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Marc Nerlove and Pietro Bales tra

1. FORMULATION AND ESTIMATION OF ECONOMETRIC MODELS FOR PANEL DATA*

The fundamental fact about society as a going concern is
that it is made up of individuals who are born and die and give
place to others; and the fundamental fact about modern
civilization is that it is dependent upon the utilization of three
great accumulating funds of inheritance from the past, material
goods and appliances, knowledge and skill, and morale. Besides
the torch of life itself, the material wealth of the world, a
technological system of vast and increasing intricacy and the
habituations which fit men for social life must in some manner be
carried forward to new individuals born devoid of all these things
as older individuals pass out.

WRite Oran/
ti cf
ClaOff

St Paul IVLIN bbiki6-6040 USA
The moral of Knight's characterization is that history is

important and individuals have histories. This should not be forgotten

as we embark on this study.

In his famous and influential monograph, The Probability Approach

in Econometrics, Haavelmo [1944] laid the foundations for the

formulation of stochastic econometric models and an approach which has

dominated our discipline to this day. He wrote:

Frank H. Knight (1921)

... we shall find that two individuals, or the same
individual in two different time periods, may be confronted with
exactly the same set of specified influencing factors [and, hence,
they have the same y*, ...], and still the two individuals may
have different quantities y, neither of which may be equal to y*.
We may try to remove such discrepancies by introducing more
"explaining" factors, x. But, usually, we shall soon exhaust the
number of factors which could be considered as common to all
individuals, and which, at the same time, were not merely of
negligible. influence upon y. The discrepancies y y* for each
individual may depend upon a great variety of factors, these
factors may be different from one individual to another, and they
may vary with time for each individual. (Haavelmo (1944], p. 50).

*Nerlove's contribution was supported by the Maryland Agricultural
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And further that:

A w-75-43

... the class of populations we are dealing with does not
consist of an infinity of different individuals, it consists of an
infinity of possible decisions which might be taken with respect
to the value of y.

... we find justification for applying them [stochastic
approximations] to economic phenomena also in the fact we usually
deal only with -- and are interested only in -- total or average
effects of many, individual decisions, which are partly guided by
common factors, partly by individual specific factors ...
(Haavelmo [1944], pp. 51 and 56).

Marschak ([1950];[1953)) further amplified Haavelmo's themes in

his introductions to Cowles Commission Monographs 10 and 14, observing

that:

The numerous causes that determine the error incurred ... are not

listed separately; instead their joint effect is represented by the

probability distribution of the error, a random variable (1950, p. 18)

1, which] ... is called 'disturbance' or 'shock,' and can be regarded as

the joint effect of numerous separately insignificant variables that we

are unable or unwilling to specify but presume to the independent of

observable exogenous variables. (1953, p. 12).

Since the early work of Mundlak [1961] and Balestra and Nerlove

[1966], panel or longitudinal data have became increasingly important in

econometrics, and methods for the analysis of such data have generated a

vast literature much of which was been summarized in the first edition

of this volume (Mdtyds and Sevestre, 1992). In the last three years

there has been a extraordinary further growth, captured here in eleven

completely new chapters and seven significantly revised chapters, which

appeared in the earlier edition.

In this introduction we examine how the basic principle underlying

the formulation of econometric models has been carried forward in the

development of econometric models and methods for the analysis of panel
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data. We argue that while fixed effects models may be appropriate in

cases in which a population is sampled exhaustively (e.g., data from

geographic regions over time) or in which it is desired to predict

individual behaviour (e.g., the probability that a given individual in a

sample will default on a loan), random effects models are more

consistent with Haavelmo's view, quoted above, that the "population" we

model in econometrics consists not of an infinity of individuals, in

general; but of an infinity of decisions. This is not to say, however,

that fixed effects models may not be extremely useful as an analytic

device.

Moreover, we shall argue, taking a leaf from Knight (1921], that

what differentiates the individuals, who make the decisions with which

we are concerned, is largely historical, the "three great accumulating

funds of inheritance from the past, material goods and appliances,

knowledge and skill, and morale." This view has important implications

for the relevance and appropriateness of many of the models and methods

for the analysis of panel data which have been developed over the past

30 years. We critically review these developments here and conclude

that not only are random effects models most relevant and appropriate

but that often our central analytical and modelling concerns are also

dynamic. Thus, the most fruitful developments in this enormous

literature have been those which deal with the central issues of history

and dynamics.

