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ABSTRACT

This paper analyzes the intertemporal choice foundations underlying the conservation or extinction
of renewable resources when the resource production function is non-concave and the immediate return
function depends on both current consumption and the size of the resource stock. This case may exhibit
nonlinear dynamics and extinction is possible from high stocks even if conservation occurs from lower
stocks. The paper focusses on the influence of preferences and the production function on the efficiency
of: global conservation, the existence of a safe standard of conservation, or extinction. We show that
conservation is efficient under weaker conditions than the "§-productivity" requirements derived in models
where return function is not stock-dependent. The marginal rate of substitution between investment and
the stock plays an important role in addition to the discount factor and the marginal productivity of the
resource. Extinction need not be optimal even if the intrinsic growth rate of the resource is less than the
external rate of return. Our analysis demonstrates the potential role of taxes, subsidies, demand forces,
and harvest costs in determining the efficiency of conservation or extinction.
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1. Introduction w =79~ %

There are two important reasons why renewable resources can be harvested in a fashion that leads
to their extinction. The first arises from the fact that such resources are harvested under open access
conditions. The associated common property externalities may cause serious over-exploitation (Berck
(1979)).1 The second reason extinction may occur is purely capital theoretic. Eveﬁ if a resource is
managed by a single agent whose objective is intertemporal efficiency, the preferences of the agent and the
ecology of the resource may be such that an efficient policy is one that leads to extinction. In this paper,
we focus on this second aspect, that is, under what conditions does optimal intertemporal allocation lead to
conservation or extinction of a resource.

We consider a discrete time model of a renewable resource whose harvest yields an immediate
return (or utility) that depends on both current consumption and the size of the resource stock.2 Such
stock-dependence is important whenever the resource stock influences harvest costs. Growth in the
resource stock is governed by an S-shaped natural production function that allows for increasing growth
rates when the stock is low, but diminishing growth rates as the stock approaches the natural carrying
capacity of the environment. The agent in our model can represent a private monopolist, a social welfare
maximizer, or a set of atomistic producers in a perfectly competitive industry. In the absence of
externalities and in a partial equilibrium setting, the perfectly competitive outcome is identical to that
determined by a social planner maximizing the discounted sum of producer and consumer surplus over
time (Levhari, Michener, and Mirman (1981)).

Alternatively, the model is equivalent to a classical optimal growth model, with more general
assumptions on both utility and production. The classical growth model is based on a concave production

function and a utility function that is independent of the stock. The primary concern of the classical

This need not always be true (see, e.g., Dutta and Sundaram (1993)).

2In continuous time, the problem of resource extinction has been analyzed by Clark (1971, 1973);
Lewis and Schmalensee (1977); Skiba (1978); Cropper, Lee, and Pannu (1979); and Cropper (1988),
among others.



growth literature involves issues other than conservation. In fact, it is common to impose assumptions
that are specifically designed to rule out extinction as a possibility.

Clark (1971, 1973) was the first to examine the problem of extinction with nonconcave production
under the assumption of a linear, stock-independent utility function. He showed that the efficiency of
extinction or conservation depends on the discounted marginal productivity of the resource. He also
conjectured the existence of a safe standard of conservation if the discount rate is less than the intrinsic
growth rate of the resource, but greater than the maximum average productivity. The existence of such a
critical stock was proved by Majumdar and Mitra (1982, 1983) and characterized more completely by
Dechert and Nishimura (1983). An algorithm to calculate the critical stock is given in Anant and Sharma
(1985) for the linear utility case considered by Clark. Dechert and Nishimura (1983) provide a fairly
complete characterization of optimal resource allocation policies for the stock-independent model. Their
analysis shows that optimal resource investment is an increasing function of the current stock so that
optimal resource stocks converge to a steady state over time. Amir, Mirman and Perkins (1991) interpret
this monotonicity property as a second-order condition for local optimality. In these stock-independent
models, the significant implications of nonconcave production are: (i) the possible existence of a critical
stock or safe standard of conservation; (ii) the optimal policy may not be continuous; and, (iii) optimal
consumption may be a non-monotone function of the resource stock. The discount rate and the marginal
growth rate of the resource are the primary determinants of the efficiency of conservation or extinction
and the return function plays an insignificant role in determining the ultimate fate of the resource.

The optimal growth problem with concave production and stock-dependent return was first
considered by Kurz (1968). He showed that stock-dependence introduces the possibility of multiple
optimal steady states where in the classical model there is at most one. Levhari, Michener, -and Mirman
(1981) discuss similar results in the context of renewable resources. Majumdar and Mitra (1991) show
that stock-dependence can create striking departures from classical behavior by making it possible for

optimal programs to exhibit periodic or chaotic behavior over time.



Our analysis of conservation and extinction attempts to account for the joint implications of non-
concave production and the fact that immediate returns depend on the resource stock. When the
production function is non-concave, conservation and extinction are not global properties. When the
return function is stock-dependent, optimal programs can exhibit cycles or chaos and a safe standard of
conservation may not exist. Together, non-concave production and stock-dependent returns substantially
enlarge the range of possibilities for conservation and extinction when compared with traditional models.

In this paper we show that the efficiency of conservation or extinction depends on more than the
relation between the discount rate and the natural growth rate of the species. We show that conservation
is efficient even if the discount rate exceeds the natural growth rate everywhere, provided the stock-effect
on returns is strong enough. Unlike models with a stock-independent return, demand and cost influences
can play a crucial role in determining the fate of optimally managed resources and resource conservation
is efficient under less stringent restrictions. This suggests that the possibility of extinction for optimally
managed resources may be less of a concern than previously presumed. Further, in our framework there
is a means by which direct policy intervention can influence the conservation of a species by a single
private owner or a perfectly competitive market (through taxes on consumer surplus). This was not
possible in earlier models. Finally, our analysis can accommodate the possibility that there is direct social
payoff from preservation of species. This allows one to examine what kind of social consciousness is
needed for conservation of a species to be efficient, given a production function and discount rate.

