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A central result for the competitive, risk-averse firm with no production risk but facing price risk

is that access to a futures market yields a separation of production and hedging decisions (Jean-Pierre

Danthine, 1978; Duncan Holthausen, 1979; Gershon Feder et al., 1980; Ronald Anderson and Jean-

Pierre Danthine, 1983): Production decisions are independent of the producer's risk preferences and

depend only on the futures price. If the futures market is biased, hedging decisions depend upon the

producer's risk preferences. But if the futures market is unbiased, the producer hedges completely

regardless of the degree of risk aversion.

The key assumptions behind the Danthine-Holthausen-Feder et al.-Anderson and Danthine

(DHFAD) "separation" result are the absence of production uncertainty and the identification of a

"futures" market with a complete forward market for the commodity that the firm produces (Ronald

Anderson and Jean-Pierre Danthine, 1981; Anderson and Danthine, 1983). That is, the firm can always

execute a "futures contract" that permits it to buy or sell as much of the commodity in question (with

zero transactions costs) for a delivery date that coincides exactly with the resolution of the price

• uncertainty. In the language of futures markets, there is no "basis risk", or put another way it implies

that a free price-insurance contract is available to the producer. In the latter context, the DHFAD

separation result manifests Karl Borch's (1989) rule for optimal risk sharing: the risk-neutral insurer (the

"futures market") absorbs all of the risk implying that the producers production decisions do not depend

upon their risk preferences. If either assumption is relaxed, zero basis risk or certain production, the

separation result disappears. Unfortunately, in the real world neither assumption is very plausible.

This paper revisits the separation question using a reformulation of the traditional model of

production under uncertainty (Robert Chambers and John Quiggin, 1992). This reformulation allows

us to relax simultaneously both of the key assumptions required for separation of production and

hedging decisions-- zero basis risk and certain production. An important advantage of the Chambers-

Quiggin (CQ) reformulation is that the producer facing price risk determines endogenously whether to

'use a technology with no production risk. This advantage is created by specifying a state-contingent

production technology which always has zero production risk as a special case.

In what follows, we first introduce our model and briefly discuss the CQ specification of
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production uncertainty by comparing it to more traditional models of production uncertainty. Producer

behaviour with both production and price risk in the absence of contingent markets is examined first to

provide a backdrop to our latter results on hedging and production decisions. We then turn to the

analysis of producer behavior with both price and production risk in the presence of a complete forward

market for the commodity (i.e., zero basis risk) the producer produces. Our first major result in this

section establishes that under plausible conditions with price uncertainty and the ability to hedge price

risk in an unbiased forward market, a risk-averse producer will never willingly adopt a certain

technology if given the alternative of adopting an uncertain production technology. Thus, even given

the assumption of zero basis risk the other assumption underlying the DHFAD separation result is

shown to be both unrealistic and overly restrictive. Thus, in a world where producers have some

flexibility to choose the degree of production risk to which they expose themselves, the DHFAD

separation will not apply. Our results on separation, however, are not all negative for we then show

that the CQ production model affords a different and apparently unrecognized separation result. This

separation result, unlike the DHFAD result, holds in the presence of both production and price risk,

depends on the market's information structure, and closely parallels spanning results in finance theory.

The paper then analyzes a firm with an uncertain technology facing both price risk and basis

risk. By recognizing that producers can operate in more than one contingent market to cross hedge we

establish a separation result that applies even in the presence of basis risk. Like the result for a

complete forward market, this separation result depends upon the informational structure of the market.

The last section concludes.

The Model

Uncertainty is modelled by assuming that "Nature" makes a choice from among a finite set of

alternatives. Each alternative is called a state and is indexed by a finite set of the form W = (1,2,...,S).

Production relations are governed by a technology set T x Rs+ defined by

T = (x,y): x can produce y, x e R ,y  E

Here x is an input vector committed before Nature chooses the ex post state from W and y is a vector

of state-contingent outputs with yi corresponding to the amount of output that would occur if state i
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occurs. The most appropriate interpretation of T is as an ex ante technology: (x,y) E T implies that if
input vector x is committed and nature chooses the j state from W then yi occurs. Output price
uncertainty is modelled similarly. The producer either knows or has subjective beliefs about the price
distribution that are summarized by a state-contingent price vector p E Rs++, where pi > 0 is the output
price that occurs if state i is chosen by Nature from W. The firm is competitive in the sense that it
treats p as independent of its actions.

