Lau and

Yotopoulous (1971), the profession has apparently ignored this contribution. The purpose of this

paper is to revisit and revitalize Nerlove's efficiency measure in a more modern framework that

allows for multiple inputs and multiple outputs in a natural manner while using a representation of
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the technology for which difference (as opposed to ratio) measures are the most natural measures

of relative efficiency. That representation is the directional technology distance function which

generalizes Luenberger's (1992b, 1995) shortage function and Blackorby and Donaldson's (1980)

translation function. The directional technology distance function is so general that it can be

shown to encompass all known distance function representations of the technology as special

cases.

The paper proceeds as follows: In the next section, we introduce the directional

technology distance function and discuss its relationship to other functional representations of the

technology (input and output distance functions, McFadden's (1978) gauge function, and the

directional input distance function (Chambers, Chung, and Fare (1995)). Among other things, we

show that the directional technology distance function is a complete function representation of a

technology exhibiting free disposal of inputs and outputs. After that, we discuss the dual

relationship between the directional technology, distance function and the profit function while

providing a streamlined proof of the dual correspondence between the two. We also show that

this dual correspondence has all previous dual correspondences as special cases. Then we take up

efficiency measures and show how the directional technology distance function can be used to

represent the Nerlovian efficiency measure. The final section concludes.

2. Directional and Radial Distance Functions

In this section we define and contrast Shephard's radial distance functions and McFadden's gauge

function to three directional distance functions. Shephard's input and output distance functions'

respectively, measure the largest radial contraction of an input vector and the largest radial

I See Shephard (1953, 1970).
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expansion of an output vector consistent with each remaining technically feasible. McFadden's

gauge function measure the largest radial expansion of a netput vector consistent with feasibility.

The directional distance function measures the size of an input and or output v-!ctor radially from

itself to the technology frontier in a preassigned direction. This direction can differ from the

radial direction out of the origin, thus making the directional distance function, more general than

Shephards' distance functions or McFadden's gauge function. The directional distance functions

that we analyze are related to or derived from the shortage and the benefit functions introduced by

Luenberger2 and Blackorby and Donaldson's (1980) translation function. MI functions are here

defined in terms of a production technology.

Let x e MN+ denote a vector of inputs and y E 91,m a vector of outputs, the technology T is

given by

(2.1) T = {(x, y) such that x can produce y).

In this paper we make the following assumptions on T.

Ti T is closed.

T.2 Input and outputs are freely disposable, i.e., if (x, y) € T and (x',—y') __ (x, — y) then

(x',y1) ET.

T.3 There is no free lunch, i.e., if (x, y) e T and x = 0 then y = 0.

T.4 T is convex.

The first three properties are imposed throughout the paper, while convexity is only assumed

when we discuss dualities. All assumptions are standard and need no further comments.3

.,
- See Luenberger (1992a, 1992b, 1994a, 1994b, 1995).

3 For these and other axioms on the technology. See Fare (1988).
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Shephard's input and output distance functions are defined in. terms of T as

x
(2.2) D 1(y,x).sup{X>0:(—

a,
,y)el}, x e9114'1.,y 0-lily!.

).

and

(2.3) D0(x,y)=1{0> 0:(x,y /0) ET}, x E91144.,y €91!‘ii,_

respectively. Each of the distance function is a complete characterization of the technology T,4

i.e.,

(2.4) Di(y, x) ?. 1 <r> (x, y) ET,

(2.5) Do(x, y) .. 1 c> (x, y) € T.

Under constant returns to scale the following simple relation holds for the distance functions:

(2.6) Di(y, x) = 1/D0(x, y).

McFadden's gauge function is defined in terms of outputs with inputs entering with a

negative sign and outputs with a positive sign. Define the 'mirror' technology

T = {(-x, y): (x, y) e T},

then McFadden's gauge function can be written as

(2.7) H(-x, y) = inf {9 > 0: (- )S 1 E 1"- } x e9114+ ,y E91+m .
0 ' 0

The most general directional distance function scales inputs and outputs simultaneously.

This differs from the definitions of the above distance function. The input distance function is

defined by scaling inputs and the output distance function is defined by scaling outputs.

4 Fare and Primont (1993, pp. 15, 22) show that weak disposability of inputs and outputs is necessary and
sufficient for the input and output distance functions to completely characterize technology.
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We define the directional technology distance function as

(2.8) 5 T (x, y; gx , g) ) = sup(13: (x — f3gx , y + 13gy ) € T) ,

where (gx, g„ ) is a nonzero vector in 91N+ x %m., . This vector determines the direction in which

5T () is defined. Actually because 13gx is subtracted from x, the direction is (—gx , g.). Thus

this function is defined by simultaneously contracting inputs and expanding outputs. Hence, the

directional distance function is a variation on what Luenberger5 calls the shortage function. Both

functions measure the distance in a preassigned direction to the boundary of T, but Luenberger,

(1992b, p. 242) sees the distance as a shortage of (x, y) to reach T, while we interpret the distance

as an "efficiency measure", i.e., by how much output can be expanded and input contracted and

still be feasible.

