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DYNAMIC ECONOMIC MODELS WITH UNCERTAINTY AND IRREVERSIBILITY:

METHODS AND APPLICATIONS

I. INTRODUCTION

Two fundamental aspects of economic decision making are: (1) the fact that many actions are

at least partially irreversible, and (2) the fact that many choices must be made in an environment of

uncertainty over future states of nature. This paper surveys methods in the theory and application of

discrete time Markov decision models to dynamic economic allocation problems with these

characteristics. First, the paper examines the characteristics of optimal solutions, the long run

dynamics of the optimal state process, and nonlinearities or deviations from certainty equivalence due

to the combination of irreversibility and uncertainty. Then, the paper reviews specific applications in

intertemporal economics including the theory of optimal growth with irreversible investment,

consumption and savings behavior under liquidity constraints, natural resource allocation, and the

economics of environmental preservation.

II. THE MARKOV DECISION MODEL.

This paper is concerned with economic optimization problems that can be modeled as a

Markov decision process specified by S, {A(s):S-*A}, q, U, and a; where S and A are nonempty

convex subsets of R, the sets of states and actions of the system; for each s, A(s) is a nonempty,

continuous and compact-valued correspondence that specifies the admissible actions from s; q is a

conditional probability measure on the Borel subsets of S governing the transition of the state given

(s,a); U is a continuous, bounded function on S x A that denotes the one-stage reward or utility; and 0

.._ 6 < 1 is the discount factor.

The state evolves according to a transition equation st+1 = g(st,at,wt+i) where

g(-, °,0))E C(S x A), and {cot} is a sequence of independent, identically distributed random variables

with common distribution 0 on 0, a compact subset of R. This determines the transition kernel on



S, q(B I s,a) =J 1B[(g(s,a,w))10(dw) for all B, the Borel subsets of S. At the beginning of each

period the agent observes the state st and then takes an action at. As a consequence the agent receives

utility U(s,a), and the system moves to a new state st+i = g(st,at,wt+i).

The partial history at date t is given by ht = (s0,a0,...,at_1,s1). A policy r is a sequence

{roori,...}, where irt is a conditional probability measure on A such that rt(A(st) I ht) = 1. A policy

is Markovian if for each t, rt depends only on st. In this case r can be represented by a

sequence {a0,a1,...}, where each at is a Borel measurable map from S to A such that at(s)E A(s) for

all s E S. A Markovian policy is stationary if at(s) a(s) for all t, where a() is some Borel

measurable function from S to A. a() is called a stationary policy function and the policy defined by

a() is denoted

Associated with a policy 7r and an initial state s is an expected discounted sum of rewards

over time V,(s) = EE tT iotU(st,at), where {spat) are generated by 7 and q in the obvious manner. A

policy, r*, is optimal if Ve(s) V(s) for all policies r and all sE S, and Ve. is referred to as the

value function. By a well-known contraction mapping argument it can be shown that the value

function satisfies the functional equation

V(s) = max U(s,a) + ô
a E A(s)

Under the assumptions above, V is continuous. Further, if as(s) is the set of maximizers of the above

equation at s ES, then a* is an upper-semicontinuous correspondence from S to A which admits a

measurable selection and the policy, a*("), defined through a*(s) is a stationary optimal policy.

In dynamic economic models one is often interested in how the stationary optimal policy

function a*(s) varies with s. For x,y E R let x A y = min[x,y] and x v y = max[x,y}. The function

U(s,a) is said to be supermodular on S x A if U(s A s' ,a A a') + U(s V s' ,a V a') >. U(s,a) + U(s' ,a')

for all (s,a) and (s' ,a') in S x A. In economic maximization problems supermodularity is interpreted

as a form of complementarity among arguments in U. The reason being that for C2 utility functions
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supermodularity is equivalent to d2U/dsda .. 0, so an increase in one argument raises the marginal

utility of the other. A correspondence r(s) is defined to be expanding on S if s ... s' implies r(s) g.

r(e). r(s) is ascending on S if s ...C. s', a E r(s), be r(s') implies aAbe r(s) and aVbE r(s').