Production uncertainty is absent when y e 1* where 1* c Rs+ is the set of output vectors with
each element identical. That is y assumes the form

Y* = (Y,Y,•••,y),

and price uncertainty is removed when p E 1*, i.e., the price vector assumes the form:

P* = (ID,P,•••,P).

The producer's beliefs about the relative likelihood of Nature picking a particular state are
summarized by TC E C Rs++ where IT is the simplex

= { TE e Rs++ and = } .

No state occurs with zero probability.

• We examine two alternative contingent market structures: a forward market and K futures
markets. The forward market operates in the following fashion: at the time input decisions are made,
the producer can take either a long or short position denoted by h E R entitling him or her to receive or
pay q > 0 for each unit of h. Only the commodity that the producer makes can be delivered on this
contract. The futures markets operate as follows: there are K futures markets where the producer can
take either a long or a short position. In each market at the current price futures price qk , the producer
can execute either a long or a short contract denoted by hk e R giving him or her the ability to sell or
take delivery upon the commodityin question at some later date. These commodities need not be the
commodity the producer produces. To allow specifically for basis risk, also presume that for each
futures contract there exists a state-contingent price vector e Rs,. of the same basic structure as p,
i.e., if Nature chooses i from W then the ex post price of the kth commodity (or the futures contract) is
fki. (Special cases are where one of the futures commodities is the same commodity as the individual



produces or where the futures contract is actually a forward contract for the commodity produced by

the individual.) The basis vector, using a slight abuse of terminology, for the kth futures contract is

denoted by bk€ its and has typical element bk, = fk, - qk.

The producer's objective is,

Max U = ),

where ri denotes the producer's return in state i. Here u:11-->11 is a strictly concave and strictly

increasing function satisfying the Von Neuman-Morgernstern postulates. u is differentiable. In the case

of the forward contract

r, = p, y, + h (q - p, ) - wx

where W E Itn„ is a vector of input prices which are presumed known at the time of purchase. In the

futures-markets case,

r, = p,y, - wx + hkbki.

Chambers and Quiggin (1992) show that the above can reformulated in the forward market case as

MaxoU = c(w, y) + h (q )),

and in the futures market case as

Max ymt.1 = Ein,u(p,y; c(w, y) + Ekhkbk; ),

where

c(w, y) = Min {wx: (x,y) E T}.

Under weak regularity conditions', c(w, y) will be positively linearly homogeneous in w,

nondecreasing in w, concave in w, nondecreasing in y, convex in y, and continuous (Chambers and

Quiggin, 1992). Moreover, c(w, y) can be used to recapture the input requirement sets associated

with T. c(w, y) also satisfies Shephard's lemma. In short, c(w,y) has the same properties as a cost

function for a multioutput technology with no uncertainty. For expositional convenience, presume that

c(w,y) is differentiable.

'These assumptions are T exhibits free disposability of output, free disposability of input, T is aconvex set, and for given y the set defined by the correspondence
V(y)  = {x: (x,y) belongs to T} is nonempty.



c(w, y) Offers a convenient method for pictorially isolating the differences between our model of
production uncertainty and the one more usually used in the literature on uncertain production. Figure

1 portrays an isocost contour for c(w, y) in y space. Because c(w, y) is nondecreasing and convex in

y, this isocost contour is negatively sloped and concave to the origin. The fact that the isocost contour

is negatively sloped implies that increasing one state's output while maintaining constant costs requires

lowering another state's output. Its concavity to the origin reflects the presumption that this substitution

of one state-contingent output for another occurs at increasing marginal cost.

The traditional approach to production uncertainty, which specifies a production function

depending upon x and the state of nature i (y(x,i)), does not allow for the possibility of substituting one

state-dependent output for another. Rather, it assumes that once the input vector is chosen (costs are

fixed), only one pair of state-contingent outputs in Figure 1 is possible (y(x,1), y(x,2)). That is

producers have absolutely no ability to arrange their input utilization in different manners to prepare

differentially for different states. This is unrealistic as ean be illustrated by a simple example.