The paper is organized as follows. The formal model is presented in Section 2 along with some
preliminary lemmas. These focus on the Ramsey-Euler equation, the interiority of optimal allocations,
and monotonicity results. Section 3 defines the different types of conservation and extinction considered
in this paper and it provides an explicit example that illustrates the complex set of possibilities that may
emerge. Section 4 examines the conditions under which there exists a safe standard of conservation, while
Section 5 outlines conditions for global conservation. Each of these two sections is divided into two

subsections. Subsections 4.i and 5.1 analyze the case where the immediate return function exhibits



complementarity between resource investment and the current stock. In this case, optimal resource
allocations follow monotonic time paths. The general case, where optimal stocks may exhibit complex
nonlinear dynamics, is considered in Subsections 4.ii and 5.ii. Finally, Section 6 examines the efficiency
of extinction. Proofs of all theorems are given in the text. Proofs of lemmas are omitted and can be

found in Olson and Roy (1994).

2. The Model and Preliminary Results

At each date there is a renewable resource stock, y,€ R, from which an agent harvests and
consumes, ¢,. Investment in future resource stocks (or escapement) is denoted x; = y,-¢,. The resource
stock in period t+1 is determined by a production or stock-recruitment function, f:R ,—R,, where y,
= f(x,). Economic returns in each period are denoted R(c,y). Given an initial resource stock, y, > 0,
the agent chooses resource consumption and investment to maximize the discounted sum of returns over
time. The value function for this problem is given by:

[0}

V(yg) = Max I 8'R(c,yy)
t=0

subject to: 0 < ¢, 0 < X, ¢, +X < Y, Vi1 = (X)),

where 0 < & < 1 is the discount factor. A feasible program is any sequence {C,X,,Y¢};=0. oo that
satisfies the feasibility conditions of the problem. A stationary program is a feasible program such that
(c,Xq»Yp) are constant over time. A feasible program that solves the agent’s optimization problem is an
optimal program. An optimal program such that 0 < ¢, < y, for all t is said to be an interior optimal
program. The set of all optimal resource investments from y, defines an optimal investment policy
correspondence X(y) = {x:x=x for some optimal program {c,,X,,y,};>o from yo = y}. The optimal
consumption policy correspondence is defined by C(y) = {y-x:xE€X(y)}.

Throughout the paper we impose the following assumptions on f :




(T.1) f(0) = 0, f(x) is strictly increasing on R ;

(T.2) fis twice continuously differentiable on R ;

(T.3) f'(0) > 1;

(T.4) There exists a unique K > 0 such that f(K) = K and f(x) < x for all x > K;3
(T.5) There exists a y € [0,K) such that f"(x) > 0 for x < y and f"(x) < 0 for x > «;

(T.6) yo € (0.K].

Assumption T.5 allows increasing returns to investment when the resource stock is between 0 and +y.
Define P = {(c,y): 0 < ¢ < y}and Py = {(c,y): 0 < ¢ < y}. The return function, R, is

assumed to satisfy the following assumptions.

(R.1) R(c,y) is nondecreasing in y, and R(0,y;) = R(0,y,) for all y;,y, € R,.

(R.2) R(c,y) is twice continuously differentiable on P, and R, is bounded above on {(c,y):

0<c<y<K}.
R(c,y) is concave in (c,y) on P.
For any y > 0, either R (c,y) > 0 for all c€(0,y], or there exists a £(y) € (0,y] such that

R.(c,y) > 0 for all ¢ € (0,£(y)) and R (c,y) < O forall ¢ > &(y).

R.1-R.3 are standard. R.4 implies that if R is not increasing in c, then for each stock there is a unique
strictly positive maximizer of R.

Under (T.1)-(T.6) and (R.1)-(R.4) it is well-known that the following results hold:
(i) An optimal program exists and the value function satisfies the optimality equation:

V(y) = Max [R(c,y) + 8V(f(y-c))].
O0<c<y

(i1) V is continuous and nondecreasing.

(iii) V(y) > -oo for all y>0.

3Here the assumption that K is unique imposes no loss in generality.
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(iv) The optimal policy correspondences X(y) and C(y) are upper hemicontinuous.
(v) If {c.y,} is an optimal program, then ¢ < c, implies R(c,y) < R(c,,yp, or R.(c,,y) = 0; i.e.,

myopic agents overexploit the resource relative to the optimum,
We begin our analysis with two lemmas.

Lemma 2.1. Let {c,x,y,},> be an optimal program.

(@) If ¢, > O then R (c,y,) = O[R.(C,y .Y 47) + Ry(ctH,y,H)]f’(xt).

®) If ;7 > Othen R (c,y) < O[R (C;11.Yr11) + Ry(Cyy 1Yy IF ().

(c)Ifc, > Oandc,.; > Othen R.(c,y,) = O[R.(C,y 1Yrs) + Ry(ctH,ytH)]f’(xt).

Lemma 2.2. A sufficient condition for optimal programs to be interior is:

(R.5) Foranyy > 0, lim.,,R.(c,y) = +oo.

Lemma 2.1 establishes Ramsey-Euler type inequalities for optimal allocations across successive periods.
In Lemma 2.2, if R(c,y) = U(c) then (R.5) is the standard Inada condition on utility.

Next, we develop results on the monotonicity of optimal policies and programs when the
immediate return function exhibits complementarity (resp., strict complementarity) between the current

stock and investment in future stocks of the form,

(R.6) R + Rey = O on Py,

(R.7) R, + R;y < 0onPy.

Define ¢(x,y) = R(y-x,y). (R.6) implies ¢, = 0, which means that ¢ is a supermodular function on the
set {(x,y): (y-x,y) € Py} (see Topkis(1978), section 3). Under (R.7), ¢ is strictly supermodular. The
economic interpretation of (R.6) or (R.7) is that an increase in the current resource stock raises the
marginal value of investment in future stocks. Under this type of complementarity optimal investment

satisfies the following monotonicity property.




Lemma 2.3. Assume (R.6) andlety = y’. Then x€X(y) and x’ € X(y’) implies max[x,x’] € X(y) and

minfx,x’]€X(y’), i.e., X(y) is an ascending correspondence.

This lemma unifies existing results in Mendelssohn and Sobel (1980), Dechert and Nishimura (1983),
Amir, Mirman and Perkins (1991), and Nyarko and Olson (1991). Define the minimum and maximum
selections from X(y) by X(y) = min{x:xE€ X(y)} and X(y) = max{x:xEX(y)}. Lemma 2.3 has the

following corollary.

Corollary to Lemma 2.3. Under (R.6), X(y) and X(y) are nondecreasing in y.