1.1. History and Dynamics: How Should We View the Disturbances?

Before turning to a review of the state of the art in panel

econometrics, we illustrate our general view of the central principle

involved using a simple illustrative example drawn from a recent paper

of Matyas and Rahman (1992).
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Let i index individuals and t time periods. Suppose the

relationship we are interested in estimating is

Yit = E osx„t_s + 6v, • (1-1)
s=o

The variable xit is assumed to be exogenous and distributed

independently of the true disturbances C for all finite subsets of the

t-index set. We also assume, despite our previous injunction, that

Esit = 0, all i and t,

Eeeveit = i = is and t = ts (1-2)

= 0, i is or t # t'.

To guarantee some stability in the relationship we are interested in

estimating, we must also assume some convergence properties for the

sequence of distributed lag weights. Although stronger than necessary,

assume they are square-summable:

co
E 02s < 00 .

s = 0

(1-3)

Of course, as Matyas and Rahman note, (1-1) is not estimable with a

finite amount of data. Indeed, the time dimension is likely to be very

short. Instead, we truncate:

co

Yit E osxi,t_s E Cit
s=k+1s=0

zo
s=.0

sXi,t-s +111 +eh (1-4)

Equation (1-4) is in the form of a frequently used random effects

model, except that now the individual-specific effects are interpreted

in terms of the past histories of each individual in the panel prior to

the time when observation begins. Moreover, the assumption that xit is

stochastic, although exogenous is not innocuous. The implications are:
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First, interpreting µi as fixed, i.e., nonstochastic, is not

appropriate. If one accepts Haavelmo's view that the class of

populations which we imagine (1-4) reflects consists of decisions rather

than identifiable specific individuals, then, in principle, we should

not even condition on µi. However, an exception to this rule is if, for

the particular sample of individuals we have drawn (now we can

specifically identify each), we want to predict future values of yit for

that individual.

Second, since the xit are themselves considered to be stochastic,

for each individual their values over time will in general be

correlated. There may also be correlations among xit's for different

values of i if different individuals have some characteristics in

common. But we neglect this possibility here. It follows that µi and

the values xit observed are correlated. Suppose, for example,

Xit = pi X i.t.4 +

where Ipi l < 1 and Evit = 0, Evitvve = 0, i # i' or t # and

(1-5)

EV aViv =ai2,, i =i' and t = for all i and t. Let S = (0, 1, . • ., K)

be the set of indices for which, given i, xit is observed (normally k

will be chosen much less than K). Since

Exit = 0

Exitxj,t_t   0.2

1
(1-6)

it follows that xit, t E S, will be correlated with tj, and the

correlation will depend on how close to the beginning of the sample

period the observation on xit is taken:
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Ex 1 ,t1  El3sEx. x.I.t-s

2
a.

1 —
 E13,PI" (1-7)

for x se S. Clearly, this makes the likelihood of the sample much more

difficult to determine and introduces some of the parameters, namely Ps,

into the relationship between the individual-specific disturbances in

(1-4) and the observed past values of the explanatory exogenous

variable. (We would perhaps be willing to regard (T and pi as nuisance

parameters.)

The important point about this admittedly unrealistic example is

that it shows that an entirely new set of questions must be considered.

In particular, the error which we make by treating !xi as independent of

the observed values of xit now depends in a complex way on the way in

which the distributed lag parameters of interest interact with the

nuisance parameters (Y2i and pi. Indeed, matters become even more

interesting when we note that the unconditional variance of xit is

2 / 2
/ (1 — pi , so that, in general the greater 0'2 the greater is the

signal to noise ration in (1-4), on the one hand, but, ceteris paribus,

the greater is the dependence between xi, and j, especially for T near

the beginning of the observation period.

How can we optimally rid ourselves of the nuisance parameters?

How badly does a method, which is based on the assumption that gi and

the observed xi, are uncorrelated, approximate the true ML estimates?

What is the appropriate likelihood function in the dynamic case? What

constitute appropriate instruments in considering alternative methods to

ML? And so forth.
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With these general principles in mind, we now turn to a review of

the volume and the recent developments in panel data econometrics.

1.2 Methodological Developments

Besides Chapters 2-24 of this volume, which survey methodological

developments in great detail, the following are also valuable: the

recent survey of Baltagi and Raj (1992], which focuses on estimation

error components models extended to allow for serial correlation,

heteroskedasticity, seemingly unrelated regressions and simultaneous

equations; the supplement to the Journal of Econometrics, 59 [1993]

edited by Carraro, Peracchi and Weber, which contains several important

methodological surveys as well as a number of applied studies, and the

much older survey of Chamberlain [1984]. Chamberlain's paper is more

than a survey; it presents a very general framework for the analysis

panel data problems which is summarized and elaborated in a chapter

added to this volume in the second edition by Crepon and Mairesse

(Chapter 14).

