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BENEFIT AND DISTANCE FUNCTIONS

In a sequence of publications Professor Luenberger (Luenberger 1992a, 1992b, 1994,

1995) has introduced and applied a fimction he terms the benefit function,' which is a directional

representation of preferences. If u(x) is a utility function, xeXc , and g a vector in 91N, ,

then the benefit function is defined by

b(g; u, x) = sup {13 E 91:x — f3g E X, 11(X -13g) u).

The benefit function can be recognized as a generalization of Shephard's (1953) input distance

function, which when defined in terms of the utility function (Deaton, 1979) can be written:

Di(u, x) = inf{X: (x/X) e X, u(x/X) u).

Both functions are useful alternative representations of preferences, that may be exploited to

advance different theoretical and empirical objectives. To wit, Luenberger (1992a, p. 480) states:

"The distance function can be useful in developing relations in individual consumer theory. The

benefit function has use in developing group welfare relations."

This paper explores the relationship between the two functions and shows how each can

be derived from.. the other. We then discuss duality theorems, shadow prices, and composition

rules for the two functions.

1. Distance Functions

Although Professor Luenberger has developed the benefit function as a tool in consumer

theory, here we will study it as a tool in production theory.2 Let y E 91.1': be a vector of outputs

1 Professor Luenberger (1992b, p. 148) traces it back to Dupuit (1884). Blackorby and Donaldson (1980) employ
a version of the benefit function, which they call the translation function, in their study of absolute inequality
measurment.
2 Luenberger introduced the notion of a shortage function in his studies of production.
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and x e 91,N a vector of inputs. The technology is represented by input correspondences

—> 91 which define input sets L(y) c 9111,

(1.1) L(y) = (x: x can produce y), y E SR?.

Following Shephard (1970) or Fare (1988), define the input distance function by:

(1.2) Di (y,x) = sup{A, E (x / X) E L(y))

This function inherits the properties imposed on the technology, see Shephard (1970) or Fare

(1988), and in particular, assuming weak disposability of inputs, i.e., x E L(y) E L(y),

> 1:

(1.3) Di (y, x) 1 if and only if x E L(y),

which shows that the input distance function is a complete function representation of the

technology. Hence, conditions on the technology can be equivalently expressed in terms of the

input distance function or the input set. Moreover, from its definition it follows that the distance

function is homogeneous of degree +1 in inputs. This property has proved especially useful in the

construction of index numbers using distance functions (Malmquist, 1953 and Caves, Christensen

and Diewert, 1982).

To motivate our terminology, let us first recall the notion of a direction. Let x and g be

fixed vectors in Rn, then

(1.4) z=x+f3g, f3€9

defines a line in the direction of g. Clearly the benefit function may also be thought of as a

directional concept. Thus we define 15i:9ii.m x 91N+ x 91N —> 9i by

(1.5) i51(y, x; g) = sup (13 E 91: x Pg e
13
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= sup {3 E 91: x E + L(y)}

as the directional input distance function.3 It is, of course, the benefit function for L(y) as

defined by Luenberger. Moreover, the second equality shows that the benefit function or

directional input distance function is the maximal translation of L(y) along g that permits keeping

x feasible.

Three special cases are illustrated in Figures la, lb, and lc. In Figure la, x E L(y) and

>ni(y,x,g) is given by the ratio 0 In Figure lb, x L(y) but moving x in the direction
ugh

of g eventually encounters L(y). Here 151(y, x; g) = — <0. Figure lc illustrates the case
Ilgil

where moving x in the direction of g never encounters L(y), and thus 15 i (y,x,g) = —co .

The basic properties of the directional input distance function are summarized by the

following lemma which slightly expands results due to Luenberger (all proofs are in appendix).