Suppose there are only two states of nature, say rain and no-rain, as illustrated in Figure 1. The

traditional model would then only permit the single rain-no-rain output pair (y(x,1), y(x,2)) in Figure 1

where more output is produced in the rain state than in the no rain state. The unrealistic implication is

that when the rain state occurs the producer always gets the same output regardless of whether he

devoted all of his inputs to digging irrigation ditches or to building irrigation dams. How the producer

allocates inputs has no effect on the outputs that emerge for given x.

In Figure 1, the isocost contour intersects the bisector. This point of intersection represents the

certainty outcome (no production uncertainty) for that level of cost. Perhaps the most important

departure of Our model from the traditional model of production under uncertainty is the presumption,
technically free disposability of state-contingent outputs, that the producer can at appropriate cost

choose to produce on the bisector. That is, faced with price uncertainty, the producer can always

choose to remove production uncertainty by committing appropriate effort. Thus, although the presence

of price uncertainty is exogenous in our model, the presence of production uncertainty is not. The

producer is always free to produce a state-contingent output vector y E 1* although this choice may be



costly. For example, if rainfall is the sole source of the production uncertainty, a producer may always

adopt irrigation as a means of eliminating this uncertainty. Production certainty, if it occurs at all, is

endogenous.

Our analogue to the traditional assumption of no production uncertainty is a weaker restriction

on c(w,y) which, in essence, guarantees distinct cost advantages to the adoption of a y E I. Even

so, this condition which we refer to as Z stops short of presuming that technology is nonstochastic.

Formally,

( Z ) c(w,Py) 5_ c(w,y) for all P E P

where P c R is the set of row stochastic rriatrices, i.e. matrices whose row sums always equal one,

for which the kth column sum equals Sick. Z is a generalization of Schur convexity. A Schur-convex,

h(x), has the property that h(Bx) h(x) for all B bistochastic (Albert Marshall and Ingram Olkin, 1979).

In the equal probability case, Z and Schur convexity are equivalent. Cost structures satisfying Z have

the unique property that absent price uncertainty, a risk-neutral individual will always find it

advantageous to choose an output vector y e 1* . We summarize this property in the following lemma

for later. use (All proofs are in the Appendix):

Lemma 1: If condition Z is satisfied, then the solution, y(p), to the problem,

Maxy{Iin,pyi - c(w,y) : p E

satisfies y(p) e 1*, or there exists an equivalent solution which satisfies this latter property. If condition Z

is satisfied, then the solution, y(p,r), to the problem

Miny{c(w,y) : EiTr,pyi r; p E I*)

satisfies y(p,r) E I* or there exists an equivalent solution which satisfies this latter property.

In the case of price uncertainty, cost functions satisfying Z always yield a state-contingent

output vector for a risk-neutral producer that is positively correlated with the state-contingent price

vector,

Lemma 2: If condition Z is satisfied, then the solution, y(p), to the problem

maxy{zinpy, - c(w,y)

satisfies



- 11(Y(P))] 0,

where µ(y(p)) is the mean of y(p).

That the supply correspondence be positively sloped is a well-known, and understood, property

of multioutput supply correspondences under conditions of perfect certainty. Typically, it is referred to

as the law of supply. Generally speaking the law of supply requires each output to be nondecreasing in

its own price. Lemma 2 establishes a subtly different result: under Z, the covariance between p and

y(p) is nonnegative. That is, each state-contingent supply is not shown to be increasing in its own

price (this, however, is easy to show), rather it is shown that state-contingent outputs tend to be higher

for states that have higher state-contingent prices. Thus, Lemma 2 might be interpreted as a

probabilistic law of supply.

Optimal Behavior in the Absence of Contingent Markets

We first consider the case where the producer does not have access to any contingent

markets. The properties of u and c(w,y) guarantee that the Kuhn-Tucker conditions are necessary and

sufficient. Hence, necessary and sufficient conditions for an optimum are given by

(1) Tr,u'(ri )pi - ci(w,y)E,k7rkOrk ) 0 0,

(1=1,2,...,S). The notation in (1) denotes complementary slackness and subscript i's on c(w,y) denote

the partial derivatives of the cost function with respect to state-contingent outputs. Expression (1) has

the familiar interpretation that the marginal cost of producing the ith state contingent output is always

greater than or equal to the marginal utility of increasing the ith state-contingent output divided by the

expected marginal utility of income. A detailed analysis of the solution to (1) is provided in Chambers

and Quiggin (1992) to which we refer the interested reader for details. However, one characteristic of

producer equilbrium will prove especially useful in what follows. Thus,

Lemma 3: Producer equilibrium must satisfy:

Ek(ck(w,Y)/Pk) 1,

. with the inequality replaced by an equality in the case of an interior equilibrium.