PROPOSITION 1. Assume (i) U is supermodular on SxA, (ii) g is independent of s, and (iii) A(s) is

ascending on S. Then a
* 
(s) is ascending in s.

Proof of Proposition 1. Let a E a(s) and a' E a(e) for s ..>... s'. Since A(s) is ascending,

a V a' E A(s) and a A a' E A(s'). Note that oEV(g(a V a),co))+SEV(g(a A a',(0) =

6EV(g(a,w))+6EV(g(a',w)). Hence, 0 U(s,a V a')+6EV(g(a V a9,0.))) - U(s,a)+6EV(g(a,c0)) _>_

U(s',a')+6EV(g(a',w)) - U(s%a A a')+6EV(g(a A a',0))) .. 0, where the first and last inequalities

follow from the principle of optimality and the middle inequality is due to the supermodularity of U.

Since U(s,a V a')+6EV(g(a V a',(4)) - U(s,a)+6EV(g(a,(.0)) ._. 0 it follows that a V a' G a(s). Similarly

since 0 U(s',a')+6EV(g(e,c0)) - U(s',a A a')+6EV(g(a A a',(.4)), it follows that a A a' E a(s'). This

implies that a(s) is ascending. //

PROPOSITION 2. Assume (i) U is nondecreasing on S. concave on SxA, strictly concave on A, and

supermodular on SxA, (ii) g is nondecreasing on S, nonincreasing on A, concave on SxA, and

supermodular on SxA, and (iii) A(s) has a convex graph, and is expanding and ascending on S.

Then a* (s) is single-valued and nondecreasing in s.

Proof of Proposition 2. V is concave since U and g are concave and A(s) has convex graph. V is

nondecreasing since U and g are nondecreasing in s and A(s) is expanding. a(s) is single-valued and

continuous by the strict concavity of U in a. Let a E a(s) and a' E a(s'), where s _. s'. If a ..>_ a',

then V(g(s V s',a V a',w)) + V(g(s A s',a A a',(0) = V(g(s,a,o))) + V(g(s',a',0.))). If a < a', then

V(g(s V s',a V a',0) = V(g(s,a',0))) and V(g(s A s',a A a',0.))) = V(g(s',a,0). g is nondecreasing in s

and nonincreasing in a so that g(s,a,w) ._>_ g(s,a',co) g(s',e,c0). Thus, there exists 0 ._. 0 .. 1 such
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that g(s,e,w) = Og(s,a,co) + Supermodularity of g implies g(s',a,w) g(s,a,w) +

g(s',a',6) g(s,a',w). Combined with the previous equality this gives g(s',a,w) (1-0)g(s,a,co) +

Og(s',a',w). This and V nondecreasing implies V(g(s V s' ,a V a' ,w)) V(g(s A 5' ,a A a' ,u0) =

V(g(s,a',w)) + V(g(s',a,w)) V(Og(s,a,w)+(1-13)g(s',e,w)) + V((1-0)g(s,a,c0)+0g(s',a',w)). The

concavity of V then yields V(Og(s,a,w)+(1-0)g(s',a%co)) + V((1-0)g(s,a,c0)+0g(e,a',w))

V(g(s,a,w)) + V(g(s',a',w)) which establishes that V(g(s, a,w)) is supermodular in (s,a). The

remainder of the proof follows similar arguments to the proof of Proposition 1. //

The main advantage of Proposition I is that it does not require concavity of U and/or g. This permits

a characterization of optimal policies in nonconvex problems. The main strength of Proposition 2 is

that it allows the future state to depend on both the current state and action.