Define {¢,.X,.Y¢i=0 bY X = X(¥), & = ¥iXp Yi41 = f(X), where yy > 0 is given. This is the
optimal program obtained by following X(*) in each period, i.e., X, = X(f(&))). Similarly, define
{C, XY} to be the optimal program obtained by following X(®) in each period. The Corollary to

Lemma 2.3 implies that these optimal programs are monotonic over time.

Lemma 2.4. Assume (R.6). Then either x, < X, jandy, < y,,;forallt, orx, = %, andy, = y,.;

for all t. Similarly, either x, < X,,; forallt, or x, = x,,; for all t.

The investment sequences {x,} and {')?t} provide lower and upper bounds on the sequence of optimal

resource stocks and investments along any optimal program from yj,.

Lemma 2.5. Assume (R.6). If {c,x,y,} is an optimal program then ;t = x, = x,and -y-, =y, =2y, for

all t.

Lemma 2.4 can be sharpened when the immediate return function is strictly supermodular and optimal

programs are interior.




Lemma 2.6. Let {c,x,y,} and {c,’,x,’,y,’} be any two optimal programs fromy, > y,’ > 0, respectively.

If (R.7) holds then, xy = xy". In addition, if c) > 0, ¢; > 0, ¢’ > Oand c;” > 0, then x, > x,".%

An immediate consequence of Lemma 2.6 is that when the immediate return is strictly supermodular,
interior optimal programs of resource stocks and investment are either stationary or strictly monotonic

over time.

Corollary to Lemma 2.6. Assume (R.7). If {c,x,y,} is an interior optimal program from some initial

stock yo'> O then only one of the following is true: (a) x, < X, ;andy, < y,,; forallt = 0, (b) x, >

Xeppandy, >y forallt = 0, 0r () x, = X0 ¢ = Gy Yy = Yyppforallt = 0.

If there is no consumption then the resource is biologically sustainable on (0,K), i.e., f(x) > x for
all x € (0,K). From an economic point of view we are interested in stocks that are both sustainable and

satisfy the necessary conditions for an optimum. With this in mind we define a steady state stock.

Definition. A stock §1 € [0,K) is said to be a steady state if either §7 =0, or
R(y-%.y) = o' ORLYX,Y) + Ry (X,

where X is given by f(;() = §/.5
The monotonicity of optimal programs then has the following implication:

Lemma 2.7. (a) If (R.6) holds then {x,} and {;J converge monotonically to optimal steady states. (b) If

(R.7) holds then every interior optimal program converges monotonically to an optimal steady state.

4In the case of convex technology (with a unique optimum) one can replace strict supermodularity
by its weak form and obtain the result that y, > y,’ implies x5 = X’ and x; = x,’, as in Nyarko and
Olson (1991).

3Steady states need not be optimal, but an optimal stationary program is equivalent to an optimal
steady state.



It is readily apparent that both the existence and stability of optimal steady states can be important for the

conservation or extinction of the resource. The next section highlights the different possibilities.

3. Conservation Considered
There are significant possibilities for conservation and extinction that only arise under the
combination of stock-dependent return and non-concave production. These can best be illustrated by

considering a concrete example.

Example 3.1. Let the resource growth function be:
X - x(x+0.1)(x-1) if x <0.8
f(x) = 4x3-12.1x2+412.3x-3.2 if0.8 <x <1
x01 if x > 1.
This growth function is continuously differentiable and non-concave with an inflection point at x = 0.3.
The stock is normalized so that x = 1 represents the natural carrying capacity, and the intrinsic growth
rate is f'(0)-1 = 0.1.
For convenience, the discount factor is expressed as 6 = 1/(1+p), where p is the discount rate.
The return function is assumed to be given by:
R(c,y) = pc - 0B,
with p, o, and f positive parameters. By appropriate choice of p and «, R, can be made positive over all

or part of the domain {(c,y): 0 <y < 1,0 < ¢ < y}. R then satisfies (R.1)-(R.4). More importantly,

R, + Ry, > 0 so that R(y-x,y) is submodular in (x,y). Intuitively, this implies substitutability between

the current stock and investment in future stocks. Under this condition Benhabib and Nishimura (1985)
have shown that optimal resource investment is decreasing in the stock on the interior of P and interior
optimal programs exhibit cycles. More recently it has been demonstrated that submodularity is
inconsistent with the Inada condition so, in general, one cannot guarantee that optimal programs are

always interior. When noninterior programs are allowed, optimal investment may be increasing for some




intervals of the resource stock and optimally managed stocks may exhibit complex or chaotic dynamics
(Majumdar and Mitra (1994) and Nishimura and Yano (1995)).
The implications for resource conservation can be seen in Figures 1-3. These show the optimal

stock policies for low (o0 = 0.1), intermediate (0 = 0.45), and higher (o = 0.47) discounting, where p =

10.0, « = 1.0, and 8 = 1.0.5 With low discounting, an optimal program from low stocks involves a

moratorium on harvests until stocks are sufficiently large. Beyond this point the optimal program
converges along strongly damped cycles to a positive optimal steady state. Extinction never occurs from
any initial stock. With intermediate discounting the optimal policy from low stocks is to immediately
harvest the resource to extinction. There is a critical stock or safe standard of conservation such that
extinction is efficient for small stocks, but conservation is efficient from larger stocks. Figure 3 illustrates
one important feature of the problem that is specific to a model that allows for both stock-dependent return
and non-concave production. Extinction is efficient from both low and high stocks, while conservation is
efficient from intermediate stocks. There is no critical stock such that from larger stocks conservation is
always guaranteed. In fact, the set of stocks from which conservation is efficient may become arbitrarily
small as the discount rate increases. The behavior in this example stems from 2 basic facts. The first is
that with nonconcave production there can be extinction from low stocks. The second is that when the
return function is submodular an increase in the current stock lowers the marginal value of investing in
future stocks. Thus, the optimal response to a larger stock is to invest less (or a corner solution). When
the rate of time preference increases, the incentives to investment become even smaller. As the example
shows, incentives for investment from large stocks may become so low that the future stock is in the

region of extinction from small stocks, in which case it is optimal to harvest the entire stock immediately.

In this paper we focus on the existence of a safe standard of conservation, global conservation,

and the possibility of extinction.