The most

model in which

independent of

common model for the

of

of

analysis of panel data is the linear

explanatory variables are taken to be exogenous, that is

the disturbances in the equation or, in the case of the

random coefficients model of the distributions of the coefficients.

When the coefficients (except for the constant term) in the linear

relationship with which we describe the data are assumed to be constant,

it is usual to distinguish between fixed effects and error components

models. In the case of the former, the

across individuals at the same point in

for all individuals taken together. In

variations are assumed to be random and

intercepts are assumed to vary

time and, possibly, over time

the case of the latter, the

uncorrelated both with the
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observed explanatory variables and the latent disturbance in the

equation.

A considerable quantity of interesting mathematics has been

developed for both types of models. In particular, the Appendix to part

I, based on unpublished work of Trognon, presents a series of projection

matrices which take deviations between the raw observations and various

means, across individuals, across time periods, over all, and of various

means form other means. These projections can be used to define

different possible estimators in fixed effects models or the spectral

decomposition of the disturbance variance-covariance matrix in the case

of error components models. A principal result is then the

demonstration, first noted by Maddala (1971], that the Generalized Least

Squares (GLS) estimators of the slope parameters in the error components

case are a weighted combination of estimators in the fixed effects case

(the so-called "between" and "within" distinction among possible

estimators). See Chapters 2, 3 and 4.

Seemingly unrelated regression (SUR) models and simultaneous

equations models (Chapter 9) as well as extension to various forms of

nonspherical disturbances follow more-or-less effortlessly through

creative use of "stacking."

An important distinction is made between fully asymptotic theory

in which the limiting properties of estimators are analysed when both

the number of time periods and the number of individuals goes to

infinity and semi-asymptotic theory in which the number of individuals

(or the number of time observations) is assumed to increase without

bound, that is, asymptotics in only one of two dimensions. Clearly, in

the case of random effects models, the moments of the distribution of

the effect whose dimension is not increased in the calculation cannot be

semi-asymptotically consistently estimated.
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As long as the model is not dynamic, that is, does not contain a

distributed lag, lagged values of the dependent variable, or the

equivalent stock or state variable, the GLS estimators of these

coefficients have the usual good small sample and asymptotic properties,

The problem, then, is that the elements of the disturbance variance-

covariance matrix are unknown. Since consistency of the variance

components estimates depends on the asymptotics assumed, the usual

justification for a two-stage procedure (feasible GLS or FGLS) based on

first-stage consistent estimates of the variances and covariances of the

panel model disturbances does not clearly apply. Indeed, in some senses

the FGLS may not even be consistent. Moreover, as we have argued, most

relationships of interest are likely to be dynamic and the past

histories of individuals are almost always important determinats of

current behavior. In a very important chapter (7 in this edition),

Sevestre and Trognon establish the inconsistency of the coefficient of

the lagged dependent variable for all feasible non-M1 estimates and for

GLS.

The GLS estimates are obtained by transforming the observations to

weighted sums of between and within, using appropriate weights based on the

characteristic roots of

a2C2 = cs2( p(I140 Jr) + (1 p)INT)

= a2{ P(IN 0 Jr) + (1 - p) (IN 0 IT))

= a2{ -LN (p + (1 -

= (1-p) + Tp and i = (1-p),

where a2 = a 2 + ac2 , transforms the variance covariance matrix of the

disturbances uit = p. + in (1-8) below to a2INT. Applying this
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77 1
transformation to (1-8) and replacing --==-77 = X , the normal equations to

Oh

be solved for the GLS estimates become:

Ty,c+ + AA. W + AB y_i„ 1
+ 

13)
) LW + AB Wy_iy + _.

In this case, the calculated RSS/NT estimates not cr2 but 11-1(32. As Maddala

(1971] points out, the GLS estimates with X = 1/02 can be considered

members of a more general class of estimators obtained through different

choices of X. Let r(A)be the estimator of y obtained by solving the above

equations for an arbitrary value of X. Sevestre and Trognon show that for

the case in which p . 0, the purely autoregressive case, the following

inequality holds:

p lir n 5; (0) <v < p lim 1(9' ) <p1irnY*(1) <plimi,((x)
within GLS OLS between

Remarkably, therefore, the GLS estimate is inconsistent in this case. The

problem is that the lagged dependent variable is correlated even with the

transformed disturbance.

