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A central result for the competitive, risk-averse firm with no production risk but facing price risk
is that access to a futures market yields a separation of production and hedging decisions (Jean-Pierre
Danthine, 1978;. Duncan Holthausen, 1979; Gershon Feder et al., 1980; Ronald Anderson and Jeari)-
Pierre Danthine, 1983): Production décisions are independent of the producer’s risk preferences ana
depend only on the futures price. If the futures market is biased, hedging decisions depend upon the
producer's risk preferences. But if the futures market is unbiased, th'e producer hedges completely
regardless of the degree of risk aversion.

The key assumptions behind the Danthine-Holthausen-Feder et al.-Anderson and Danthine
(DHFAD) "separation” result are the absence of production uncertainty and the identification of a
“futures" market with a complete forward market for the commodity that the firm produces (Ronald
Anderson and Jean-Pierre Danthine, 1981; Anderson and Danthine, 1983). That is, the firm can always
execute a "futures contract” {hat permits it to buy or sell as much of the commodity in question (with
zero transactions costs) for a delivery date that coincides exactly with the resolution of the price
uncertainty. In the Ianguag.e of futures markets, there is no "basis risk", or put another way it implies
that a free price-insurance contract is available to the producer. In the latter ;:ontexf, the DHFAD |
separation result manifests Karl Borch’s (1989) rule for optimal risk sharing: the risk-neutral insurer (the
"futures market") absorbs all of the risk implying that the producer's production decisions do not depend
upon their risk preferences. If either assumption is relaxed, zero basis risk or certain production, the
separation result disappears. Unfortunately, in the real wbrld neither assumption is very plausible.

This paper revisits the separation question using a reformulation of the traditional model of
production under uncertainty (Robert Chambers and John Quiggin, 1992). This reformulation allows
us to relax simultaneously both of the key assumptions required for separation of production and
hedging decisions-- zero basis risk and certain production. An important advantage of the Chambers-
Quiggin (CQ) reformulatioﬁ is that the producer facing price risk determines ehdogenously whether to
‘use a technology with no production risk. This advantage is created by specifying a state-contingent
production technology which always has zero production risk aé a special cdse.

In what follows, we first introduce ‘our model and briefly discuss the CQ sbecification of



production uncertainty by comparing it to more traditional models of production uncertainty. Producer

behaviour with both production and price risk in the absence of contingent markets is examined first to
provide a backdrop to our latter results on hedging and production decisions. We then turn to the
analysis of producer behavior with both price and production risk in the presehce of a complete forward
market for the commodity (i.e., zero basis risk) the producer produces. Our first major result in this
section establishes that under plausible conditions with price uncertainty and the ability to hedge price
risk in an unbiased forward market, a risk-averse producer will never willingly adopt a certain
technology if given the alternative of adopting an uncertain production technology. Thus, even given
the assurﬁption of zero basis risk the other assumption underlying the DHFAD separation resuli is
shown-to_ be both unrealistic and overly restrictive. Thus, in a world where producers have some
flexibilfty to choose the degree of production risk to which they expose themselves, the DHFAD
separation will not apply. Our results on separation, however, are not all negative for we then show
that the CQ production model affords a different and apparently unrecognized séparation result. This
separation result, unlike the DHFAD result, holds in the presence of both production and price risk,
depends on the market’s information structure, and cldsely parallels spanning results in finance theory.

The paper then analyzes a firm with an uncertain technology facing both price risk and basis
risk. By recognizing that producers can operate in more than one contingent market to cross hedge we
establish a separatibn result that applies even in the presence of basis risk. Like the resuit for a
complete forward market, this separation result depends upon the informational structure of the market.
The last section concludes.
The Model

Uncertainty is modelled by assuming that "Nature" makes a choice from among a finite set ot
alternatives. Each alternative is called a state and is indexed by a finite set of the form W = {1,2,...,S}.
Production relations are governed by a technology set T < R", x R®, defined by

T={(xy):xcanproducey, xc R", ,y € B°}.