(1.6) Lemma: O: R' x x —* 91 satisfies:

1) if L(y) is convex for all y 93,m, , 151(y,x;g) is concave with respect to x;

2) D1 (y, x +ag;g) = 151(y,x;g) + a for a E ;

3) x E L(y) implies ni(y,x;g) ;

4) 15i (y, x; [tg) = (y, g), > 0.
1-1

5) a) if y' y L(y') c L(y), then y' y ni(ycx;g) 151(y,x;g) ;

b) if L(y) c L(4) , 0< X, < 1 , then i51(y,x-,g) i (4, x; g), 0 <2 <1;

6) if x E 1,(y) E L(y) for > 1, 15i(y,2x;g) ?_. X151(y,x,g) = 151(y,x,g/ X).

3 Directional output distance functions and undesirable outputs are studied by Chung (forthcoming).
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Because Di(y,x) 1 if and only if x L(y) under weak input disposability, the

directional distance function can also be defined as

(1.7) (y, x; g) = sup {13 € 9i: Di (y, x 13g) 1)

Expression (1.7) shows that the directional input distance function can be obtained from the input

distance function. We now show that by an appropriate choice of g, we can always recover Di(y,

x) and hence L(y) from 1i1(y,x;g). In particular, for g = x:

(1.8) (y, x; x) = sup{0 E 9i: x(1 — f3) E L(y))

= — inf{(1 — 0): x(1 — 13) E L(y), f E 93}

= — inf{(1 — f3) E 9:1 +: x(1 — 0) E L(y), e9)
= 1— 1/ Di(y,x)

where the third equality follows from the fact that L(y) c91N, . By a similar argument, it follows

that Di (y, x) = 1 / ]3i(y,0;—x) . Using (1.3), it is immediate from (1.8) that under weak

disposability of inputs:

(1.9) (y,x;x) ?_ 0 <z> x €1.(y).

Under free input disposability, i.e., x' x E L(y) => x' E L(y), expression (1.9) can be

strengthened to:

(1.9') (y, x; g) <=> x L(y).

That 13i (y,x,g) >. 0 for x E L(y) follows immediately from 1.6.3. To prove the converse,

suppose first that 151(y, x; g) equals zero, it is then immediate that x e L(y) . Now suppose that

(y, x; g) > 0, and note that xx—ni (y, x; g)g L(y) which yields x E L(y) under free

disposability. Under appropriate disposability assumptions, ni(y,x;x) is a complete function

representation of L(y).
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A third input distance function, the affme distance function, has been introduced by Fare

and Lovell (1984). This distance function is defined as

(1.10) Di (y, x; x°) = [inf{k: x° + Xx E L(y)}]-1 = [inf{k: Xx E 1_,(y) — x° }V

= [inf{X: Di (y, x° + Xx) Or .

Ifx = x°, then

(1.11) Di (y, x; x) = [inf{X: Di (y, x + Xx) ?.. 1}]-'

= Di (y, x) / (1— Di (y, x)).

or equivalently

(1.12) Di(y,x) = D1(y,x,x)/(1+D1(y,x,x)).

Expressions (1.9) and (1.10) shows one relationship between Shephard's input distance function

and the af6ne distance function. Of course if x° = 0 then the two distance fu.nctions are equal.

Note also that the afftne and the directional distance functions are related by

(1.13) 151(y,x°,—x) = 1/ Di(y,x,x°),

or since 151(y, x; g) is homogeneous of degree -1 in g.

(1.14) ni(y,x°;x)Di(y,x;x°)= —L

2. Dualities and Shadow Prices

The directional and the usual distance functions are both primal representations of the

technology, expressed by input requirements sets 1_,(y), y € 91m+ . The dual representation of the

technology is, of course, given by the cost function. Let w E 9I+N denote a vector of input prices,

the cost function (or the expenditure function in consumer thedry) is then given by

(2.1) C(y,w) = ini:{wx:x EL(y)}, y E
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or equivalently

(2.2) C(y,w) = inf. twx: Di (y, x) .?_. 1), y

Shephard (1953, 1970) proved that under appropriate restrictions on L(y) the cost and the input

distance functions are dual to each other, in the sense that

(2.3) C(y,w) = ii:f:{vvx: Di (y, x) ?.. 1}, y EN':

(2.4) Di (y, x) = infw {wx: C(y,w) ?.. 1), y E

From (1.8) it now follows immediately that under weak input disposability

C(y,w) = ' ,m,f{wx: ni (y, x; x) 0)

and

li i (y, x; x) = 1 — 1 / inf (vvx: C(y, w) .>. 1) .
W

Shephard's duality theorem can also be expressed as a pair of unconstrained optimization

problems, namely,4

(2.5) C(y,w) = ii_f:{wx / Di (y,x)), y ER's: ,

(2.6) Di (y,x) = infw {vvx / C(y,w)}, y E9i,1̀.' .