Since plimi.;(A) is a continuous function of X, there exists a value

X* in the interval (0,02] for which piiMP(A)=r. In an earlier paper,

Sevestre and Trognon (1983) have derived this value. They also show that

when p # 0, the estimate ;P(Z)behaves almost the same as in the purely

autoregressive case. Since the X* estimate is consistent when there are no

exogenous variables, it remains so when there are. The trick is to obtain a

consistent estimate of X* which can be accomplished by finding an

appropriate instrumental variable for Even in this case the results

depend heavily on the distribution of the estimate of X.
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In the dynamic error-components model, not only are the OLS pooled

regression estimates, the fixed-effect or within estimates, and the between

estimates inconsistent, but so are the GLS estimates using the true value

of p. However, the method of instrumental variables may he used to obtain a

feasible member of the A.-class of estimates which is consistent.

Unfortunately, this estimate may have a very large variance.

The method of choice in most cases is Maximum Likelihood (ML),

provided, of course, that associated computational difficulties can be

resolved. But even when the matrix of observed regressors is assumed to

be nonstochastic, the properties of ML estimators may no longer be fully

optimal asymptotically. See for example Chapter 4, Table 4-2. Although

consistent ML estimates of the coefficients of observed exogenous and of

the nonspecific residual variance can be obtained either in the

asymptotic or the semi-asymptotic sense, consistent ML estimates of the

individual specific residual variance cannot be obtained except in the

semi-asymptotic sense. In the dynamic case, however, maximum likelihood

based on the likelihood function conditional on the initial observation,

or more generally the state, can yield inconsistent estimates (Trognon

[1978)).

Various interesting extensions of both the fixed effects and error

components linear models have recently been made:

(a) To random coefficients (Chapter 5);

(b) To linear models with random regressors (Chapter 6);

(c) To data with measurement errors (Chapter 10);

(d) To dynamic models (Chapters 7 and 8);

(e) To simultaneous equations models (Chapter 9).

In addition there are chapters on specification problems (12), the

Bayesian approach to pooling (13), and an exposition of the Chamberlain
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approach (14), which permits a unified treatment of both fixed effects

and random effects models in an instrumental variables context.

Maximum-Likelihood Estimation of the Dynamic Model

As suggested above, from the conceptual standpoint the dynamic

model is the most interesting and, as indicated, the properties of both

dynamic fixed effects and error components models are dramatically

different than we might expect on the basis of experience with both

standard linear econometrics (OLS, MS, etc.) or with panel models with

strictly exogenous regressors. In the sense that the likelihood function

summarizes all that is relevant of the empirical data at hand, it is

useful to see what the implications of a simple random-effects model

are. Following Chapter 6, suppose the model is

Yit aYi,t-i

= 1, N,

+ K43 + eiti

t = 1, ..., T. (1-8)

If only semi-asymptotics on N is considered (T finite), we need not

assume !al < 1. On the other hand, the process generating the initial

observations is very important. As suggested above, this means that the

individuals' past history with respect to both the observed variables x

and the latent variables c become crucial.

We can rewrite (1-8) as

where

1 - a,t
Yit = a Yio E cox:p

J=0 1

t_l
vit = E ajei,t-i

j=0

(1-9)
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Thus, each observation on the dependent variable yit can be written as

the sum of four terms:

The first, &y10, depends on the initial values which, as long as

T is finite, do influence the behaviour of any estimators. Moreover,

there is no good reason (as in Balestra-Nerlove (1966)) to assume that

these are fixed (i.e., to condition upon their values) and independent

of individual specific effects. Indeed, unless there is something

special about the initial date of observation (see Chapters 19, 26, and

31), there is no justification for treating the initial observation

differently from subsequent observations or from the past, but

unobserved, previous values.

The second term in (1-9) depends on the current and past values of

the exogenous variables X. The form that this dependence takes

depends not only on the dynamics of the model, but also on the way in

which individuals' past histories differ (Knight (1921]).

The third term depends on remaining individual specific effects

which are assumed to be orthogonal to the individual's past history.

Finally, the last term is a moving average in past values of the

remaining disturbances, which may also be written:

\Tit = + Eit t 1,

Vio = °I t = O.

Conditioning on the initial observations implies that they can be

treated as fixed constants independently of jt and vit. They need not be

independent of any of the lagged values of the explanatory x's which are

included. But if any truncation within-sample occurs, the truncation

remainder will be part of the individual specific disturbance, as shown

above, and thus the initial values of the endogenous variable are

independent of the disturbance and cannot be treated as fixed.
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This point can be made in another way (following Chapter 7):

Write the cross section of initial observations as a function of past

x's, jai, and eio,

yio = f(xl,o• x1,-1• - - • • 1-ti• Co • (1-10)

The problem is now related to whether or not we choose to regard µi as

fixed or random. If µi is fixed and thus independent, cross-

sectionally, of cio, and if K,i, j = 0, 1, ..., are cross-sectionally

exogenous, then the yio can be conditioned on. They are still, however,

random variables. But, if the µi are random variables, the yio are not

exogenous. This shows that in a dynamic context fixed effects versus

error components assumptions make a big difference. Our preceding

argument suggests that the error components assumption is the more

appropriate.