For an interior solution, Lemma 3 has particularly interesting implications. Because both

marginal costs and prices are nonnegative, the Lemma then implies that ck(w,y)/pk E (0,1) (k = 1, 2,



...,S). Hence, marginal cost for each state is always less than or equal to the corresponding state-

contingent price. But this also implies that the ratios of marginal cost to state-contingent price all lie in

II, so that in fact, these ratios can be interpreted as probabilities, or perhaps more accurately as

shadow probabilities. In fact, these shadow probabilities are the probabilities that would convince a

risk-neutral individual (facing the same p and the same technology) to produce the same state-

contingent output vector as the risk-averse individual chooses. Lemma 3, thus, has a natural

interpretation as an arbitrage condition between the various states of nature because in terms of these

shadow probabilities it implies. that no way exists at the margin to raise expected profit systematically

without increasing risk. To foreshadow our main results, it should also be noted that the condition in

Lemma 3 is completely independent of the producer's risk preferences.

The fact that these shadow probabilities lead a risk-neutral individual to pick the same state-

contingent output vector as a risk-averse individual has some interesting implications, one of which is

summarized by our first Result:

Result 1: If condition Z is satisfied, then any interior solution, y, to (1) must satisfy:

- 1-0)] 0.

Result 1 implies, loosely speaking, that marginal costs are positively correlated with

divergences from expected output for a risk-averse individual when the technology satisfies Z. Also

notice that the c,(w,y) are Peleg-Yaari (PY) efficiency prices. So Result 1 may be interpreted as

requiring a positive correlation between outputs and PY efficiency prices. And if Result 1 is rewritten in

terms of the shadow probabilities derived in Lemma 3, it implies that using the shadow probabilities

there exists a positive correlation between the state-contingent prices and the state-contingent outputs.

So under Z, one expects to observe higher outputs emerging in high price states than in low price

states. Thus, what We referred to as the probabilistic law of supply applies to risk averters as well as

risk-neutral individuals.

Result 1 also suggests that when price uncertainty is present, producers will not generally

choose y such that y E I* even if Z is satisfied. That is given price uncertainty, even strictly risk-averse

producers will prefer an uncertain technology to a certain technology. The intuition is easy. Costwise Z,
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by Lemma 1, provides certainty as a lower bound to any risky production choice. However, given the

presence of price uncertainty, choosing a certain technology, even though it is cheap, exposes the

producer to the whole range of price risk, and gives him or her no chance to self insure. Choosing

uncertain production, on the other hand, allows the producer to "self-insure" in the absence of a viable

price insurance alternative. In fact, it is easy to see that the producer can always choose an output

vector that completely removes all risk that he or she faces. If the producer chooses yi = kp 1, returns

are stabilized at k - c(w,y) and the producer is fully insured. Whether the producer chooses to self

insure fully in this fashion depends upon the relative costliness of providing self insurance, i.e, in

picking this particular state-contingent output vector. But generally a producer will find it optimal to

expose herself to some production risk in order to balance the price risk. This finding that a risk-averse

producer does not prefer production certainty in the presence of price uncertainty is extended in the

next section to encompass the possibility of hedging through unbiased forward markets.

Optimal Producer Behaviour in the Presence of A Forward Market

We now consider how the ability to hedge in a forward market changes producer behaviour.
•

The Kuhn-Tucker conditions are again necessary and sufficient for producer equilibrium. Therefore,

optimal behaviour is characterized by:

(2) Triu'(ri )p, -c,(w,y)Ikicku'(r < 0 yi?.. 0, (i =1,2,...,S), and

IkIrkui(rk )(cl - Pk) = 0.

Combining these expressions yields:

Lemma 4: For an interior equilibrium to (2), the producer's equilibrium must satisfy:

Iikck(w,y) = q, and

Ek(ck(w,Y)/Pk) = 1.