Luenberger (1992, 1995) proves a duality theorem between goods and goods prices. His

theorem can be stated in our terminology as

(2.7) C(y,w) = ii:f*, (wx — i5 i (y, x; g)wg}

(2.8) ni (y, x; g) = infw (wx — C(y, w): wg = 1) .

4 See Fare and Primont (1995, p. 48).
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{wx - C(y, w)}

This duality theorem like Shephard's shows that inputs x and deflated input prices w are dual.

The Luenberger duality theorem can also be expressed as a pair of unconstrained optimization

problems, namely,

C(y,w) = ilf:{wx — 13 i (y, x°, g) • wg}

151 (y, x; g) = inf,
wg

By choosing g = x, expression (2.9) reduces to (2.5), and (2.10) reduces to (2.6), showing

that the Fare and Primont formulation of Shephard's (input) duality theorem is a consequence of

the Luenberger duality theorem.

Fare and Grosskopf (1990) developed a dual Shephard's Lemma and showed that virtual

prices can be derived from the distance fwiction. In particular they showed that

(2.11)
aDi(y,x) _ 1w n — ., ..., N •

Ox.

This result follows from applying the envelope theorem to expression (2.3). In the same way, by

applying the envelope theorem to (2.7), the adjusted price function of Luenberger is derived,

namely

(2.12) aiji(yx;g) wn = wg , n = 1, ..., N.
ax.

The last two expressions are two variations on the dual Shephard's Lemma. Their difference

consists of the different scaling factors, C(y, w) versus wg.
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3. Composition Rules For Directional Distance Function

McFadden (1978) has presented a tabular representation of equivalent structural

restrictions on the technology stated in dual and primal terms. Our next result extends

McFadden's existing composition rules on input sets to the directional input distance function.

3.1 Proposition: Let Li (y) c 9iN, (j = 1, ..., J) represent convex input sets satisfying free

disposability of inputs and let nil (y, x; g) (j = 1, ..., J) be the corresponding directional input

distance functions, 15 ,zi (y, x; g) the directional input distance function for ziLi(y) where

Zi E 9I+, and L*(y) represent a convex input set satisfying free disposability of inputs: Then the

following pairs of representations of the technology are equivalent:

a) 12(y) = a(y)12(y) where a:9im, -->

a') i5 (y,
x; g) . 151i (y,  X  ,  g  ) = a(y)15 !I (y, X , g) .

a(y) a(y) a(y)

b) e(y) = {A(y)x:x E 12 (y)} where A(y) is a diagonal N x N matrix with strictly

positive diagonal elements,

b') iYi (y,x;g) = 5:(y,A'(y)x,A-1(y)g) .

J

C) L° (y) = E li (y) ,
J=1

J J

c') 5°(y,x;g) = sup {min {15:i, (y,xj,gi)}:xj .?_ 0,Exj = x;Eg-i =g}
J=1 J=1

d) L° (y) = r11 Li (y)

d') 13 i (y, x; g) = mini=,,...,, Oil (y, x; g))

8



e) L° (y) = convex hull of Ul.,j(y)

e') (y,x,g) = sup {min.

EXi = X, Egi = g,zi E 91, (j = 1,...,J),
J=1

Ez; =1).
J=1

f) L°(y)= zli(y)

zj +

f) ni°(y,x;g) = {N(y,x,g)}:Ezi .1
J=1

zj

g) (y) = u EzjI"(y)
zel:(y) j=1

g') ics(y,x;g) = sup (min {i5fi(y,xj,gi):

I

Xi 0, E xi =x,Egi= g, z E L*(y)).