Dynamics of optimal state processes 

The monotonicity of optimal policy functions is useful in characterizing the dynamics of

optimal processes in infinite horizon models. The following 2 questions are of interest. First, do

optimal processes converge to a limiting stationary distribution? Second, when is the stationary

distribution unique so that the limiting behavior of optimal processes is independent of initial

conditions? Propositions 1 and 2 provide an avenue for addressing these questions since they can be

used to show when the optimal state evolves according to a monotone Markov transition equation st+1

=

Define ci = let trkt be the joint distribution of cot on Ot, and define Ht(s,cot) =

11(...(H(11(s,w1),(02,...,cot). Let au be any probability distribution for s. The probability distribution

of the optimal process st from so = s is defined byt/2(B) = 5ot({0 Htcs ) G B})gds),

where B is any (Borel) subset of R. p, is an invariant probability if 01µ = it. A subset S' of R is

said to be cb-invariant if it is closed and if 0({co GOIH(s,w)E S' for all s G S'}) = 1. A subset S" is a
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minimal cb-invariant set if it is 0-invariant and if any strict subset of S" is not 0-invariant. Define

Hm(s) = inc,Efill(s,w) and HM(s) = supwEnli(s,(4). Assume that the transition function H satisfies:

A.H.1. H(s,w) is nondecreasing in s for each co E 0,

A.H.2. H(s,w) is jointly continuous in s and w,

A.H.3. HM(s) > H(S) for all s E S.

The following recurrence result is used to characterize the convergence of the optimal state process to

an invariant distribution.

PROPOSITION 3 (Dubins and Freedman [1966]). Suppose A.11.1-A.H.3 hold and let 5' be a 0--

invariant closed interval. If there exists a unique minimal 0-invariant closed interval S" in S' then

* 
ithere is one and only one invariant probability il n 5'. Furthermore, for each probability A on Sic

the distribution function of cktii converges uniformly to the distribution function of p.*.

..._
Let the space S be defined by the closed interval [,s]. Define the sequence {an,an,bn} °°n=i

inductively by an = Inf{s >... bn_1 1Hm(s)= s} , bn = Inf{s > an1Hm(s) = s} , an .

Sup{sE [an,bn] I Hm(s)=s), where bo = s. Hm and HM have at least one fixed point by Brouwer's

fixed point theorem. Let N* be the maximum n such that the fixed points an, an, and bn are well-

defined. The space S can now be expressed as

N* N*

S = [b01d1) U U [an, Ion] U U (bn_,,dn) U (bN.,-g] .
n=1 n=2

The next results characterize the limiting behavior of optimal processes.

PROPOSITION 4. Suppose that A.H.1-A.H.3 hold. (a) Fix any integer nE[1,e]. Then the set

rein,bn] is a 0-invariant interval and lan,bn] is a unique 0-invariant interval in itself. There exists a

unique 0-invariant distribution on [â,, b,,,/. If so E /an, b,,] then the distribution function of st converges
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uniformly to the distribution function of the invariant distribution on ian,bd. (b) The set T =

N_2 (bn_pan) U goo, di) U (bN*,-1./ is transient. If soET, then, with probability one, st will in

finite time leave r and never return.

COROLLARY TO PROPOSITION 4. Fix any distribution function Fo for so, let st be generated by

the transition function H(s,w), and define IV* as above. Let Ft be the resulting distribution function of

st. Then (a) Ft converges uniformly as t--3.03 to the distribution function, F*, of an invariant

probability, and (14 there is a unique invariant probability on S if and only if there is only one

interval of the type rati,bd, i.e., if and only if N* = 1.

Nonlinearity and deviations from certainty equivalence

An important subset of Markov decision problems are those characterized by a quadratic

reward function, a linear transition equation with additive stochastic terms, and an unconstrained

choice set. In this class of problems the optimal decision rule is linear and equivalent to the solution

obtained when the disturbance is replaced with its expected value. This property is known as

certainty equivalence.

In constrained problems certainly equivalence breaks down. Generally, optimal decision

rules are nonlinear and it is no longer valid to replace random variables by their conditional mean in

the solution. These facts have important implications for optimizing models of economic agents,

some of which will be discussed below.

Bibliographic notes to Section II. 

The primary focus of this paper is on discrete time models. The literature on uncertainty and

irreversibility in continuous time dynamic economic models is surveyed by Pindyck [1991].

Bhattacharya and Majumdar [1981] provide an excellent review of some additional results for

stochastic economic models. There is a large literature on the theory and applications of Markov
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decision processes in economics. The preeminent reference is Stokey and Lucas (with Prescott)

[1989]. The formal dynamic programming framework developed here is based on Furukawa [1972].