6The solutions are obtained via numerical methods using the method of successive approximations.
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Definition. A safe standard of conservation exists if there exists 3 > 0 such that if y, is an optimal

program from y, = @, then inf{y,} > 0.

The term safe standard of conservation is adapted from Clark (1971). It refers to a stock, 8, such that if
the initial stock exceeds (3, then conservation of the resource is efficient; while survival of the resource
cannot be guaranteed if the stock is less than 8. If the resource stock falls below the safe standard of
conservation then the economic survival of the resource could be promoted by modifying the structure of
the resource management problem through policies directed toward the immediate reward function (e.g.
through taxation) or the biological production function (through artificial enhancement), or by a restriction
or ban on harvests if the stock falls too low.

Global conservation occurs if the most consumptive optimal policy from any strictly positive stock

fails to drive the stock to extinction.

Definition. Global conservation is efficient if inf {y,} > 0 for every optimal program of resource stock

{y,} from any y, > 0.

If there is no safe standard of conservation then it must be the case that for any Y > 0, there
exists a y > Y such that extinction is efficient from y. This does not mean that conservation is never
efficient. As seen in Figure 3, there may be alternating intervals of conservation and extinction. It may
be economically efficient to harvest the resource to extinction from both low stocks and high stocks, with
conservation being efficient only from some intermediate stock levels. On the other hand, if conservation

is inefficient from all stocks then one has:

Definition. Global extinction is efficient if limsup, .., y, = 0 along every optimal program.

11



In this case the economic considerations of the agent exploiting the resource do not justify preservation.
Conservation must be defended on other grounds, or policy instruments described above could be used to

promote survival of the resource.

4. Existence of A Safe Standard of Conservation

In this section, we establish conditions that ensure the existence of a safe standard of conservation.
With stock-dependence, the conditions for a safe standard of conservation ought to involve the return
function in an essential way. This is evident from the fact that a strictly positive steady state satisfies:

of'()[1 + (Ry(c,y)/Re(c,y)] = 1. 4.1

Equation (4.1) is the familiar rule stating that the discounted marginal sustainable rent from an increment
to the stock normalized by the marginal value of consumption equals unity. In this expression there is
both a productivity effect and a welfare effect from investment in the resource, with the size of the welfare
effect determined by the marginal rate of substitution between ¢ and y. This welfare effect will be

important in the results that follow.

4.i. Existence of a Safe Standard of Conservation with Complementarity Between Current and

Future Stocks

In this subsection, we examine the existence of a safe standard of conservation when (R.6) holds
and the immediate return function exhibits complementarity between current stocks and investment in
future stocks. Under (R.6), Lemmas 2.4 - 2.7 imply that a safe standard of conservation exists if and
only if there is a stock y > 0 such that {y,} is an optimal stationary program from y. In models where
the return function is stock-independent it is well known that such a program exists if the production
function is §-productive, i.e., if there is some stock x > 0 for which 6f(x) = x (see Dechert and
Nishimura (1983) or Mitra and Ray (1984)). In the stock-independent case the §-productivity condition

arises naturally from the decentralized version of the resource allocation problem, where its primary role

12



is to satisfy Slater’s constraint qualification.” In problems where the immediate return function is
important decentralized methods involve undesirable restrictions since neither Slater’s condition nor most
of the classical constraint qualifications allow a role for the objective function. For example, in our
framework it is easy to construct examples where there are non-trivial optimal steady states but §-
productivity is violated. Thus, we take a direct approach that allows the return function to play an
essential role in proving the existence of an optimal stationary program.

Define the investment that maximizes average product by x~ = argmax{f(x)/x| 0 < x < K}, if y

>0andx" =0ify = 0.

Theorem 4.1. Assume (R.6). (a) Suppose there exists some 0 < x’ € [x*, K) such that

of ()1 + (R (flx’)-x".f(x"))/R (f(")-x".fx )] = 1.
Then there exists a strictly positive optimal steady state and y’ = f(x’) is a safe standard of conservation.
(b) Suppose there exists some x € (0,K) such that R (f(x)-x,f(x)) < 0. Theny = f(x) is a safe standard of

conservation.

Proof of Theorem 4.1. (a) If y > 0, then x* > v, f"(x*) < 0 and f'(x*) = [f(x*)/x*]. Define a

modified production function F by:
[f(x*)/x*¥]x,0 < x < x*,
Fx) =
f(x), x = x*.
F is concave and satisfies (T.1)-(T.4). Consider the (modified) dynamic optimization problem where F

replaces f and everything else stays the same. This is a convex problem. Let W be the value function for

this modified problem. By standard arguments W is concave and is differentiable at any pointy > 0

TFor this reason methods based on 8-productivity are predominant even in the literature on the
existence of optimal steady states in multi-sector growth models (e.g., McKenzie (1986)). An
exception is Khan and Mitra (1986) who note that there is a direct payoff to a primal approach that
dispenses with the need for Slater’s constraint qualification. Instead, they require that the technology
be §-normal, but this reduces to §-productivity in our framework.

13




where the optimal consumption, say c, is strictly positive and, in that case, W'(y) = [R.(c,y) + Ry(c,y)].
Let H(y) = min{x:x is optimal from y in the modified problem}. H(y) is nondecreasing under (R.6).
By definition F(x) = f(x) for all x = 0, so that a feasible program in the original problem is also

feasible in the modified problem (from any yg). Let {y,x,c;} be the optimal program in the modified

problem generated by investing H(y) in each period. If this program is such that y, = f(x") for all t = 0,

then it is feasible in the original problem and it must be equivalent to the optimal program generated by
investing X(y) in every period. To see this note that if there is some optimal program in the original
problem where x, < H(y,) then this program must have the same discounted sum of returns as the
program generated by H(*) and so must be optimal in the modified problem; but this violates the
definition of H(").