In this case, recent literature suggests a variety of different

assumptions about the initial observation leading to different optimal

estimation procedures and implying different properties for suboptimal

estimates. One line takes the generating process of the initial

observations to be different from that of subsequent observations.

Anderson and Hsiao [1982), for example, suggest a general form

Yio = ko + kil-ti ± k2ci0 0

If 1(1 = k2 = 0, the initial observations are fixed and identical. If ko

= kl = 0 and k2 # 0, the yio are random variables independent of the

disturbances in (1-8). If 1(0 = 0, kl = 1/(1 - cc) and k2 = 1/(1 _ (x2)1/2

the individual autoregressive processes which generate the y's are

stationary, etc.

But, although convenient, it is not very reasonable to suppose the

initial observation to be generated by a mechanism much different than

14



that which generates subsequent observations. Bhargava and Sargan

[1983] suggest

yio = k0 4- xioy kipti k2ei0 (1-12)

where the %I are exogenous variables, possibly different from X10 but

quite possibly correlated with subsequent observed Ko's and where y may

or may not equal 0. This formulation obviously encompasses the stricter

assumption that the same mechanism generates yio and subsequent yit's and

allows the exogenous variables themselves to be generated by other

independent dynamical systems.

Assuming fixed effects in dynamic framework and estimating them as

if they were constants (or eliminating them by taking deviations from

individual means) together with the autoregressive coefficient a leads

to inconsistent estimates of the latter. This was noted in Nerlove

(1971), Nickell [1981] and proved by Sevestre and Trognon (1985).

Although yi,t_i and sit are uncorrelated, their respective individual

means are correlated with each other, with eit and with yi,t_i o

Instrumental variable methods have been proposed to get around this

problem (e.g., Balestra and Nerlove [1966]), but as shown in Nerlove

[1971], they can result in very erratic estimates if the

themselves have relatively low explanatory value.

Conditioning on the initial values of the endogenous

instruments

variable also

leads to troublesome problems. As noted in Nerlove [1971], the

estimates of a appear to be inconsistent even when an error components

2 2model is assumed and lait and Gc are estimated together with other

parameters of the model. This was proved in Trognon [1978]. Bhargava

and Sargan (1983) show that this does not happen when the likelihood

function is unconditional, i.e., when it takes into account the density

15



function of the first observation, e.g., as determined by (1-12) and

assumptions about the k's, y, and the densities of µi and cis:). Our

opinion on this matter is that it is most plausible and appropriate to

assume that the mechanism which generates the initial observation is

highly similar, if not identical, to that which generates subsequent

observations. If observations on past values of the exogenous variables

are not generally available, it would be preferable to model their

independent determination rather than to assume their joint effect,

xioy, to be fixed constants. At least, such an approach would be more

consistent with Haavelmo's views as quoted above.

When the solution to the likelihood equations (scores = 0) is not

on a boundary and when the likelihood function is locally concave at

such a solution, the solution with the largest value is consistent,

asymptotically efficient, and root-N asymptotically normally distributed

with variance-covariance matrix equal the inverse information matrix.

Provided the marginal distribution of the initial values yio,

i = 1,...N, can be correctly specified, the unconditional density of

YiT •..,yio, conditional only on the values of observed exogenous

variables gives rise to a likelihood function which has an interior

maximum with probability one. If the marginal density of the initial

values is misspecified, MI estimates are no longer consistent.

It is not, in fact, difficult to obtain the unconditional

likelihood function once the marginal distribution of the initial values

is specified. The problem is a correct specification of this

distribution.

Suppose that the dynamic relationship to be estimated is

stationary so that lyi < 1. Consider equation (1-10) for yio and the

infinite past:

16



co 1
Y Jo =Er ' fix i- i + pi -4- vio ,where vu = rvit_i + ei, . (1-13)

j=1 1-y

(Recall that all variables are expressed as deviations of from their

overall means.)

If p = o, so that the relationship to be estimated is a pure

autoregression, the vector of initial values yo = (Y10, oe. YN0) ' has a

joint normal distribution with means 0 and variance-covariance matrix

C7
2

0
-2

Pc The unconditional likelihood is therefore
(1_y)2 1 _ 1,2 N

••--NT7,10,•••,YNo)log L(r,ap2 x :v

NT 
= — —log 2n- --

NT
log 0.2

N
log 

N (T — 1) 
log 77

2 2 2

NT10- p
2

a2

57(V. YVe )2 N10(7(  (1-14)
2a 2 41—j " " — —2 b -- )2 1 y 2

To maximize, express cro2, ac2, and r in terms of p. For given p in the

interval [0,1), concentrate the likelihood function with respect to a2 and

y. This is a little more complicated than the usual minimization of the SS

in the penultimate term because y enters the final term as well. Then do a

gradient search on p.