Here x is an input vector committed before Nature chooses the ex post state frdm W and y is a vector

of state-contingent outputs with y, corresponding to the amount of output that would occur if state i




occurs. The most appropriate interpretation of T is as an ex ante technology: (x,y) € T implies that if

input vector x is committed and nature chooses the j state from W then y; occurs. Qutput price
uncertainty is modelled similarly. .The producer either knows or has subjective beliefs about the price
distribution that are summarized by a state-contingent price vector p € R, where p; > 0is the output
price that occurs if state i is chosen by Nature from W. The firm is competitive in the sense that it
treats p as independent of its actions.
Production uncertainty is absent when Yy € I" where I* ¢ B®, is the set of output vectors with
each element identical. That is y assumes the form
= (Y.YseY),
and price uncertainty is removed when P e I, i.e., the price vector assumes the form:
= (P.P,-.,P).
The producer’s beliefs about the relative likelihood of Nature picking a particular state are
summarized by t € I1 ¢ R®,, where IT is the simplex
H={nmrne R, and ¥m = 1} .
No state occurs with zero probability.

- We examine tWo alternative contingent market structures: a forward market and K futures
markets. The forward market operates in the following fashion: at the time input decisions are made,
the producer can take either a long or short position denoted by h € R entitling him or her to receive or
pay q > 0 for each unit of h. Only the commodity that the producer makes can be delivered on this
contract. The futures markets operate as follows: there are K futures markets where the producer can
take either a long or a short position. In each market at the current price futures price qy » the producer
can execute either a long or a short contract denoted by h, € R giving him or her the ability to sell or
take delivery upon the. commodity in question at some later date. These commodities need not be the
commodnty the producer produces. To allow specifically for basis risk, also presume that for each
futures contract there exists a state- -contingent price vector e R®, of the same basuc structure as p,

., if Nature chooses i from W then the ex post price of the kth commodity (or the futures contract) is

- (Special cases are where one of the futures commodities is the same commodity as the individual




produces or where the futures contract is actually a forward contract for the commodity produced by
the individual.) The basis vector, usiﬁg a slight abuse of terminology, for the kth futures contract is
denoted by b R® and has typical element b = f* - q,.

The producer's objective is,

Max U = Zru(r,),

where r; denotes the producer’s return in state i. Here uR-R is a strictly concave and strictly
increasing function satisfying the Von Neuman-Morgernstern postulates. u is differentiable. In the case
of the forward contract

4 =pyi+h(-p)-wx
where w € R",, is a vector of input prices which are presumed known at the time of purchase. In the
futures-markets case,

i = PY;- WX + Zhb",
Chambers and Quiggin (1992) show that the above can reformulated in the forward market case as
Max, U = Zmu(py;- c(w, y) + h q-p)),
and in the futures market case as |
| Max ;U = Zmu(py; - c(w, y) + Zhbs),
where
c(w, y) = Min {wx: (x,y) € T}.

Under weak regularity conditions’, c(w, y) will be positively linearly homogeneous in w,
nondecreasing in w, concave in w, nondecreasing in y, convex in y, and continuous (Chambers and
Quiggin, 1992). Moreover, c(w, y) can be used to recapture the input requirement sets associated
with T. c(w, y) also satisfies Shephard's lemma. In short, c(w,y) has the same properties as a cost
function for a multioutput technology with no uncertainty. For expositional convenience, presume that

c(w,y) is differentiable.

'These assumptions are T exhibits free disposability of output, free disposability of input, T is a
convex set, and for given y the set defined by the correspondence
V(y) = {x: (x,y) belongs to T} is nonempty.




c(w, y) offers a convenient method for pictorially isolating the differences between our model of

production uncertainty and the one more usually used in the literature on uncertain production. Figure
1 portrays an isocost contour for c(w, y) in y space. Bedause c(w,y)is nondecreasing and convex in
y. this isocost contour is negatively sloped and concave to the origin. The faét that the isocost contour
is negatively sloped implies that increasing one state’s output while maintaining constant costs requifes
lowering another state’s output. Its concavity to the origin reflects the presumption that this subs;itut%on
of one state-contingent output for another occurs at increasing marginal cost.