Now take x’ as in the theorem and suppose c’ is optimal from F(x’) and satisfies ¢’ > F(x’)-x’ >
0. Then W is differentiable at F(x’). The condition 6f’(x’)[1+(Ry(f(x’)-x’,f(x’))/Rc(f(x’)-x’,f(x’)))] =1
implies R (F(x*)-x’,F(x")) - W'(F(x’))F'(x’) < 0. Hence, by concavity of W, the optimal investment
from initial stock F(x’) is at least as large as x’, contradicting ¢’ > F(x’)-x’. In this case set y, = F(x’).
By the monotonicity of H(*), optimal stocks from y, are all bounded below by y, = f(x*). This program
is a lower bound on any optimal program in the original problem, so it must be true that for all optimal
programs from y, > y,, extinction does not occur.
(b) Suppose there exists some x € (0,K) such that R (f(x)-x,f(x)) < 0. It is clear that starting from f(x)
the agent will never consume more than f(x)-x, so that next period’s stock is at least as large as f(x). The

proof follows from the monotonicity of X(y) and in this case y, = f(x). //

Note that this theorem does not require the interiority of optimal policies. Further, if the

immediate return function is independent of the stock level, then Theorem 4.1.a reduces to the familiar "5-

productivity" result in the existing literature. 8

81f f is S-shaped (i.e. ¥ > 0, x* > 0) §-productivity is equivalent to the requirement that &f'(x*)
> 1; if f is strictly concave (i.e. v = x* = 0) it is equivalent to the requirement that 5f'(0) > 1.
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4.ii. Existence of a Safe Standard of Conservation: The General Case.

We now consider the possibilities for conservation of the resource when (R.6) is relaxed and the
return function ¢(x,y) is not necessarily supermodular in x and y. As noted earlier, this allows for the
possibility of optimal stock and investment programs that are nonmonotonic and nonconvergent over time.
The loss of monotonicity renders the task of establishing results on a safe standard of conservation more
difficult. As illustrated in Section 3, the fact that extinction does not occur from some stock level does
not necessarily imply the existence of a safe standard of conservation. One must show specifically that
extinction does not occur from any higher stock. Not surprisingly, therefore, stronger conditions are
required to obtain conservation as an efficient outcome.

The following notation is useful. For any (x,y) such that 0 < x < y define

S(y,x) = infc{[Ry(C,)’)/Rc(CsY)]5 y-X =c< E(Y)},

where £(y) is defined in (R.4). s(y,x) represents the smallest welfare effect as consumption varies
between y-x and the static utility maximizing amount. As in the previous subsection, x* is given by

argmax{f(x)/x: x = 0} ify > Oand x* = Q0 if y = 0.

Theorem 4.2. Assume (R.5). Suppose there exists some 0 < x’ € [x*,K) such that for ally = y’

f’), either, (a) R (y-x’,y) > 0 and of'(x’)(1+s(y,x’)) = 1 or (b) R.(y-x’,y) < 0; then'y’ is a safe
standard of conservation.

Proof of Theorem 4.2. Define the function F(x) as in the proof of Theorem 4.1 and consider the
(modified) dynamic optimization problem where F replaces f and everything else stays the same. As
before, let W be the (concave and differentiable) value function and H(y) be the lower bound on optimal
investment in the modified problem. Let {c,x,,y,} be a (modified) optimal program from y,. Under R.5
such a program is interior. This implies W'(yp) = Rc(co,yp) + Ry(c,Yp) and by Lemma 2.1.c:

Re(Cyn) = SF'(xQIRc(Crr 1,141 + Ry(Cra 1Y+ 1]




Choose any yq = f(x’) = F(x’). We will show that xy = H(yg) = x’. If R(yy-Xx',yg) < O it cannot be
optimal to invest less than x’, even for a myopic agent. If R .(yp-x’,yp) > 0 and of'(x*)(1+s(yp,x")) = 1,
then 6F'(x*)(1+s(yp,x’)) = 1. Suppose xg < x’. Then F'(xy) = F'(x’) and yy-x" < yq - Xo With the
latter implying R.(yo-X",yp) > 0. Lety; = F(xy). Using (4.2) one obtains:
W'(yo) = Re(co,Yo) + Ry(co,¥o)
= [{Rc(cp,¥p) +Ry(co,y0) }/Re(Co, YOIIBF' (xp)[Re(Cy,y )+ Ry (C1,¥1)] (4.3)
= [1 + {Ry(co,y0)/Re(Co,Yo)}IOF' (X )W'(yp = [1 + s(yo,x)IOF'(x")W'(yy).
Since [1 + s(y,x")J0F'(x’) = 1, it follows that W’'(yg) = W'(yy). This implies y; = yj, so that F(xy) =
Yo = F(x’) which contradicts x, < x’. By induction, if y; = f(x’) = F(x’), the optimal stocks y,
generated by H are bounded below by y’ = F(x’) for all t. From here, identical arguments to those used
in the proof of Theorem 4.1 establish that the optimal program generated by X(°) in the original problem

is bounded below by y’ whenever y, = y’. //

The term &f'(x’)(1+s(y,x’)) represents the minimum discounted marginal value of investment in
the stock as consumption varies between y-x’ and £(y), normalized by the marginal return from
consumption. If this lower bound on the discounted marginal value of investment is greater than 1 for all
y = f(x’), then f(x’) is a safe standard of conservation. When (R.6) is relaxed the loss of monotonicity
requires placing a lower bound on the discounted marginal value of investment over a range of possible
consumption. In comparison, when the return function is supermodular the discounted marginal value of
investment need only be greater than one along a stationary program from some stock level.

Even in the more general case, our sufficient conditions for the existence of a safe standard
always hold if f is -productive. Further, if Ry = 0, then s(y,x*)= 0 and condition (a) of Theorem 4.2
reduces to the §-productivity requirement for a safe standard of conservation with a stock-independent
return. Theorem 4.2.b arises purely from the fact that the return function may be nonmonotonic. If (b)

holds not even a myopic agent will consume beyond the amount needed to regenerate the current stock.
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The fundamental conclusion is that, regardless of the stock dynamics, the conditions under which
a safe standard of conservation is efficient are weaker when the immediate return function depends on the
stock as opposed to the stock-independent case. In particular, a safe standard of conservation may be
optimal even when the natural growth rate of the resource is always less than the discount rate. The
strength of the stock-effect on immediate return vis-a-vis that of immediate consumption, is crucial in

determining the efficiency of conservation.