The structure of the model is similar to that of Blume, Easley, and O'Hara [1982]. On the analysis

of monotone optimal policy functions see Topkis [1978] and Heyman and Sobel [1984, ch. 8].

Serfozo [1976] also examines this issue. Hopenhayn and Prescott [1992] provide the most complete

treatment for dynamic optimization problems. Milgrom and Shannon [1994] extend Topkis' results.

Proposition 1 is similar to Heyman and Sobel [1982, Corollary 8-5b]. Mendelssohn and Sobel [1980]

and Dechert and Nishimura [1983] were the first to apply these techniques to economic growth

problems. Recent applications are Amir, Mirman, and Perkins [1991] and Olson and Roy [1994].

Most results on the monotonicity of optimal investment and consumption policies in economic models

can be obtained from Propositions 1 and 2. Economists have also focussed on models with non-

monotone policy functions that are capable of generating periodic or chaotic behavior (Brock and

Dechert [1991] provide a comprehensive survey).

The discussion of the convergence of optimal processes with monotone Markov transition

equations is based on Majumdar, Mitra, and Nyarko [1989] and Nyarko and Olson [1991].

Bhattacharya and Lee [1988] extend the work of Dubins and Freedman [1966]. Hernandez-Lerma,

Montes-De-Oca, and Cavazos-Cadena [1991] provide a good discussion of additional recurrence

relations. Related developments in economic modeling can be found in Razin and Yahav [1979],

Futia [1982], Stokey and Lucas (with Prescott) [1989], and Hopenhayn and Prescott [1992]. In

models of economic growth, the convergence of optimal processes to a unique invariant distribution is

examined by Brock and Mirman [1972, 1973], Mirman and Zilcha [1975, 1977], Majumdar, Mitra,

and Nyarko [1989], Olson [1989], and Nyarko and Olson [1994], among others. Donaldson and

Mehra [1983] consider a problem with correlated shocks.

7
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A formal treatment of the certainty equivalence principle can be traced to Theil [1954, 1957]

and Simon [1956]. The loss of certainty equivalence under choice constraints is noted in Malinvaud

[1969]. Henry [1974] and Arrow and Fisher [1974] established conditions under which the

combination of irreversibility and Bayesian learning cause systematic deviations from certainty

equivalence, a phenomenon Henry referred to as the "irreversibility effect." Further analysis and

extensions are in Jones and Ostroy [1984] and Freixas and Laffont [1984].

3. APPLICATIONS IN ECONOMICS

Economic growth and irreversible investment

In the one-sector model of economic growth with random technology shocks, an economic

agent allocates an aggregate production good between per capita consumption, ct, and per capita

capital, xt, in each period so as to maximize the expected discounted sum of utility. Utility is denoted

by U(c), where U is an increasing, strictly concave function of consumption. The production

technology is given by a net output function F(xt,cot+i) and a constant rate of depreciation, d, which

together yield a gross output function, f(xt,ct't+i) = F(xvwt+1)+(1.-d)xt. It is assumed that F is

increasing and concave in x. Investment is defined by it = xt - (1-d)xt_i.

With positive consumption, and in the absence of a depreciation constraint on capital or a

normegativity constraint on investment the main results are: (1) optimal solutions are characterized by

an intertemporal arbitrage condition Mct) = oEU'(ct+i)f(xt,Wt+i)9(2) optimal consumption and

investment are increasing functions of output, (3) optimal processes converge to a unique invariant

distribution, (4) optimal solutions are also the solution to a decentralized, competitive economy in

which all forms of the consumption/capital good have the same price, (5) the price of existing capital

relative to its replacement stock (known as Tobin's q) is always 1, and (6) the model is capable of

producing fluctuations in output and investment that generally mimic those observed in aggregate

economic data.
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When investment is constrained by depreciation, many of these conclusions must be modified.

Sargent [1980] shows that the price of existing capital may be less than that of new capital (Tobin's q

is less than 1), and that current investment decisions depend on agent's expectations about the

extended future. He also proves that optimal processes converge to a unique limiting distribution.

