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Abstract: 
A common test for spatial dependence in regression analysis with continuous dependent 
variables is the Moran’s I.  For limited dependent variable models, the standard definition 
of a residual breaks down because yi is qualitative. Efforts to correct for potential spatial 
effects in limited dependent variable models have relied on ad-hoc methods such as 
including a spatial lag variable or using a regular sample that omits neighboring 
observations. Kelejian and Prucha have recently developed a version of Moran’s I for 
limited dependent variable models. We present the statistic in a more accessible way and 
use it to test the value of previously-used ad-hoc techniques with a specific data set. 
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Introduction 

In recent years there has been a rapid increase in the use of spatially-explicit data in 

economic modeling. Although this type of data can provide unique insights, its use poses 

conceptual and technical difficulties. In particular, the existence of spatial relationships 

among observations can result in unreliable estimates and statistical inference of the 

parameters (Anselin (1988)). Standard econometric techniques often fail in the presence 

of spatial correlation and heterogeneity. Econometric problems with spatial data are not 

exclusively a consequence of the interaction among “neighboring” agents. Spatial effects 

can also arise when data from different sources, different sample designs, or varying 

aggregation rules is used. The need to integrate data from various sources will tend to 

result in spatially dependent as well as spatially heterogeneous observations. 

Spatial econometrics has relatively well-established procedures for models with 

continuous LHS variables. However, there are no well-established procedures for testing 

for the existence of spatial effects or methods to incorporate spatial effects in limited 

dependent variable models.2 Some researchers have attempted to reduce the potentially 

negative effects by including one or more spatial lag variables or using a regular sample 

                                                 

2 Explicit modeling of spatial effects in limited depend variable models is an extremely active area of 

research, particularly in the context of spatial probit (Case (1992); McMillen (1992); Bolduc, et al. (1997); 

Pinkse and Slade (1998), Beron and Vijverberg (Forthcoming), Fleming (2001)). With the exception of an 

approach proposed by Fleming, all other proposed solutions are either very computationally intensive or 

adopt ad-hoc solutions to model spatial effects. 
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that omits neighboring observations but until recently there has been no way of assessing 

the value of these approaches in reducing the negative consequences of spatial effects. 

With continuous LHS variables, the statistic known as Moran’s I, based on estimates of 

the residuals ˆ( )y y− , provides a common test for spatial dependence. With limited 

dependent variable models, however, the standard Moran’s I approach breaks down 

because there are no residuals as conventionally defined (no ŷ ). In this article we 

implement a version of the Moran’s I developed by Kelejian and Prucha (2001) that is 

applicable to limited dependent variable models and use it to evaluate the effectiveness of 

some of the ad-hoc approaches used in the literature on land use.  

 

Ad-Hoc Corrections for Spatial Effects in Limited Dependent Variable Models  

Three types of ad-hoc corrections can be found in the land use literature – regular 

sampling from a grid, pure spatial lags variables using latitude and longitude index 

values, and spatial lag variables involving a geophysical variable such as slope or rainfall.  

Regular sampling from a grid 

Nelson and Hellerstein (1997), following Besag (1974) as described in Haining (1994), 

applied a “coding” scheme (Besag’s terminology) that selects samples over a regular grid 

in such a way that two observations are not physical neighbors. The rationale for this 

method is that many spatial relationships between observations decay with Euclidean 

distance. Observations ‘sufficiently’ distant do not influence each other. The coding 

method has been subsequently used by Mertens and Lambin (2000), Munroe, et al. 

(2001), Nelson, et al. (2001), and Nelson, et al. (forthcoming, 2003).  
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Latitude and longitude as exogenous variables 

Nelson, et al. (2001) corrected for spatial effects using two additional explanatory 

variable representing latitude and longitude of each observation. This method is likely to 

be helpful when the spatial effect is caused by an unobserved variable that varies linearly 

over the area. However, this is a very special case and does not account for all the other 

possible spatial relationships.  

Spatially lagged geophysical variables 

Nelson, et al. (2001) and Munroe, et al. (2001) use spatial lags (weighted averages of 

values in neighboring locations) of key geophysical variables such as soil type and slope 

as exogenous variables. In essence this approach approximates the use of a (contiguity) 

spatial weight matrix applied to selected RHS variables. 