The first condition in Lemma 4 has the straightforward interpretation of an arbitrage condition

between production and hedging behavior. The left-side is the cost of increasing output in every state of

nature by one unit. Because this additional output could always be sold on the forward market, interior

equilibrium requires that the marginal cost should always equal the forward price, otherwise there would

exist unexploited opportunities for raising expected profit while holding risk constant. The second



condition is simply a repetition of Lemma 3 and has similar implications. Notice, however, that making

use of the second condition permits rewriting the first condition (multiply each ck(w,y) by Pk' Pk ) to imply

that the forward market price should equal the expected value of the state-contingent output prices as

evaluated in terms of the shadow probabilities if an interior equilibrium is to exist. Because these

shadow probabilities again have the interpretation of being the probabilities that lead a risk-neutral

individual to choose the same output vector as a risk-averse individual, this last condition then implies

that a risk-neutral individual facing these shadow probabilities should have no incentive to sell (or buy)

any amount in the forward market. This is as it should be. But also notice that the Lemma places an

important restriction on the domain from which q can be chosen:

Corollary 1: An interior equilibrium to (2) requires that q be a convex combination of the state-

contingent prices.

Corollary 1 establishes that an interior equilibrium is not consistent with the forward price either:

exceeding the largest state-contingent price, or being smaller than the smallest state-contingent price.

Of course, if these conditions were violated the producer could make infinitely large expected profit by

setting the hedge at plus infinity or minus infinity respectively.

The DHFAD separation result shows that production is independent of producer risk attitudes

for an interior solution. Moreover, if the forward market is unbiased, i.e., q = ir1 p, forward sales just

equal total output and the producer's forward sales are also independent of producer degree of risk

aversion. This renders the risk-averse producer's production decisions trivial unless production

uncertainty is also present. The producer simply produces at the point where marginal cost is equal to

the forward price and sells the entire output forward.

Our more general model illustrates the origin of the DHFAD separation property. The certain

production model used in the more traditional approach imposes that there is only one state contingent

output and, hence, marginal cost is independent of the states. The first condition in Lemma 4 then

shows that this marginal cost, in equilbrium, only depends upon q.

As is well-known the DHFAD separation result depends critically upon the assumption that

producers can only choose one output. If that assumption is relaxed to Z, the following natural
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analogue of Result 1 shows that producers will not generally choose a yE I* and that PY efficiency

prices will be positively correlated with state-contingent outputs.

Corollary 2: If condition Z is satisfied, then any interior solution, y, to (2) must satisfy:

- 11(Y)i 0.

Using Corollary 2 and Lemma 4

Corollary 3: If Z is satisfied, then for any interior solution to (2)

f, c,(w,y)y, ?.. qµ(y).

Hence,

Corollary 4: If Z is satisfied, q then for any interior solution to (2),

ci(IN,Y)Y, 14)E, it Pr

Under Z, the value of the state-contingent output vector evaluated at PY efficiency prices must always

be at least as large as the hedged value of expected output. And under the presumption that the

forward price is at least as large as the expected price, the value of the state-contingent output vector

evaluated at efficiency prices must always exceed expected value of the mean output.

The first equality in Lemma 4 has yet another interpretation. By that equality,

Ikirdck(w,y)/ irk] = q,

the expected value of marginal costs normalized by probabilities equals the forward price. This fact

allows us to establish (a proof of this Corollary is in the Appendix):

Corollary 5: If the forward market is unbiased,

Eklcdck(w,Y)/ rck - q ](Pk - ci)/Pk > 0.

Because q is the expected value of ck(w,y)/ Tri„ Corollary 5 establishes that the covariance between

ck(w,y)/ irk and the percentage divergence of the state contingent price from the forward price (Pk - cl)/lok

is positive. Hence, on average, one finds higher marginal costs associated with state-contingent prices

higher than the for.ward price.

We now establish a key result, namely, that given an unbiased forward market and a

reasonable restriction on the probabilities, a risk-averse producer will never choose y belonging to I*.

Result 2: If Z is satisfied, there exists an i and k such that 7C1 pi > Trkpk and Tck it, and the forward

11



market is unbiased, then any interior solution to (2) will not satisfy ye 1*.