When 3 # 0, things are more complicated still. Various alternative

specifications considered in the literature are reported and analyzed in

Sevestre and Trognon, Chapter 7.1 Considerable simplification, however, can

One interesting possibility discussed by them is to choose yio a linear
function of some observed individual-specific time-invariant exogenous
variables and a disturbance which is decomposed as the sum of the
individual-specific disturbances µi and a remainder. The first-order
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be obtained if, following Nerlove (1971a), we are willing to assume that

xit follows a well-specified common stationary time-series model for all

individuals i. For example, suppose

•t = V, , + • where vit iid N(0, a
2
v ). (1-15)

Then the random variable

CO

has a well defined variance which is the same for all i and a function of

p, y, X: cri4,2(13, y, )0.2 This then enters the final term in the unconditional
likelihood, which now becomes

log L(fi,r,2, o,o X11 • • • X NT;y1o,•••,YN0)

N(T - 1) 
log i7 = --

NT
log2n-- —

NT
logo

-2
lo“

2 2 2 2

1 NT2a el. 2

2 —N I og(o- 2 +  - ) ( 1 1 6 )

(1—y)2 1 y 2

Because crep2 is a complicated function of p, y, X and cy,2, concentrating the
likelihood function to permit a one-dimensional grid search is no longer

possible. However, this is not really necessary: Since we are not really

interested in X or av2, we can suppress these parameters in (1-16) and

equations for maximizing the likelihood then take on a simple recursive
form when p = 0, and permit other simplification when p # 0. But if we

. knew some individual-specific time-invariant observed variable
influenced behavior why not incorporate them directly in the equation to
be estimated?

2 
If the exogenous variable which enter the equation to be estimated are

individual-specific and time-invariant and have finite variances and
covariances across individuals, then yi does not depend on t; the
likelihood function (1-16) takes a particularly simple form.
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cr00- I,, simply maximize lOggfl,r, ' gru,•••,YA.7;xXNT;Y10)•••)YNO) with

respect to fl,r,o-,2 ,c;r2c, and o-20. While omitting estimation of X and cs2 leads

to some loss of efficiency, the ML estimates obtained in this way remain

consistent as long as the random variables Oil :=Eriik_i have well-

defined variances and covariances, which they will if the xit are generated

by stationary processes. Besides, since the xit are assumed to be

exogenous, we really have no basis on which to model their determination

and are likely to misspecify this part of the model. In this sense we ought

to prefer this kind of "almost full-information" maximum likelihood.

Other Methodological Issues

Problems associated with measurement errors are more important

than they might seem at first, because of the increasing importance of

so-called "pseudo panel" data (Chapter 11) and the application of

measurement error models to the analysis of such data as if they were

true panel data. Measurement errors in panel data are treated

extensively in Chapter 10. Griliches [1986] persuasively argues the

need to understand and model the processes generating errors in economic

data in the estimation of economic relations. Griliches and Hausman

[1986) provide a pioneering application to panel data.

For many types of problems true panel data are not available, but

rather several cross sections at different points in time are. For

example, surveys of consumer expenditures based on a sample of

individual households are made every few years in the UK or the US.

Surveys to determine unemployment and labour force participation are

made monthly on the basis of a rotating sample. Pseudo panel methods

for treating such data are described in Chapter 14. These methods go
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back to Deaton [1985] who proposed dividing the ample into "cohorts"

sharing common demographic, socio-economic, or historical

characteristics, then treating the "cohort" averages as observations on

"representative" individuals in a panel. Because each "cohort"

observation is based on a sample of the true population cohort, the

averages, treated as observations, contain sampling errors. Thus,

Deaton proposed that the observations be considered as measurements of

the "true" values with errors.

What should we make of this approach from the standpoint of the

fundamental issues of history and dynamics? It goes without saying that

we want to make use of whatever data is available in an appropriate way.