The only attempt to evaluate the effectiveness of one of the ad-hoc methods is Munroe, et 

al. (2001). After implementing a coding scheme with different sample sizes, the authors 

use a join count statistic to test the hypothesis of spatial randomness in the land use 

choices. This test is capable of detecting both positive (i.e. the propensity of similar 

values to create clusters) and negative (i.e. the propensity of dissimilar values to appear in 

close association) spatial autocorrelation. However, there is a severe flaw in this method 

since the test is applied directly to the manifestation of a latent process. Spatial effects 

could be present in the true underlying process but absent in its realization and vice versa. 

 

Moran’s I for Limited Dependent Variables  

The standard correlation coefficient, r, is a measure of direction and closeness of linear 

association between 2 variables X and Y.  An intuitive explanation of r is that if Y and X 

move together, r is close to 1. If they move in opposite directions, r is close to -1. 
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Moran’s I is similar to a correlation coefficient, except that it refers to correlation of a 

single variable, x, to itself across space. Moran’s I is defined as:  

MI
′

=
′

xWx
x x

 (1) 

W is a matrix that defines the neighborhood set for each location and can be row-

standardized (the original row values are divided by the sum of the original row values). 

The analogy to a correlation coefficient is that when Xis at neighboring locations are 

generally greater than X , IM approaches 1. When Xi at a location is greater than X , and 

its neighbors are generally less than X , IM approaches -1. The values in W operationalize 

our assumptions about what locations are ‘neighbors’. Note that W is an n x n matrix (n is 

number of observations in sample) so operations involving W typically require 

manipulating a large matrix. 

To test for spatial error dependence with a continuous LHS variable, we use Moran’s I 

constructed as follows: 

ˆ ˆ
ˆ ˆMI
′

=
′

eWe
e e

 (2) 

where IM is now based on the residuals ˆ
î ie y= − iX ß .    

However, in limited dependent variable models the LHS is discrete and the definition of 

ˆie above has no meaning. 

To follow Kelejian and Prucha’s method of estimating a Moran’s I for a polychotomous 

limited dependent variable model, we start with definition of notation: 

m – number of choices for the LHS variable y 
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j – the index (identification number) over the choices; j = 1,m; the assignment of 

identification numbers to qualitative variables is arbitrary. The only requirement 

is that they are sequential 

n – number of observations 

i – index of the number of observations, i = 1,n; also a pointer to a specific 

location since each observation is at a particular location 

xi – vector of exogenous variables, valued at location i 

0β  – vector of parameters to be estimated. 

We start with a function that determines the probability that qualitative variable j is found 

at location i. 

( ) ( )0Pr ,i j iy j P x β= =  (3) 

Pj is the function that transforms the x’s at location i and 0β ’s into a probability value Pr. 

Create a new function, f, which is a weighted average of the identification number (index) 

of the choice with the probability value (Pj) as the weight.  

( ) ( )0 0
1

, ,
m

i j i
j

f x jP xβ β
=

= ∑   (4) 

Kelejian and Prucha use this f and an error term as follows 

( )0, , 1,...,i i iy f x e i nβ= + =  (5) 

( ) ( ) ( )2 2
00;i i i iE e E e hσ β= = =  (6) 

( ) ( ) ( )
2

2
0 0 0

1 1

, ,
m m

i j i j i
j j

h j P x jP xβ β β
= =

 
= −  

 
∑ ∑  (7)  
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Equation (5) says that the correct indicator value (yi) is the sum of f (a predictor of yi) and 

an error term. Expression (6) describes the distribution characteristics. Equation (7) is the 

expression for the variance of the error term. 

The generalized Moran’s I test is: 

( )
*

*

0,1
n

Dn
n

Q

Q
I N

σ
= →%  (8) 

* ˆ ˆnQ ′= eWe  (9) 

( )0
ˆˆ ,i i ie y f x β= −  (10) 

Kelejian and Prucha demonstrate that in absence of spatial autocorrelation the index I has 

a normal distribution centered on zero and with variance one. 

*
nQ

σ% is a normalization factor, which for limited dependent variable models is: 

( )

( )
( )

'

2 2 2
, , , ,

1 1

'

2
,

1
2

ˆ ˆ ˆ ˆ

ˆ ˆ

n

n n

ik n k i n i n k nQ
i k

n n n n n n n n

n i n

tr W W W W

diag

σ ω ω σ σ

σ

= =

= +

= Σ Σ + Σ Σ

Σ =

∑∑%

 (11)

 

 

Data Sources and Manipulation 

The data set used for this study has been previously used for an investigation on the 

effects of road construction on land use in an area in Panama. For a more detailed 

description of this data set, as well as the behavioral model, see Nelson, et al. (2001). 