The traditional approach to production uncertainty, which specifies a production function
depending upon x and the state of nature i (y(x,)), does not allow for the possibility of substituting one
state-dependent output for another. Rather, it assumes that once the input vector is chosen (costs are
fixed), only one pair of state-contingent outputs in Figure 1 is possible (y(x,1), y(x,2)). Thatis
producers have absolutely no ability to arrange their input utilization in different manhers to prepare
differentially for different states. This is unrealistic as ¢an be illustrated by a simple example.
Suppose there are only two states of nature, say l"ain and no-rain, as illustrated in Figure 1. The
_ traditional moc_iel would then only permit the single rain-no-rain output pair (y(x-,1), y(x,2)) ih Figure 1
where more output is produced in the rain state than in the no rain state. The unrealistic implication is
that when the rain state occurs the producer always gets the same output regardless of whether he
devoted all of his inputs to digging irrigation ditches or to building irrigation dams. How the producer
allocatés inputs has no effect on the outputs that emerge for given x.

In Figure 1, the isocost contour intersects the bisector. This point of interseciion represents the
certainty outcome (no production uncertainty) for that level of cost. Perhaps the most important
departure of our model from the traditional model of production under uncertainty is the pre'sumption,
technically free disposability of state-contingent outputs, that the producer can at appropriate cost
choose to produce on the bisector. That is, faced with price uncertainty, the producer can always
choose to remove production uncénainty by oomlmitting appropriate effon. Thus, although the presence
of price uncertainty is exogenous in our model, the presence of‘production uncertainty is not. The

producer is always free to produce a state-contingent output vector y e I* although this choice may be




costly. For example, if rainfall is the sole source of the production uncertainty, a producer may al\f«/ays
adopt irrigation as a means of eliminating this uncertainty. Production certainty, if it occurs at all, |s
endogenous. | .

Our analogue to the traditiohal assumption of no production uncertainty is a weaker restriction
on c(w,y) which, in essence, guarantees distinct cost advantages to the adoptionof a y € I*. Even
so, this condition which we refer to as Z stops short of presuming thét technology is nonstochastic.
Formally, |
(2) c(w,Py) < c(w,y) forallPe @
where © c R%,is the set of row stochastic matrices, i.e. matrices whose row sums always equal one,
for which the kth column sum equals Sr,. Z is a generalization of Schur convexity. A Schur-convex,
h(x), has the property that h(Bx) < h(x) for all B bistochastic (Albert Marshall and Ingram Olkin, 1979).
In the equal probability case,' Z and Schur convexity are equivalent. Cost structures satisfying Z have
the unique property that absent price uncertainty, a risk-neutral individual will always find it
advantageous to choose an output vectory € I*. We summarize this property in the following lemma
for later.use (All proofs are iﬁ the Appendix): | |
Lemma 1: If condition Z is satisfied, then the solution, y(p), to the problem,

Max{Zwpy; - c(w,y) : p € I*}
satisfies y(p) € I*, or there exists an equivalent solution which satisfies this latter property. If condition Z
is satisfied, then the solution, y(p,r), to the problem |
Min{c(w,y) : Zirpy, 2 1; p € I*}

satisfies y(p,r) e I* or there exists an equivalent solution which satisfies this latter property.

In the case of price uncertainty, cost functions satisfying Z always yield a state-contingént
output vector for a risk-neutral producer that is positively correlated with the state-contingent price
vector. } |

Lemma 2: If condition Z is satisfied, then the solution, y(p), to the problem

Maxy{Z.TtiP;ya - c(w,y) }

satisfies




Zmply(p) - m(y(p))] 2 0,

where u(y(p)) is the mean of y(p).

| That the supply correspondence be positively sloped is a well-known, and understood, property
of multioutput supply correspondences under conditions of perfect certainty. Typically, it is referred to
as the law of supply. Generally speaking the law of supply requires each output to be nondecreasing in
its own price. Lemma 2 establishes a subtly different result: under Z, the covariance between p and
Y(p) is nonnegative. That is, each state-contingent supply is not shown to be increasing in its own
price (this, however, is easy to show), rather it is shown that state-contingent outputs tend to be higher
for states that have higher state-contingent prices. Thus, Lemma 2 might be interpreted as a
probabilistic law of supply.
Optimal Behavior in the Absence of Contingent Markets