The question is what do the cohort averages mean and how should

relationships among them be interpreted? Deaton's cohorts and his

proposed treatment of cohort averages is similar to the notion of a

representative economic agent, introduced by Alfred Marshall in the last

century, and in widespread theoretical use today. Kirman [1992] has

recently given a detailed critique of the concept and many of his points

apply in the present context. Essentially, relationships among

averages, or for representative individuals, are often not interpretable

directly in terms of individual behaviour since the relationships among

the aggregates is often a result of the aggregation. Another way of

saying the same thing is that the aggregate relationships are reduced

forms from which the underlying structural relations (i.e., at the

individual level) will not generally be identifiable. This is

particularly the case when differences among individuals are historical

to a significant degree and when the relationships of interest are

dynamic. To the extent that the cohort-defining variables succeed in

classifying individuals together who share common histories and exhibit

common forms of (dynamic) behaviour, the use of pseudo panel data as if

they were true panel data subject to sampling error will be successful.
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But to the extent that unobserved heterogeneity in either respect

remains, the relationships obtained from pseudo panel data may not

permit identification of the underlying structure of interest.

Chapters 15-24 in Part II deal with latent variables and other

forms of nonlinear models in a panel data context. Two points are worth

making in this respect: first, it is frequently more difficult to see

how elements of individual heterogeneity should be introduced, in

contrast to the simple way in which such heterogeneity is introduced in

equations (whether linear or not) in terms of disturbances. In Chapter

15, it is pointed out that much of the randomness cannot in general be

interpreted in terms of omitted explanatory variables. Second, also

pointed out, even in the case in which all the explanatory variables are

truly exogenous, failure to take account of heterogeneity may result in

bias, not merely inefficiency, in nonlinear cases, whereas no bias

results in the linear case.

The solution in principle is to formulate a model in terms of the

probability of individual observations and then to "integrate out" the

heterogeneity factors if these can be parametrically specified. In

practice, of course, this is rarely possible analytically and may even

be extremely difficult computationally. Methods of simulated moments

(see McFadden [1989]) are of considerable utility in this connection.

An important application of latent variables models (which are

largely highly nonlinear) is to selection bias and incompleteness in

panel data (Chapter 13). In the case of selection bias, a rule other

than simple random sampling determines how sampling from the underlying

population takes place. Ignoring the nature of the selectivity

mechanism may seriously distort the relationship obtained with respect

to the true underlying structure. Heckman (e.g., (1990], and references

cited therein) has pioneered in this analysis. The greatest problem in
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panel data in this connection is attrition (sometimes resolved through

partial rotation which has its own problems). The probability of

nonresponse increases when the same individual is repeatedly sampled.

In Chapter 18, it is shown that the crucial question is whether the

observed values in the sample can be considered as the result of a

simple random drawing or whether, on the contrary, they are "selected"

by some other rule, random or not. In the case of simple random

selection, standard estimation and inference are appropriate and we say

the selection rule is ignorable. On the other hand, if selection is

nonrandom with respect to factors reflecting heterogeneity, that is

correlated with them, standard techniques yield biased estimates and

inferences. In this case the selection rule mast be explicitly modelled

to correct for selection biases. The authors of Chapter 18 show how

this can be done for both fixed and random effects models. Because

consistent estimation in the case of a non-ignorable selection rule is

much more complicated than in the ignorable case, several tests are

proposed to check whether the selection rule is ignorable.

In Part II there are also a number of key methodological chapters

new to the second edition. These include chapters on Generalized Method

of Moments(22) and on Simulation Estimation (23), and a long chapter on

duration models (19), which supplements a chapter on point processes

already included in the first edition.

1.3 Applications of Panel Data Econometrics

Applications of panel data are very diverse, depending, of course,

on the availability of such data in specific substantive contexts. This

volume contains chapters on labor demand (Chapter 25), labour supply

(Chapter 28), individual labour market transitions (Chapter 29),

Consumption dynamics (Chapter 27), investment (Chapter 26 and 31), and
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dividend policy (Chapter 30), and on the estimation of production

functions and measuring efficiency (Chapter 32). In addition to

surveying important substantive areas of research these chapters are

particularly useful in illustrating our message.

Obviously, panel data (or pseudo panel data) are essential if we

want to estimate dynamic relationships at an individual or disaggregated

level. As soon as the focus is on dynamics, historically generated

heterogeneity becomes a central issue.

Models of factor demand (labor and capital-investment) reveal the

crucial role of expectations. In this connection it is interesting to

note the special impact of heterogeneity on expectations. Panel data

provide a unique opportunity to study expectation formation and to test

various hypotheses about expectation formation. (See for example,

Nerlove [1983], Nerlove and Schuermann (1995].) Often, however, panel

data do not contain direct observations on expectations but, as is

typically the case with time series data, only on other variables

affected by expectations. In this case, we formulate a model of

expectation formulation and infer indirectly the parameters of both the

behavioural and the expectational model. To see how heterogeneity plays

a critical role, it is useful to consider two simple examples: adaptive

expectations and rational expectations.