Information on the land use choices, the dependent variable, was derived from satellite 

images. The set of explanatory variables can be divided in two groups: geophysical and 

socioeconomic. Geophysical variables capture the natural predisposition or physical 
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limitations of a plot of land to enter in agricultural production. In our case these are 

temperature, elevation, slope, and soil quality. Socioeconomic variables were chosen to 

reflect the influence of prices and property rights on land use. For this study, information 

on land tenure was used as well as cost of access data. Since the objective of this exercise 

is not the estimation of the regression parameters to provide normative policy 

recommendation, to speed up the test process we have used only a portion of the original 

study area. The original data set had a total of about 63,000 observations; in this sub-

sample the observations are about 36,000. 

 

Implementation 

The pseudo-errors (10), the residuals for the discrete choice model, and the normalization 

factor *
nQ

σ% (11) were obtained using Limdep v. 7.0. 

The contiguity matrix is constructed using a queen criterion (all 8 neighboring cells) 

using SpaceStat v. 1.9.1 and is row-standardized. It should be noted that the structure of 

the contiguity matrix W (i.e. queen, rook, or bishop) reflects the researcher’s beliefs 

regarding the way that the spatial process propagates through space. There are no tests for 

the specification of W. However, misspecifying W in a test statistic is much less serious 

than misspecifying the contiguity matrix in a spatial regression model. In a test statistic, 

misspecification can render the test statistic less powerful; in a regression model it 

usually causes the estimator to be inconsistent.3 

                                                 

3  In a test statistic, misspecifying W by choosing a simpler structure may increase the power of the test (see 

e.g. Florax and Rey, (1995)). Stetzer (1982) finds that “in a Monte Carlo study that, although the choice of 

weight matrix has an effect on the performance of estimators in spatial regression models, other factors, 

including delineation of the geographical area studied, tend to be more important.”  
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The computation of the Kelejian-Prucha version of the Moran’s I was performed using 

MatLab v. 6.1 mostly because of its ability to handle sparse matrices. As indicated above 

the size of the contiguity matrix is given by the square of number of observations. 

Fortunately, most of its elements are zeros and can be easily handled by software that has 

sparse matrix functionality. For example, with 4,536 observations on a Pentium 4 

computer with 256 mb of RAM, MatLab takes about 6.20 minutes to complete the 

calculation. 

 

Results  

The results of our analysis indicate that the common methods used to remove spatial 

effects have some merit, at least for the data set used here. Although they do not 

completely remove spatial autocorrelation they greatly reduce it. 

Effect of Sampling 

Figure 1 shows the results when sampling is used (Besag’s coding scheme). With the full 

data set the value for the Moran’s I is 117.8. As the distance between observations 

increases to 2 Km, the value decreases to 7.1. Although this later value is still above the 

cutoff level for statistical significance, sampling our data set reduced the magnitude of 

spatial autocorrelation dramatically. 



 10

117.1367

40.8202

21.3691

12.1315 7.1577

0

20

40

60

80

100

120

140

0 0.5 Km 1.0 Km 1.5 Km 2.0 Km

Distance between observations

M
o

ra
n

's
 I 

va
lu

e

 

Figure 1: Effect of Sampling on Spatial Effects 

Effect of spatial lags 

Figure 2 summarizes the effects of various approaches to spatial lags. As it can be 

observed these ad-hoc methods are again partially effective in reducing the Moran’s I 

value, however they are never successful in completely eliminating spatial 

autocorrelation.  
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Figure 2: Effect of Spatial Lags on Spatial Effects  

The results of this test, however, do not necessarily indicate that the sampling process is 

ineffective in removing spatial correlation. In fact, not only this test cannot distinguish 

between error (nuisance) and lag (substantive) spatial dependence but it also detects 

heteroskedasticity, which in space is also called spatial heterogeneity. The latter is simply 

structural instability in the form of non-constant error variances (heteroskedasticity) or 

model coefficients (variable coefficients, spatial regimes). It has been often noted 

(Anselin 1999, McMillen (1992)) that spatial autocorrelation and spatial heterogeneity 

may be observationally equivalent. For example, a spatial cluster (i.e., observed in 

locations that are in close proximity) of extreme residuals may be interpreted as due to 

spatial heterogeneity (e.g., groupwise heteroskedasticity) or as due to spatial 

autocorrelation (e.g., a spatial stochastic process yielding clustered values). 