The intuition behind this result is clear. For a risk-neutral individual, n, pe is (proportional to)

the marginal return from raising y, by one unit. Unless prices and probabilities are perfectly inversely

correlated, the first condition on the probabilities is always satisfied, there will always exist at least one

state having this marginal return higher than another states. The second condition on the probabilities

just insures that this greater marginal return comes from having p, higher than some other prices and

not from one state always being more probable than other states. So, for example, if i and k are

equally probable the assumption is always satisfied if i and k have two different prices associated with

them. As such, it is a very plausible assumption to make on the state of the world. Now if the

producer starts with a certain output vector, all of which is sold forward, the producer is effectively risk-

neutral in relation to small risks. Hence, he or she is indifferent to small changes in the dispersion of

returns. But it is also clear that an increase in expected profit can be obtained by reducing output in

some relatively low return states and correspondingly increasing output in some high return states.

Thus, he or she has to be better off. From Result 2, it follows immediately that

Corollary 6: If Z is satisfied, all states are equally probable, and the forward market is unbiased, then

any interior solution to (2) will not satisfy ye 1* unless pe 1*.

Thus, the cumulative effect of Corollary 2, Result 2, and Corollary 6 is to show that so long

as true price uncertainty exists the DHFAD separation result of the existing literature on futures markets

arises not because a forward market expands the opportunity set available to producers, but because

the standard presumption of zero production risk is implausible. The DHFAD separation result is thus

an artifact of the implausible assumption of production certainty.

In the standard formulation of production under uncertainty, no arbitrage conditions of the kind

derived in Lemma 4 arise. This is because in the multiplicative uncertainty case (of which the usual

formulation of price uncertainty is a special case) where y = zO, the only option to the producer is to

increase z, yielding an increase of 0, in state i, and this cannot be offsett exactly by any change in the

forward market position.

A New Separation Theorem

12



Our final result on forward contracts demonstrates, however, that even under production

uncertainty, a separation result can hold given an appropriate information structure on the market.

Result 3: Suppose S = 2, and there is price uncertainty, then any interior production equilbrium for (2)

will be independent of the producer's risk preferences.

This separation result is reminiscient of spanning arguments familiar from finance theory. To

see the intuition, suppose that S =2 but that there is no forward market. Then the best the producer

can do is to make sure at the margin that there is no systematic loss in expected profitability, holding

the riskiness of the production portfolio constant. This is the import of Lemma 3. Now if the producer

is given access to a foward market satisfying the conditions of the Result, then the producer's

production and hedging opportunities span the states of nature thus providing a complete set of

contingent markets. Put another way, the spanning of the states of nature by the investment

opportunities gives the producer a way of guaranteeing a certain return in each state of nature thus

insuring local risk-neutrality.

By itself, Result 3 is of somewhat limited interest because it only applies to S = 2. However, it

points the appropriate direction in which to search for more general separation results and that is in the
direction of the information structure of the market. The next section pursues this point.

Optimal Producer Behaviour in the Presence of Futures Markets

We now conclude our analysis by considering the possibility that producers do encounter basis

risk. In doing so, it is important to recognize that just as producer's production alternatives under

uncertainty are unduly limited by the traditional models, the producer's hedging alternatives have been

unrealistically limited to contingent contracts for the commodity which he or she is produces. In reality,

a much wider scope for the diversification of risk exists. There are futures markets for an increasing

variety of commodities and financial instruments. Therefore, it is logical to examine the implications of

this increased latitude for risk diversification on producer behavior when we consider the issue of basis

risk. Hence, we now turn to an analysis of the producer's behavior when there exist an active set of K

futures markets in which he or she can cross hedge. Again, the Kuhn-Tucker conditions are necessary

and sufficient for producer equilibrium. Therefore, the producer's optimal behavior is characterized by:

13



(3) ic,u'(r)p, -c,(w,y)Ekirku'(rk) 0 yr>.

Eknku'(rk)bik = 0, (j = 1,2,...,K).