It is also possible to define a directional technology distance function in terms of the

mirror technology 1—

(2.8a) 15T- (—x,y;gx.,gy) = sup {f3: (x +13gx,y + Pgy) en.

We now show that DT (x, y; gx , g)) characterizes T.

(2.9) Lemma: Let (gx , gy ) e 93N+ x 9I+m with (gx , gy ) # 0, then

oT (x, y; gx , gy ) _?_ 0 if and only if (x, y) E T.

Proof: Clearly if (x, y) e T then 15 T (x, y; gx , g,. ) .. 0. Thus assume that 15 T (X, y , (.2 , , g,.)?.. 0.

In this case, by definition

(x — 15T(x,y,gx ,gy)gx, y + -15T(x,y;gx ,gy)gy) E T , and any

5 Luenberger (1992b. 1995).
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(x,—y)>. (x— fiT(x,y;gx,g y)gx,—y — nT(x,y;gx,g).)gy)

must also belong to T by T.2.

Q.E.D.

There are a few special cases of DT (x, y; gx , gy ) that are of interest. First, if we take

gy = 0, then we get

(2.10) OT(x,y;gx,0)=17.5 1(y,x;gx),

where 15i (y, x; gx) is the directional input distance function as defined by Chambers, Chung and

Fare (1995). This distance function is the multioutput version of the benefit function, introduced

by Luenberger.6 Furthermore, if g„ = x, then

(2.11) 157(x,y;x,0)=1-11 D (y,x),

thus the directional technology distance function collapses to the input distance function.

By choosing g, = 0, an output oriented directional distance function is obtained,' if further

gy = y thus we have a relation between OT ( ) and Shephard's output distance function, namely

(2.12) I3T (x, y;0, y) = (1 / Do (x , y)) — 1.

It also follows immediately that

- (—x, y;—x, y) = sup(( 13 + 1):(13 + 1)(—x,y) ETA) — 1

_

6 Luenberger (1992a, 1995).

1

H(—x,y)

7
See Chung (1996) for directional output distance functions.
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Expressions (2.9) - (2.13) show the directional technology distance function is a complete

generalization of Shephard's distance functions, McFadden's gauge fiinction, and the directional

input and output distance functions.

Before we give 15- T (-)'s basic properties, we illustrate pictorially how it is defined.

Assume that one input x is used to produce output y, thus the technology T can be illustrated as in

Figure 1. For simplicity, we choose the "direction" as (1, 1) so that A. (x,y;1,1) is given by the

ratio 0A/OB.

We now turn to the most important properties that the directional distance function has.

These are summarized by the following lemma.

(2.12) Lemma: -15T:91N x91m x91N x91 +m -*91

a) n-r (x — agx ,y + agv; gx ,gv)= I5T(x,y; g, ,g))— a,

b) 15/-(x,y;X.gx,Xg))=—xl oT(x,y;gx,gy ), X> 0

c) y'-.Y 1-5T(x,Y';gx,gy)5-51-(x,Y;gx,gy)

d)

e) if T is convex, I3T (x, y; gx , g,) is concave in (x, y).

The proofs are similar to those in Chambers, Chung and Fare (1995) and thus omitted here. Also

note a similar lemma could be proved easily for or (—x, y; gx , g,).

3. Dualities

Shephard (1953, 1970) proved that the input distance function is dual to the cost function and

that the output distance function and the revenue are duals. McFadden later demonstrated that

7



the gauge function is dual to the restricted profit function. In this section we define the profit

function and show that it is dual to the directional technology distance function.

Let p e 91,m, denote a vector of output prices and w e 93 N„ a vector of input prices. The

profit function is defined for the technology T as

(3.1) n(p, w) = sup {py — wx: (x, y) ET).
(x,y W31

This function models "maximal" feasible profit. By Lemma (2.8) we may also write this function

in trrns of the directional distance function, namely

(3.2) n(p, w) = sup {py — wx. 15T (x, y; gx , gy ) .. 0}.
(x,yw:i

Constrained optimization problem (3.2) can be converted into the following unconstrained

problem given that we impose differentiability of the solution:

(3.3) Tc(13,w)= sup {PY — wx + 15T(x,Y;gx)gy )(Pgy + wgx)).
(x,y)?..0

The proof is found in the appendix, but the intuition is straightforward: The input-output vector

(x-i5,-(x,y;gx,g))g., y + f5T(x,y;gx,g).)gy)

belongs to the technology T, thus in general the following inequality holds,

(3.4) n(P,w)py - wx + 5T (x,Y; gx, gy)(Pgy ± wgx).

From this inequality (3.3) can be obtained and if T is convex we also have

(3.5) 5T (x, Y, gx , g„)= inf
- (p,w)?..0

(P, w) — (PY — wx)1 .
pgy + wgx

8
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Thus the following duality exists between the directional technology distance function and the

profit function holds8

(3.6)

n(p, w) = sup {py — wx + OT (x, y; gx , gy )(pgy + wgx ))
(x,y)_o

TC wx
157-(x,Y;gx,g)= inf 

(p, w) — (py —)

(p,wp.0 pg,. + wg, .