5. Global Conservation

In this section, we discuss conditions under which conservation of the resource is optimal from all
positive initial stocks. When the return function is stock-independent, global conservation is efficient if
and only if the production function is §-productive at zero, that is, if and only if there exists some ¢ > 0
such that 6f(x) = x for all x € (0,¢) (Dechert and Nishimura (1983)). This is equivalent to 6f'(0) = 1 if
f is S-shaped (i.e. v > 0) and 6f'(0) > 1 if f is strictly concave (i.e. ¥ = 0). In Section 4 we have seen
that if one allows for stock-dependence then the welfare effect from investment in the stock may lead to
conservation even if the technology is not é-productive anywhere. By analogy, it is natural to conjecture
that the efficiency of global conservation should depend on both the intrinsic productivity of the resource

and the intrinsic welfare effect of investment, where intrinsic refers to behavior in a neighborhood of zero.

5.i Global Conservation with Complementarity Between Current and Future Stocks

We first examine the economic efficiency of global conservation under (R.6). Intuition suggests
that complementarity between the current stock and investment in future stocks ought to enhance the
efficiency of conservation and reduce the possibility of extinction as it places a higher marginal value on
large stock sizes vis-a-vis current consumption, compared to the case where the immediate return is
independent of the stock.

Let m(y) = inf{Ry(c,y): y-fl(y) < ¢ < y} and define

a = liminf 6’ (x)[1 + {m(f(x))/R (f(x)-x,f(x))}].
x{0
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Theorem 5.1. Assume (R.6). (a) Suppose there exists some € > 0 such that R (f(x)-x,f(x)) > O for all
x€ (0,¢). If o > I then every optimal program exhibits global conservation. (b) Suppose there exists
some €> 0 such that R (f(x)-x.f(x)) < 0 for all x€ (0,¢). Then every optimal program exhibits global
conservation.

Proof of Theorem 5.1. (a). There are 2 cases to consider: {y,} ¢ O asymptotically, or there exists some t

such that x, = 0. First, suppose x; = 0 and without loss of generality let t be the first such period. Then
¢, = Y; > 0. By the principle of optimality, 0 < R(y,,y,) + (6/(1-6))R(0,0) - [R(y,-€,y) +
(6/(1-8))R(f(e)-¢,1(€))] = Re(yy-e,¥p)e - (8/(1-8)[R(f(e)-¢,f(e))[f(€)-€] + Ry (f(e)-€,f(e))f(€)]. This implies that
forall y < y,, R.(y-e,y) = R.(y-e,yp) = (6/(1-6)[Rc(f(e)-e,f(e))(f(e)-e)+Ry(f(e)-e,f(e))f(e)]/e,where the
first inequality follows from (R.6). Choose small enough y and e such that y = f(e). After some
manipulation, this implies 1 = §[1 + {Ry(f(e)-e,f(e))/RC(f(e)-e,f(e))}]f(e)/e >
8[1 + {m(f(e))/R.(f(e)-¢,f(€))}1f(e)/e. Taking liminf,_, then produces a contradiction.

Next, suppose {y,} ¢ O asymptotically. There are two subcases to consider. In the first,
limsup, ;o R.(f(x)-x,f(x)) < +oo. Under (R.6), {y,} ¢ O implies x, > X, and ¢,,; > f(x)-x, for all t.
Concavity of R then yields

0 < RyCo1¥ra)) = Relf)%er1,f%)) < R(fx)-%,(xp)- 5.1
Hence, limsup, ;o R (f(x)-x,f(x)) < + oo implies lim;4 ; o, R(¢;41,¥;4+1) < +o0. From this
[Re(Crs15¥e+1)/Re(Cyp]= 1 ast + +oo. Since ¢, > 0 for all t the Ramsey-Euler equation holds. One
can rewrite it as:

Re(CoY)/Re(Ci+1:Ye+1) = O GDI1 + {Ry(Crq 12Ye+1)/Re(Crt 1:Ye+1)}]

v

8f' (1 + {m(y41)/Ro(f)-%,, f(x))}] (using (5.1))

of'(xp[1 + {m(f(x))/R (fx)-x,, fx)}]- (5.2)
Taking the liminf as t* + oo on both sides of (5.2), noting that x, ¥ 0 and R (¢;,y)/R(€i4+1.¥1+1) > 1, we

obtain ¢ < 1, which is a contradiction.
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In the second subcase limsup, , o R (f(x)-x,f(x)) = + o0 and o = 8f'(0) since Ry is bounded
above. Under T.3 there exists X > 0 such that 6f'(x) > 1 for all x€(0,X). Choose y, close enough to 0
such that x = f 1(yo) < X. Since y, is strictly decreasing in t, it follows that x, < x for all t. Further,
of'(x) > 1 on (0,X), so f(x)-(x/0) is strictly increasing on (0,X). Therefore, [f(x) - (x,/6)] < [f(;() - (;(/6)]
forallt. Let C = Et=0°°(1-6)6‘g[. Using arguments analogous to Dechert and Nishimura (1983, Lemma
1) it can be shown that f(;() -x < C;° however, following the arguments of Dechert and Nishimura
(1983, Proof of Lemma 2) it must be that C < [f(;() - ;(] and this yields a contradiction.
Part (b). If R (f(x)-x,f(x)) < O then the agent always invests at least f° 1(y) from an initial stock y. The

result then follows from the monotonicity of y,. //

In this theorem there are two ways for o > 1 to reduce to 6f'(0) > 1, or é-productivity at 0.
The first is the traditional case where the return function is independent of the stock. The second is when
the stock effect valued in terms of the marginal return from consumption becomes negligible as
consumption goes to zero. In either case it is an insignificant intrinsic welfare effect that results in 6-
productivity as a condition for conservation. This provides a natural economic interpretation to é-
productivity that does not arise in the usual decentralized approach. Note that if R (f(x)-x,f(x)) stays
bounded above as x converges to zero, then global conservation can be optimal even if 6f'(0) < 1, that is,
even if the intrinsic growth rate of the resource is less than the discount rate.

It is worth pointing out that global conservation in the stock-independent case is typically
established for interior optimal programs (an exception is Mitra and Ray (1984) who assume a unique
nontrivial steady state). In characterizing possibilities for conservation and extinction it is especially
important to consider noninterior actions as they may be more likely to lead to extinction. This is one

strength of Theorem 5.1. Finally, it seems that Theorem 5.1 should extend to the case where o = 1, but

9This relies on EheAfact that y; = f(xg) < ¥ 80 that g > [fgi) - )A(]. Hence, R(-,f(;()) is strictly
increasing on (0,[f(x)-x]) so that for all ¢ < [f(x)-x], R(f(x)-x,f(x)) > R(c,f(x)).