The first set of equations in (3) has exactly the same interpretation as the conditions given by

(1) and (2). The second set of conditions in (3) represents a set of arbitrage conditions for the futures

markets which requires the producer to make zero expected marginal utility in each of his futures

operations. These arbitrage relations and the first set of equations, however, also yield an arbitrage

relationship that connects the producer's production operation with his or her operations in the futures

markets. We have:

Lemma 5: For an interior production equilibrium to (3), the producer's equilibrium must satisfy the

arbitrage conditions:

0 (i = 1,2,...,S),

Ik(ck(w,Y)/PkWk = 0, (j = 1,2,...,K), and

Ek(ck(w,Y)/PO = 1.

The second inequality is yet another manifestation of Lemma 3. To provide an alternative

interpretation of the first condition to the requirement that the futures market be unbiased when

evaluated in terms of the shadow probabilities, notice that ck(w,y)/pk represent a risk-neutral

individual's cost-benefit ratio from increasing the k-state output, bik represents the k-state marginal

profit on the jth futures contract. The result requires that state-contingent outputs be chosen so that

these vectors be orthogonal to one another, or in other words uncorrelated. The intuition is simple: The

existence of futures markets offers the producers K more markets in which to take a position. The

producer being risk-averse would like to balance the risk that arises in the commodity market for which

he produces (both price and production) against the risk present in these other markets. In doing so,

however, he or she must insure that no systematic opportunites for increasing expected profit while

holding its dispersion constant exist. The first K conditions in Lemma 5 insure this last result that all

systematic opportunities for increasing expected profit have been exploited.. To see this more clearly,

suppose that instead of equalling zero, any one of the first K expressions in Lemma 5 were strictly

positive. Let the contract for which this is true be the jth futures contract. Then the producer could

increase his or her jth futures position by one unit. This generates a revenue change of ijk in each
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state k. The original state k revenue can now be restored by changing the k-state output by - bik 'Pk

Revenue would be unchanged but costs would now change by -Ik(ck(w,y)/pk)bik <0. Hence, the

producer could achieve the exact same revenue vector but at reduced cost. Thus, the original

allocation could not have been optimal.

Obvious analogues to Corollaries 1- 6 apply to Lemma 5. Therefore, we shall not repeat theim

but we shall leave their derivation and interpretation to the interested reader. Instead we focus on

isolating sufficient conditions for a separation result. To that end we introduce the following spanning

condition:

S: There exist S - 1 futures markets for which the matrix B E RS X RS is invertible:

B = [e, 131,

Here e E RS is the unit vector. S requires e and the basis vectors, employing our original abuse of

terminology, to span S space (quite literally the basis vectors provide a basis for S space). Notice in

particular that the condition requires that no two basis vectors or any subset of the basis vectors be

perfectly correlated with one another.

Result 4: Suppose S is satisfied then any interior solution to (3) must have the producer's production

decisions independent of his or her risk preferences.

Here again the intuition is similar to that for Result 3. Therefore, it need not be repeated.

However, we do note that Result 4 greatly strengthens Result 3 as it shows that as the number of

independent futures markets proliferates, it becomes more likely that producers decisions will be

independent of their risk preferences.

Concluding Remarks

This 'paper revisits the DHFAD separation results from the theory of the risk-averse, competitive

firm facing price risk but not production risk using a more general formulation of production under

uncertainty. Using this formulation, we show that that result hinges upon an overly restrictive

representation of the technology. Hence, the DHFAD separation result will not generally apply.

However, one can establish true separation results which, like the spanning results in the finance

literature, depend upon the information structure of the market. In deriving these results, we also
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deduce a probabilistic law of supply and a number of other results on producer behaviour that apply

to risk-averse firms facing price uncertainty.
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Proofs

Lemma 1: Both parts of the lemma are proved in an identical fashion, so the proof of the second part

is left to the reader. To prove the first, suppose contrary to the lemma that y(p) e I*. Then define, y' E

1* by y' = (y', y') where y' = I,Triy,(p). Because p E 1* , expected revenue for y' is the same as for

y(p). Now notice that y' = P'y(p) where P' is the row stochastic matrix defined by having each row

correspond to it. Hence, by Z, c(w,y') C(N, y(p)).

Lemma 2: Z implies c(w, P'y(p)) 5 C(N, y(p)), where P' is defined as in the proof of Lemma 1.

Hence, for y(p) to be optimal it must satisfy

y(p) - c(w, y(p)) WY(P))iiriPi - c(w, P'y(p)).