That we are in presence of heteroscedastic error terms can be observed in Figure 3 and 4 

where we have plotted the pseudo-errors against two explanatory variables, Slope and 

Soil Type (SoilIndx), after having sampled with a 5x5 scheme. 
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Figure 3: Plot of Pseudo-Errors Against Slope 

 

For the slope variable, the pseudo errors have a much greater range at small values of 

slope than large values. Since Areas of similar slope are naturally clustered in space, 

heteroskedasticity in our case is also spatial groupwise heteroscedasticity. For soil type, 

on the other hand, there is little difference in the range of  pseudo error values for the 

different soil types. 
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Figure 4: Plot of Pseudo-Errors Against Soil Type 

 

We have created maps of pseudo-errors for a visual inspection of the spatial distribution 

of the residuals. Clusters of residuals with same sign and similar magnitude can be 

observed in all three maps and although the clustering is considerably reduced when the 

original map is sampled with a 5x5 coding scheme, it does not disappear.  
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Figure 5: Maps of Pseudo-Errors with Different Sampling Schemes  

 

Conclusions  

Researchers have attempted to control for spatial effects in models of land use; however, 

they did not have a method to assess how successful they were in removing spatial 

autocorrelation. In this paper we have implemented a version of Moran’s I developed by 

Kelejian and Prucha that applies to limited dependent variable models. Our results show 

that, at least with for the data set we used, these “ad-hoc” methods are not completely 

successful in eliminating spatial effects. The value for the Moran’s statistic is 

considerably reduced when the original data set is sampled and a combination of lagged 

geophysical variables and longitude- latitude variables are introduced in the model 
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specification. This shows that these techniques have some merit. Sampling the data set is 

still a viable solution and it possible to select observation further apart than we have 

attempted in this study. The obvious drawback is that dropping observations decreases 

the predictive power of the model4. As with the regular Moran’s I, the test does not 

discriminate between different kinds of spatial effects or between spatial effects per se 

and spatial heterogeneity. But for the first time, land use modelers have a statistically 

valid tool for assessing the presence of spatial effects and the benefit of various kinds of 

ad-hoc correction procedures.

                                                 

4 For an investigation of the effects of sampling on model accuracy see Munroe, Southworth, Tucker 

(Forthcoming) 
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Appendix 

How to treat missing or rejected observations for the computation of the Moran’s I 

according to K-P method.  Take as an example a map with dimensions of 5x4. We select 

the first row and every other row after that. We take every second column. This means 

there are 6 observations in our sample.  

 

Figure 3: No missing observations 

 

Figure 4: Missing observation 3,2  

If there are no missing observations, as in  

Figure 3, the corresponding 6x6 queen’s case weight matrix is Table 1. 

Table 1: 6x6 contiguity matrix 

 1,2 1,4 3,2 3,4 5,2 5,4 

1,2 0 1 1 1 0 0 

1,4 1 0 1 1 0 0 

3,2 1 1 0 1 1 1 

3,4 1 1 1 0 1 1 

5,2 0 0 1 1 0 1 

5,4 0 0 1 1 1 0 
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  Suppose now that observation 3,2 is missing as in  

Figure 4.  The weight matrix that describes the neighbors among the remaining 5 

observations is a 5x5 square matrix, eliminating observation 3,2. Note that this matrix is 

identical to the matrix in Table 1 with the row and column for observation 3,2 missing.   

Table 2: 5x5 contiguity matrix (6x6 with obs 3,2 missing) 

 1,2 1,4 3,4 5,2 5,4 

1,2 0 1 1 0 0 

1,4 1 0 1 0 0 

3,4 1 1 0 1 1 

5,2 0 0 1 0 1 

5,4 0 0 1 1 0 

 From a contiguity perspective, Table 2 is the same as Table 1 with 0s replacing the 1s in 

the row and column for observation 3,2.  

 1,2 1,4 3,2 3,4 5,2 5,4 

1,2 0 1 0 1 0 0 

1,4 1 0 0 1 0 0 

3,2 0 0 0 0 0 0 

3,4 1 1 0 0 1 1 

5,2 0 0 0 1 0 1 

5,4 0 0 0 1 1 0 
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The interpretation of the 0s is that the 3,2 observation is no one’s neighbor and no 

observation is the neighbor of observation 3,2.  Operationally, this effect can be achieved 

by injecting a row and a column of 0s in the observation’s position. 
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