Suppose that the model we wish to estimate is

y it = ax: + u ti = 1, ..., N; t = 1,

where expectations are adaptive:

•
= + - fl)xj.,_, + vi,

T,(1-17)

(1-18)

Even if the disturbances in the behavioural equation (1-17) are i.i.d.

random variables, it is unlikely that past history and past experience
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will play no latent role in the determination of current expectations,

no fully taken into account by X13_1. Thus, write

+ it(1-19)

where the individual specific effects are likely to be correlated with

past xit's and also, presumptively, with past uit's and X's. The usual

transformation of (1-17)-(1-18) then yields

Yit flYi,t-i a(1- &it-) + //it •(1-20)

Not only do the usual difficulties, discussed above, arise because of

the correlation between yj, and tj, but the third term of the

disturbance is serially correlated. Moreover, if the individual

specific disturbances, Ili, are correlated with past xit's, the lagged

values of these will no longer serve as instruments.

Still more interesting things happen in the case of rational

expectations. In this case (1-18) is replaced by

where

Xit(1-21)

the set of information available to the i-th individual

at the time when his expectations are formed. In principle, C4,t...1 not

only contains that individual's own past history, but also observations

on aggregates of individuals, and may include knowledge of the way in

which individual decisions interact to produce aggregates. For example,

suppose

Zt = Yit •

Then, for the i-th individual,

ni,t-1 = (31 i,t-1 • • • ; X ipt-1 • • •; Zt-1 )• • • )

Rational expectations imply

(1-22)

(1-23)
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yit = ccE(xit uit

. (1-24)

Now if the value of xit faced by each individual is a function, peculiar

to that individual, of zt:

Xa (z1) (1-25)

which may also be stochastic, then

E(x it = E(fi (zt (1-26)

So, for example, if

X = + , (1-27)

then

E(X11lni3_1) = yE(z, + E0 () 111ni,„1 ) • 1-28 

The last term on the right hand side of (1-28) will not generally be

zero. Suppose it is. Such a simplification does not essentially affect

the nature of the difficulties involved. Then

= aYE(zt + uit

=aYE(Eyitini,t_i)
i=1

Hence, if

+ 11 it

= ayEE(Yit + i=1

= ayE {ayE(y.1in..,-0) i=1 i=1

= 1, • •, NO

(1-29)

(1-30)

Equations (1-31) are N equations for each t, which, in principle,

can be solved for the N values

E(Yitl
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in terms of the contents of for all N individuals and the sum of

expectations

Xt.-1 E E(eil nl 1=1

In general

E(Yit ni,t-i)= a,gi (Ckt_1) + a2X,t_1 0

Then we can replace the left hand side of (1-28) by

= a, Egi(fl) + a2NX.,

So (1-17) becomes

+ ui,
i=1

It follows that the appropriate equation now contains a specific

time-varying, individual-nonspecific, effect in addition to ei and vit.

This effect is correlated with the element in since it is an

expectation conditional on Finally, it can be seen that the

parameters of gi, al, and a2 and a are not generally separately

identifiable. The bottom line is that, if one believes in rational

expectations, one is in deep trouble in the case of panel data.

Unless future values of the exogenous variables are in the

information set when expectations are formed, all of the

applications discussed in Part III have this problem.

Computational issues and a review of currently available sofware

is included in a final chapter.

(1-31)

(1-32)

(1-33)

1.4 Conclusions

In this introductory chapter we have tried to bring out the following

points:
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(a) One of the main reasons for being interested in panel data is the

unique possibility of uncovering disaggregated dynamic

relationships using such data sets.

(b) In a dynamic context, one of the primary reasons for heterogeneity

among individuals is the different history which each has.

(c) If the relevant "population" is, following Haavelmo, the space of

possible decisions, different past histories take the form of

individual specific random variables which are generally

correlated with all of the variables taken as explanatory, not

just the lagged values of the endogenous variable. The former

therefore cannot be conditioned upon in the usual way.

(d) Finally, although the adaptive expectations model does not

introduce any new complications, rational expectations introduce a

time specific, individual non-specific, component in the error

component formulation, as well as a fundamental failure of

identifiability.

Panel data econometrics is one of the most exciting fields of

inquiry in econometrics today. Many interesting and important problems

remain to be solved, general as well as specific to particular

applications. This volume represents the definitive work with which to

begin.

This paper is a draft of the introductory Chapter to the second edition

of L. MAtyas and P. Sevestre, eds., The Econometrics of Panel Data,

Boston: Kluwer Academic Publishers, forthcoming 1995.
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