19




we have not been able to prove that. In the proof we proceed by taking limits on certain inequalities and

there is no contradiction to o = 1.

5.ii Global Conservation: The General Case

We now dispense with assumption (R.6) and analyze the efficiency of global conservation when
the return function is not necessarily supermodular. As we have seen, this allows the possibility of
complex nonlinear dynamics. Let s(y,x) be defined as in Section 4.ii. Recall that &f'(x)(1 +s(y,x))
represents the minimum discounted marginal value of investment in the stock as consumption varies
between y-x and £(y), normalized by the marginal return from consumption.

In the case where f is concave a lower bound on the intrinsic discounted marginal value of

investment leads to the following result on the efficiency of global conservation:

Theorem 5.2. Assume (R.5) and that v = 0, that is, f is strictly concave.10 If either (a) there exists

some €> 0 such that R (f(x)-x,f(x)) > 0 for all x€ (0,¢) and liminf, , ,0f' (0)(I1+s(f(x),x)) > 1, or (b) there
exists some €> 0 such that R (f(x)-x,f(x)) < O for all x€ (0,¢), then every optimal program exhibits global
conservation.

Proof of Theorem S5.2. Under f strictly concave and R.5, the Ramsey-Euler equation holds, and the value

function is concave and differentiable. Suppose that liminf{y,} = 0. Then there exists a subsequence of
time periods such that x,,; < x, and f(x,)-x, < ¢, < §(f(x;)). First consider case (a). Following
the logic of (4.3) one obtains V'(f(x,)) = R.(c,+1,f(x)) + Ry(CT+1,f(XT)) =

[1+s(f(x,),x,)]of' (x,)V'(f(x,41)). Since V is concave and x, > x4 this implies 1 =
[1+s(f(x,),x,)]6f'(x,). Letting 7 — oo then produces a contradiction to liminf, , 46f'(0)(1+s(f(x),x)) > 1.
In case (b), one obtains a contradiction when x, < e, since R (f(x)-x,,f(x,)) < O implies ¢, ; <

f(x,)-x,. /1

10The proof of this theorem only requires that f is concave. However assumption (T.5) implies that
in our framework, f can be concave only if v = 0, in which case it must be strictly concave.
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The conditions for global conservation in Theorem 5.2 are weaker than the requirement that 6f'(0) > 1,
or é-productivity at 0. Hence, if the production function is concave, the return function can have an
important influence on the efficiency of global conservation.

The next lemma is useful for a further examination of the global properties of conservation and

extinction.

Lemma 5.3. Under (R.5) if {y,} is an optimal stock sequence such that liminf, ., y, = O, then

limsup, .o, y, = 0.

In models without stock dependence a necessary condition for global conservation is 6f'(0) = 1.
Theorem 5.2 shows that with stock-dependence global conservation can occur even if 8f'(0) < 1, provided
f is concave. We have not been able to derive a similar result when f is non-concave. The best we can

ensure is the following:

Theorem 5.4. Assume vy > 0, (R.5) and &f'(0) = 1. Then global conservation is efficient and extinction
does not occur from any strictly positive initial stock.

Proof of Theorem 5.4. Suppose that from some initial stock y; > O there is a subsequence of the optimal

stock program that converges to zero. Let x* be the input level where the average product [f(x)/x] is
maximized. Then, x* > y and f(x*)/x* = f'(x*). Further, since 6f'(0) = lim, ;( 6[f(x)/x] = 1, we have
of'(x*) > 1. Let x** = argmax{f(x)-x/8: x = 0}. Then, 6f'(x**) = 1 and x** > x* > 4. Since
liminf,_, ., y, = 0, Lemma 5.3 implies that the entire optimal stock sequence {y,} - 0. Hence, there exists
an initial stock yg such that: (a) y, < y, for all t, (b) 6f'(y) > 1 for all t, and (c) yy < f(x*). Together
(a) and (c) imply that x; < X < x* < x** forallt = 0, where x = £ 1(yo). Since [f(x)-(x/8)] is strictly
increasing on (0,x**), we have that [f(x)) - (x/6)] < [f(;() - ()2/6)] for all t. The remainder of the proof

follows identical arguments to those used in the last stage of the proof of Theorem 5.1.a. //
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To conclude, in Section 5 we have derived sufficient conditions for the efficiency of global
conservation in a general setting. When the return function is supermodular we have shown that global
conservation is efficient under weaker conditions than in models with stock-independent return. Even if
the intrinsic growth rate of the resource is less than the discount rate, it may be optimal to conserve the
species from all positive stock levels, provided the intrinsic welfare effect is strong enough. However, if
the welfare effect becomes small as the stock converges to zero (either because the marginal utility of
current consumption becomes unbounded relative to the marginal stock effect or because return function is
independent of the stock), then the conditions for global conservation reduce to 8f'(0) > 1. When the
return function is not necessarily supermodular the welfare effect is still important provided f is strictly
concave. Further, even in the general case our results encompass the §-productivity at zero requirement

used to ensure the efficiency of global conservation in stock-independent models.

6. The Possibility of Extinction

In this section, we analyze situations under which it may be optimal to consume the resource to
extinction. If the immediate return is independent of the stock then it is known that 6f'(0) < 1 implies
extinction is optimal from stocks close to zero. Further, global extinction is optimal if the technology is
nowhere §-productive (see Dechert and Nishimura (1983)). In the previous two sections we have seen
that the introduction of a stock-dependent return function increases the class of environments and discount
factors for which conservation is efficient. It follows that stronger conditions should be required to obtain
extinction as an efficient outcome when returns are stock-dependent.

Establishing the optimality of extinction under a reasonable set of general conditions turns out to
be quite difficult when the optimal policy can exhibit non-monotonic behavior. As our purpose is to show
how the conditions for extinction are modified by stock-dependent returns, we restrict our analysis to the
supermodular case where optimal stock programs are monotonic over time. In this case, global extinction

can only be an efficient outcome if there does not exist a strictly positive steady state.
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Theorem 6.1. Under (R.6), if 6f'(x)[R,(f(x)-x.f(x)) +Ry(f(x)-x,f(x))] < R_.(fx)-x.f(x)) holds for all
x € (0,K] then there does not exist any safe standard of conservation and every optimal program exhibits

global extinction.