Fare and Primont (1995) proved duality theorems between Shephard's distance functions and the

profit function. These duality theorems are special cases of (3.6) as we show next. First take

g, = 0 and gy = y, then it follows from (2.11) and (3.6) that

(3.7)

and

n (p, w) = sup (py — wx + (x, y;0, y)py)
(x,y)_?_o

= sup py — wx + (  I  1) PY}
(x,)).>.o Do (x,y)

= PY sup   wx}
(x,y).o Do (x, Y)

Do (x, y) = sup .
(p.w).0{ 

PY

7r(P • w) + wx1

Furthermore if we choose gx = x and gy = 0 their second duality theorem between the input

distance function and the profit function follows.

The proof of this duality statement can be deduced from Luenberger (1992a).

9
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(3.8)

n(p,w)= sup {py  
(x:yW) Diwx(y,x)1

WX 
Di(y,x) . sup

(p.w)o{PY

4. Efficiency Measurement

Most of the efficiency-measurement literature measurement is based on the input and output

distance function. This is in the tradition of Debreu (1951) and Farrell (1957) that used the

inverse of these functions as measures of technical efficiency. Here we show how the directional

distance function DT (x, y; gx ,g,, ) can be adopted as a measure of technical efficiency. The

usual distance functions measure technical efficiency either in the input direction or in the output

direction. The measure we adopt simultaneously contract inputs and expand outputs.9

In addition to technical efficiency we introduce new measures of profit and relate them to

Nerlove's measures of relative efficiency. All measures are derived through the inequality (3.4).

Our first profit-based efficiency measure is:

(4.1) NE= n(P, w) — (PY — wx) .
Pgy + wgx

This measure is the difference between the maximal potential profit Tc(p, w) and realized profit

(py - wx). The difference is normalized by the sum (pgy + wgx ). Hence, apart from the

price normalization, this measure equals Nerlove's earlier notion of overall efficiency, and we

shall refer to it as Nerlovian efficiency in what follows. The price normalization, which follows

9 Independently of Luenberger, W. Briec (1995) has introduced a graph measure of technical efficiency that is a
special case of the directional distance function.
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naturally from the duality between n(p,w) and 5T (x, y; gx ,g,.), conveniently solves the linear

homogeneity problem that Nerlove recognized about his measure. The direction (gx ,g\.) can be

. chosen at the realized input output vector (x, y) in which case we need not preassign any

direction.

Technical efficiency, as mentioned above, is measured by the directional distance function,

(4.2) TE = OT(x,Y;gx,gy)

and again (gx ,g‘, ) can be chosen as the observed input output vector. In this case (4.2) coincide

with Briec's approach. Recall, that 131- provides a direct measure of how far (x, y) must be

projected along (gx , g)) to reach the frontier of T. Hence, it offers a natural measure of

inefficiency. Also note that it does not correspond to Nerlove's measure of technical

inefficiency.° Finally, allocative efficiency is defined as the gap in the inequality (3.4), namely

n(P, w) — (PY — wx) —(4.3) AE= DT (X, Y; gx , gy )-
Pgy + Wgx

The three last expression yields the following decomposition of profit efficiency,

(4.4) NE = AE + TE.

Several comments about (4.2), (4.3) and (4.4) are appropriate: For any feasible (x, y) NE is

always nonnegative. Moreover, any feasible (x, y) must also have both (4.2) and (4.3)

nonneaative. Thus, if a feasible point is Nerlovian efficient, it must be both technically efficient

and allocatively efficient.

U ' Nerlove's measures of allocative and technical inefficiency are express.: .1 in ratio and not difference form.
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Proof of (3.3)11

The Lagrangian problem associated with (3.2) is

n(p, w) = n(p, w;0) = sup py — wx + X(0 — 15/- (x, y;
(x,y)?..0

Now consider the problem,

n(p, w; a) = sup (py — wx15T (x, y; gx , gy ) ?.. a), (*)
(x,yp.0

where a, gx and gy are chosen so that (x — agx ,y + ag), ) = (,5,) .. 0. Using part a) of

Lemma (2.12) (*) can be written as

or

Thus

n(p,w;a)= sup {p(y + agy)— w(x — agx ):
(x,y)?.o

15T (x — agx ,Y + agv;gx,gy)?- 0} -- cx(Pgy + wgx).

n(p,w;a)= n(p,w;0)— a(pgy + wgx ).

am(p, w; a) 
= — (pgy + wgx )

aa

and from the Lagrangian expression associated with (*) we have

ait(p, w; cx) a
= -(py — wx + X(a. — 5T (x, y; gx , g) ))) = X

act act

and since 7c(p,w) = 7t(p,w;0) we have

rc(p,w) = sup (py — wx +
(x,yw)

T(x' Y' g‘ ' g) )(PgY 4. wgx ))

i 1
A more general proof can be provided along the lines of Luenberger (1992b. p. 243).

Q.E.D.
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