L°(y) = closure u nziii(y)
ze.1.7(y)j=1

h') 15i° (y, g) = sup {min j=1,...,/ {O(y,v,g)))
zel.:(y)
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Appendix

(1.6) Lemma: 1), 2), and 3) are proven in Luenberger (1992a). If y' .>. y => L(y') c L(y) then

x — 13(y', x; g)g E L(y) , hence ñ( y, x; g) 15i (y ',x; g) which shows 5a), 5b) follows similarly.

To establish 4), notice that:

151 (y, x, j_tg) = sup (f3 E 91: X — f3ps E L(y))

1 ro a„ 0
= — SUp u31.1. E :rt: X — Nig E L(y))

11.

1-.
= — D i (y, x, g).

11

If x E L(y) => Xx E L(y), for ?> 1, then 2‘..(x — ni(y,x;g)g) E L(y) whence

5 i (y, Xx; g) >,_ X,f)i (y, x; g) = f) i (y, x; g / X) by 1.6.4, which establishes 6).

Q.E.D.

3.1 Proposition: We only prove ) => ') in each case. The converse is straightforward upon

using (1.9') and is left to the reader.

a) implies

15° (y, x, g) = sup ([3 E 91: x — 13g E 12 (y.))

= sup {13 E 91: x — Pg E a(y)L1(y))

= sup {f3 € 91: .--1-- —13  g  € 1,1(y))
a(y) a(y)

= b• !(y, x g )

1 a(y)

,  

a(y)

= a(y)5;(y,-25—,g),
a(y)

where the last equality follows by 1.6.4. This establishes that a) => a'); b) and b') are derived

similarly.
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By c)

I

12(y) = Ell(y)
J=1

and thus

x Pg e12(y)

implies that there exist nonnegative allocations xj, such that

xj Ogj E Li (y)

j = 1, ..., J, from which it immediately follows that

f3 j = 1, J

• •

so that for any arbitrary nonnegative allocation x', g' such that x = x Egj = g the largest
i=1

that such a 13 can be is

{f(y,xj,gi)}

where the preceding notation denotes the minimum over the set of directional input distance

functions. Hence,

By d)

for j = 1, ..., J. Hence

whence

1-5;! (y,x;g) = sup {min

Egj g,Exi = x, xj E 9V4,,j= 1,...,J).
J.1

x — t51) (y, x;g)g E Li (y)

nj(y,x;g)
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V--

,

fii°(y,v,g) = min j=1,...,, (iji (y,x; g)) .

I

By e) 12(y) = convex hull of U Li (y) which implies that
J=1

J r

12 (y) = {x: x E EzjI,j(y),zi E 91E Zi = 1) .

I

Hence, if x — f3g e 12 (y) , there must exist nonnegative allocations xi, gi with Exi . x,
i=1

J .

Eg' =g, such that
j.1

xj — Pie € ziLi (y)

for some set of zef s. Recall that:

15-1(y,x-i,gi) = sup{f3 €9:xj —13e E zil" (y)} .

Now follow the proof of c') to obtain e').

J

From 3.1.d and 3.1.c1' for any fixed z, zi E 91+, Ezi = 1, 0 implies
J=1

Hence, for arbitrary z

15:)(y,x.,g) = miiii=1,...,,

1-5q (y,x;g) = sup {min j=,,...,,

J

Zi E91i =1,...,J,EZ. =1).
i

:1=1

That g') follows from g can be shown by applying c) and c') for a fixed element i E 1,*(y) .

To prove h) and h'), first note that McFadden (1978) shows that h) implies

DI) (y, x) = D: (y, D: (y, x), ... , D: (y, x))
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Applying (1.7):

15°(y,x;g) = sup {f3 E 91:D:(y,D:(y,x (y,x Pg)) ?_. 1)

= sup {0 E 91: D: (y, z) 1, 1:0 (y,x 0g) zk 0, k = 1,..., J)

Because D!' (y, x —13g) zk for all k we can now apply 3.1.d and 3.1.d' to obtain

fq(y,x;g) = sup {mini.t...,/ {15(y,x;g)}} .
zel:(y)

benefitd.doc/It/5-16-95

Q.E.D.
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