These results are extended in Olson [1989]. In the deterministic case Majumdar and Nermuth [1982]

prove that monotonicity and convergence results hold, even if the technology is non-convex, and that

investment is constrained for a finite number of periods along an optimal path. Mitra and Ray [1983]

develop a duality theory for optimal solutions under irreversible investment and show that optimal

programs need not be competitive in an economy where all forms of the aggregate good are priced

the same. Optimal programs are competitive in an economy with separate prices for both the output

and the capital good. Other studies include Mitra [1978, 1983]. Dow and Olson [1992] investigate

the implications of irreversible investment for real business cycle models of the economy. They show

that irreversibility influences how capital and other economic variables respond to technology shocks

and that the degree of randomness is significant in determining the extent to which there are

deviations from certainty equivalence. When random shocks are small, such as those as measured at

the aggregate level, then irreversibility has very little influence. At larger variations consistent with

those found in durable good sectors of the economy, investment constraints have a noticeable effect

on output, investment, and consumption. Constraints orithe transferability of capital across sectors of

the economy appear to be more important than depreciation constraints. Bert°la and Caballero [1994]

provide strong evidence that the smooth, persistent behavior of observed aggregate investment in the

U.S. can be rationalized by unit-level irreversibility constraints. In a somewhat different setting

Demers [1991] demonstrates that firms will invest more cautiously under irreversible investment when

they anticipate better information in the future. Further, there is a gradual adjustment in the capital

stock to its desired level, rather than full adjustment in a single period.

9



Consumption and savings with liquidity constraints

The response of individual consumption/saving behavior to uncertainty about income has long

been a central issue in economics. The following model of individual life cycle consumption is

typically used to analyze this problem: max EEotU(ct) subject to xt = (1 +r)xt_i + wt - ct, where xt

= saving in period t, ct = consumption in period t, wt = stochastic income received at the beginning

of period t, r = interest rate on saving, and 6 = subjective discount factor. When there are no

constraints on consumption or saving the optimal solution satisfies what is known as the permanent

income hypothesis. The primary implications are (Hall [1978]): (1) optimal consumption is based

solely on expected lifetime wealth or permanent income and is insensitive to anticipated changes in

income, (2) no information at time t aside from ct helps to predict c (3) aside from a trend, the

behavior of marginal utility resembles a random walk, (4) consumption is characterized by U'(ct) =

6(1 + r)EU'(ct+i), and (5) when utility is quadratic, consumption is a linear function of current wealth

and the expected value of future income. A considerable amount of empirical research testing this

model has produced somewhat mixed results (see Deaton [1992] for a summary). In particular, there

is evidence of precautionary saving and excess sensitivity of consumption to anticipated changes in

income when compared to the predictions of the basic model.

A potential short-coming of the basic model is that it does not account for liquidity constraints

or the inability to borrow against future income. Such restrictions have been suggested as a likely

explanation for many of the disparities between observed consumption and the permanent income

hypothesis. For consumers subject to liquidity constraints, optimal consumption is characterized by 3

patterns of behavior (e.g., Dow and Olson [1991]). At low wealth levels, consumers are unable to

borrow to increase consumption so they consume their entire wealth. At intermediate wealth levels,

consumption is not liquidity constrained yet it is lower than certainty equivalent consumption due to

the prospect of being constrained in the future. At sufficiently high wealth levels, liquidity constraints

10
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are never binding at any point in the future and consumption is the same as in the unconstrained,

certainty equivalent case. The combined consumption function is nonlinear and consistent with both

precautionary saving and excess sensitivity.

There have been a number of investigations of the importance of liquidity constraints for

different aspects of economic behavior. The degree to which liquidity constraints are responsible for

deviations from certainty equivalence in consumption data is studied by Flavin [1985], Zeides [1989],

and Alessie, Kapteyn, and Melenberg [1989], among others. Deaton [1991] shows that liquidity

constraints are capable of explaining a number of disparate phenomena in micro and macroeconomic

data. Liquidity constraints increase the effectiveness of fiscal policy even if the future tax

implications of government spending are perfectly foreseen (Heller and Starr [1979], Hubbard and

Judd [1986]). Scheinkman and Weiss [1986] show that adding liquidity constraints to a general

equilibrium model can produce price and output fluctuations similar to those observed in actual

business cycles. Brock and LeBaron [1990] examine a production-based asset pricing model in which

firms are borrowing constrained. The effect of liquidity constraints is to transform production shocks

of short memory into return shocks of longer memory, offering a possible explanation of the observed

phenomena of mean reversion in firm valuation time series data.