The conditions of theorem 6.1 directly rule out the existence of a positive stock that satisfies the
definition of a steady state given in Section 2. One may compare Theorem 6.1 to the corresponding result
in models where the immediate return is independent of the stock. There, extinction occurs from all
stocks if 8f'(x) < 1 for all x € (0,K). The condition imposed in Theorem 6.1 is a stronger requirement.
This is in accordance with our general claim that stock-dependence of the return function (for the
supermodular case) makes the sufficient condition for conservation weaker and that for global extinction
stronger.

There is also a larger class of situations where extinction is an efficient outcome only if the stock
is sufficiently small. The next theorem characterizes some of these situations. Recall the definition of o
from Section 5.1 where it was shown that global conservation is optimal (that is extinction is never optimal
from any strictly positive stock) if « > 1. Our condition for extinction from small stocks is close to a

negation of this condition.

Theorem 6.2. Assume optimal programs are interior and (R.7). If lim, (R .(f(x)-x.f(x)) = + oo and
a < 1, then there exists some z > 0 such that extinction occurs from all stocks y, € (0,2).
Proof of Theorem 6.2. Let M(y) be defined by M(y) = sup{R,(c,y): 0 < ¢ < y}. Since M(y) is
bounded and lim, , R (f(x)-x,f(x)) = + oo, it follows that

limsup, , o6f' (X)[1 + {MF(x))/R.(f(x)-x,f(x))}] = 6f'(0) = o < 1. 6.1)
Hence, there exists some z > 0, such that for all x € (0,z)

S’ (X)[1 + {M(f(x))/R(f(x)-x,f(x))}] < 1. 6.2)
Suppose the theorem is not true. Then, by the monotonicity of optimal programs it must be that extinction

never occurs from any y; > 0 and optimal stocks from all positive initial stocks must converge to a
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strictly positive steady state. For y, € (0,z), optimal stocks must be strictly increasing so long as y, < z
because from (6.1) no steady state lies in (0,z). Let y, be any stock small enough such that if {y,} is the
optimal program from yj, then yy < y; < z. Consider any y € [yp,y;]. We claim that c* = inf{C(y):
Y € [yoy;]} > 0. Suppose the contrary. Then, there exists a sequence {y"} such that {y"-X(y"} - 0.
Since {y,} and {X(y,)} are bounded there is subsequence {n’} of {n} such that {y"} and {X(y™)}
converge to, say, y* € [yg,y;]. Taking limits in the optimality equation V™) = REY-Xy™),y") +
SV(E(X(y™))) as n’ = + oo, we obtain V(y*) = R(0,y*) + 8V(f(y*)). This contradicts the fact that the
right hand side of the optimality equation has an interior solution. Thus, c* > 0.

Define G = sup{R.(c*,y): yo <y < y;}. Then, 0 < G < +oo and forall y € [yp,yil,

R (c,y) < R.(c*,y) < G, where, c€C(y). Next we claim that there exists y’ < yj such that

R(c’y’) > G, (6.3)
for all ¢’&€ C(y’). To see this note that the optimal stock sequence from y’ is increasing over time so that
CECWH’) < y'-fl(y’) and Ri(c’,y’) = R (y’-f1(y’),y’)=> + asy’ | 0. Therefore, (6.3) must hold for
some y’ small enough.

Let {y,’} be an optimal program from y’. This program converges to a positive steady state and
therefore in finite time y,” = z = y,. Let T > 0 be the first period such that yp’ = y,. Obviously,
¥1-1° < Yo Monotonicity then implies yp’ < y;. Thus, yr’ € [yp,y;], and by the definitions of c* and
G,

R.(cr’y1) £ G. (6.4)
For any t < T, the Ramsey-Euler equation gives:

[Re(e Y R4 17Ye41)] = S (RO + {Ry(Coi 1" Ye 1)V Re(Crr 15V 1]

< Sf'(xDI1 4+ {MUEx)/RMEx)-% . f' N} < 1. 6.5)
In (6.5) the last inequality follows from (6.2) and x;’ < y; < z, fort < T, and the first inequality uses

the definition of M(®) and the fact that Ro(c,41",¥;+1) = Ro(f(x)-X4+1",f(x%")) = R (f(x.)-x,,f(x;"))
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since x,4+;” = X,” and R is concave. By applying (6.5) recursively and then using (6.3), one obtains

R.(er’,yr) > Rory’,yrg)- - > Re(cy’,yo’) = G, which contradicts (6.4). //

This result says that if the intrinsic welfare effect is zero and if the intrinsic growth rate of the resource is
sufficiently low, then from small stock levels it is efficient to harvest the resource to extinction. Here,
the intrinsic welfare effect becomes insignificant because the marginal value of sustainable consumption
grows arbitrarily large as the stock becomes smaller, i.e., R (f(x)-x,f(x)) > + oo as x{0. This is a strong
assumption; however, even in a framework where return is independent of the stock, the proof of the
possibility of efficient extinction uses the fact that the marginal utility of consumption is infinite at zero

(see, for example, Dechert and Nishimura (1983)).

7. Conclusions

This paper has derived conditions under which a dynamically efficient management policy leads to
conservation or extinction of a renewable resource. Three potential extensions are worth noting. First,
our proof of Theorems 4.1 and 4.2 are based on the convex hull of the technology. This implies that we
lose information about the non-convex section. As a consequence it may be possible to strengthen these
results. Second, we do not consider the efficiency of extinction when optimal resource stocks behave non-
monotonically over time. Third, the analysis is entirely in a deterministic setting. The existing literature
on stochastic resource models with stock-dependent returns focusses on issues other than conservation and
extinction, and assumptions are normally imposed that insure global conservation (e.g., Mendelssohn and
Sobel (1981), Nyarko and Olson (1991, 1994)). Recently, however, there has been an interest in
extinction and survival in stochastic models where utility depends only on consumption (e.g., Mitra and
Roy (1993)). Therefore, it would be interesting to examine the problem of conservation or extinction of

optimally managed resources when there is uncertainty over resource productivity.
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Figure 1. Optimal stock transition, low discount rate, p = 0.1
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Figure 2. Optimal stock transition, intermediate discount rate, p = 0.45
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Figure 3. Optimal stock transition, higher discount rate, p = 0.47
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