Rearranging establishes

[y(p) - Wy(p))] c(w, y(p)) - c(w, 13'11(0

Lemma 3: A necessary condition for a producer equilibrium is that

rc, '(pyi - c(w, y -c,(w,y)IorkuVkyk - c(w, y)) 0

(i = 1,2,...,S). Hence,

c(w, c,(w,Y)/P)EkIrkuVkYk - c(w, Y )).

Summing over all i gives

Zrriu'(PYi - c(w, )) 5- E,(c,(IN,Y)/13)EkTrku'(PkYk - c(w, Y )),

and division using the fact that u is strictly increasing gives the result. The result for an interior solution

follows immediately by using complementary slackness.

Result 1: Consider using the shadow probabilities, c,(w,y)/pi (i = 1, 2, ...,S), derived in Lemma 3 to

maximize expected profit for the same p and cost structure faced by a risk averse individual. Using

these shadow probabilities leads to replacing nip; with c,(w,y) (the PY efficiency prices for y) in the

expected profit maximization problem. This leads a risk-neutral individual to pick the same y as the

risk-averse individual chose. Now apply Lemma 2 using these shadow probabilities.

Lemma 4: The proof of the second equality is the same as the proof of the second equality in Lemma

3 and will not be repeated. To prove the first equality, notice that for an interior solution (2) requires

that
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rc,ut(r, )p, = I,c,(w,y)Ikrcku'(rk ).

Substituting this result into the second expression in (2) yields the desired equation.

Corollary 5: If the forward market is unbiased then Theorem 2.16 of Hardy, Littlewood, and Polya

(p.26) applied to the harmonic and ordinary means implies qIiork pk-1 1, whence, EkTriOk C1)/ Pk <

and q Ekrck(pk - q)/ Pk < 0. Ekirk(ck(w,y)/ick)(pk - q)/ Pk = Ekck(w,y) - q Ek(ck(w,y)/pk ) = 0 using Lemma 4.

Result 2: The proof is by contradiction. Suppose contrary to the result that the interior optimizer y* E

1*, i.e., y, =1.1.(y*) for all i. Under Z, the second part of Lemma 1 implies that y* also solves

Min y(041,11):it1y1=

Hence from the first-order conditions, which are necessary and sufficient, for this problem it must be

true that c,(w,y)//r, = ck(w,y)//rk for all i and k. Also, because the forward market is unbiased it must be

true that if this y* is optimal, the optimal hedge must involve selling the entire amount forward. Thus

the producer is risk-neutral in a neighborhood of the certainty outcome y*. Now suppose states i and k

satisfy the condition stated in the Result. An increase in output by the small but positive amount 8 in

state i and a corresponding decrease in output by 5 in state k leads to the following change in expected

utility, u'(r)6 [nip, - irkpk - c,(w,y*.)(1 - irk/irMy where r = qµ(y*) - c(w,y*). Underthe conditions of the
•

Result this change in expected utility must be strictly positive contradicting the supposition that y* was

optimal.

Result 3: Suppose S = 2, then Lemma 4 implies

cl(w,y) + c2(w,y) = q, and

c1(w,Y)/131 + C2(0/111)/ P2 = 1.

Provided that there is price uncertainty (p1v2), this set of equations has a solution given by

cl(w,Y) = - P2)/(131 - P2), and

c2(w,Y) = P2 (131 - q)/(p1 - 132).

Corollary 1 now establishes that marginal costs are nonnegative as required and the above can be

used to determine the production equilibrium independent of the producer's risk preferences.

Lemma 5: The second equation follows as in Lemma 3 and Lemma 4. For an interior solution, the

first-order conditions require

19



ir1u'(r)13, -C,(w,y)rcku'(rk) = 0 (i = 1,2,...,S), and

EkIcku(rk)(fik = o, = 1,2,...,K).

The first S conditions imply

7c,u1(r) (c,(w,y)/R)IkTrku'(rk) (i = 1,2,...,S).

To get the first K equalities substitute this last expression into each of the K futures market conditiops

recognizing that u'(rk) is strictly positive.

Result 4: Under S the set of equalities in Lemma 5 are an invertible system of equations, independent

of the producer's risk attitudes, which can be solved for the equilibrium q(w,y)/ pi (i = 1,2,...,S).
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