Natural resource management 

The management of natural resources is a problem that extends across a number of disciplines

including economics. Fisheries management and water allocation are two examples.

A. Fisheries management 

In each period an agent harvests ct from the available resource biomass yt. The resource

stock grows according to the stock-harvest-recruitment relationship Yt+i = f(xt, wt+ 1), where xt =

yt-ct represents resource escapement and cot reflects the influence of random environmental factors on

growth in the resource biomass. To obtain a harvest ct, the agent expends fishing effort, et, where

11
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the effort needed to attain a given harvest depends on the size of the resource stock. Migration of the

resource implies a stochastic yield-effort relation given by et = e(coyt,Et), where Et is an i.i.d. random

variable. The expected utility (profit) of harvests is given by U(coy) = E,u(e(coypet),ct). The

problem facing the fishery manager is to select a sequence of harvests that maximizes the expected

discounted sum of utility from harvests over time subject to 0 ._. ct .. f(xt_i,wt).

This problem fits easily within the framework developed in the preceding section. There exist

optimal harvest and escapement policies ct = C(xt_i,cdt) and xt = X(xt_i,wt). Given the appropriate

complementarity in utility, the convergence of optimal processes follows in a straightforward manner.

Additional references and details can be found in Mendelssohn and Sobel [1980] and Nyarko and

Olson [1991, 1994].

B. Conjunctive groundwater use with stochastic surface supplies 

Water allocation often involves joint management of groundwater stocks and stochastic surface

supplies, and it may be possible to replenish groundwater through artificial recharge. Let x =

groundwater stock, a = volume of groundwater withdrawal (a _>_ 0) or artificial recharge (a < 0),

and G.) = volume of surface inflows, which may vary randomly from year to year. For simplicity

assume there is no natural recharge to groundwater. The groundwater stock evolves according to the

transition equation xt = xt_1 - at. In each period, withdrawals from groundwater cannot exceed the

available stock and the potential for artificial recharge is limited by available surface supplies. The

period t state is st = (x4,0)). Net benefits from water allocation are given by U(s,a). The problem

is to choose a sequence of water allocation decisions to maximize the expected discounted sum of net

benefits over time. Under suitable assumptions on U optimal policies governing groundwater stocks

and withdrawals can be characterized. Further analysis and references are given in Knapp and Olson

[1995]. Similar techniques have also been applied to the problem of reservoir management (Sobel

[1975]).

12
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Irreversibility and the economics of environmental preservation

There is a significant literature in natural resource and environmental economics that focusses

on problems of environmental preservation (see the survey by Fisher and Krutilla [1985]). A

pervading theme in this literature is the "irreversibility effect" first noted by Henry [1974] and Arrow

and Fisher [1974]. This refers to the fact that for decision problems satisfying certain conditions

(Freixas and Laffont [1984]) a position of greater initial flexibility is desirable when choice

constraints and the prospect of future learning are important. For decisions that involve irreversible

development of the environment this means that preservation is made more desirable by the prospect

of learning about future benefits of alternative uses for the environment. Care must be taken in

interpreting this result, however, since the irreversibility effect is not necessarily one-sided in decision

problems in R. In a model of economic growth with both capital and environmental resources,

environmental preservation may be either less or more desirable under irreversibility and learning,

depending on society's preferences toward consumption and environmental benefits (Olson [1990]).

4. CONCLUSIONS

This paper surveys recent developments in the theory and applications of dynamic economic

models characterized by uncertainty and irreversibility. Together, these 2 factors are capable of

generating nonlinear decision rules on the part of optimizing agents. These have proved important in

explaining a number of economic phenomena. Because irreversibility and uncertainty characterize

many economic decisions there is much to be gained from further investigation of the nonlinear

behavior caused by their interaction.
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