We first consider the case where the producer does not have access to any contihgent
markets. The propérties of u and c(w,y) guarantee that the Kuhn-Tucker conditions are necessary and
sufficient. Hence, necessary and sufficient conditions for an optimum are given by
(1) - (5 )p; - WY ZmU'(R) S0 y20,
(i =1,2,.;.,S). The notation in (1) denotes complementary slackness and subscript i's on ¢c(w,y) denote
the partial derivatives of the cost function with respect to state-contingent outputs. Expression (1) has
the familiar interpretation that the marginal cost of producing the ith state contingent output is always
greater than or equal to the marginal utility of increasing the ith state-contingent output divided by the
expected marginal utility of income. A detailed analysis of the solution to (1) is provided in Chambers
and Quiggin (1992) to which we refer the interested reader for details. However, one characteristic of
" producer equilbrium will prove especially useful in what follows. Thus,
Lemma 3: Producer equilibriumb must satisfy:
2 (cdw,y)ip) 2 1,

. with the inequality replaced by an equality in the case of an interior equilibrium.
For. an interior solution, Lemma 3 has particularly interesting implications. Because both

marginal costs and prices are nonnegative, the Lemma then implies that ¢ (w,y)/p, e (0,1) k=1, 2,



..S). Hence, marginal cost for each state is always less than or equal to the corresponding state-
contingent price. But this also implies that the ratios of marginal cost to state-contingent price all lie in
I1, so that in fact, these ratios can be interpreted as probabilities, or perhaps more accurately as
shadow probabilities. In fact, these shadow probabilities are the probabilities that would convince a
risk-neutral individual (facing the same p and the same technology) to produce the same state-
contingent output vector as the risk-averse individual chooses. Lemma 3, thus, has a natural
interpretation as an arbitrage condition between the various states of nature because in terms of these
shadow probabilities it implies that no way exists at the margin to raise expected profit systematically
without increasing risk. To foreshadow our main results, it should also be noted that the condition in
Lemma 3 is completely independent of the producer’s risk preferences.

The fact that these shadow probabilities lead a risk-neutral individual to pick the same state-
contingent output vector as a risk-averse individual has some interesting implications, one of which is
summarized by our first Result:

Result 1: If condition Z is satisfied, then any interior solution, y, to (1) must satisfy:
O Tewaly- 2o,

' Result 1 implies, loosely speaking, that marginal costs are positively correlated with
divergences from expected output for a risk-averse individual when the technology satisfies Z. Also
notice that the c(w,y) are Peleg-Yaari (PY) efficiency prices. So Result 1 may be interpreted as
requiring a positive correlation between outputs and PY efficiency prices. And if Result 1 is rewritten in
terms of the shadow probabilities derived in Lemma 3, it implies that using the shadow probabilities
there exists a positive correlation between the state-contingent prices and the state-contingent outputs.
So under Z, one expects to observe higher outputs emerging in high price states than in low price
states. Thus, what we referred to as the probabilistic law of supply applies to risk averters as well as
risk-neutral individuals.

Result 1 aiso suggests that when price uncertainty is present, producers will not generally
choose y such thaty € I* evén if Z is satisfied. That is given price un‘certainty,' even strictly risk-averse

producers will prefer an uncertain technology to a certain technology. The intuition is easy. Costwise Z,



by Lemma 1, provides certainty as a lower bound to any risky production choice. However, given the
presence of price uncertainty, choosing a certain technolo'gy, even though it is cheap, exposes the
producer to the whole range of price risk, and gives him or her no chance to self insure. Choosing
uncertain production, on the other hand, allows the producer to "self-insure” in the absence of a viable
price insurance alternative. In fact, it is easy to see that the producer can always choose an output
vector that completely removes all risk that he or she faces. If the producer chooses y; = kp;"', returns
are stabilized at k - c(w,y) and the producer is fully insured. Whether the producer chooses to self
insure fully in this fashion depends upon the relative costliness of providing self insurance, i.e, in
picking this particular state-contingent output vector. But generally a producer will find it optimal to
expose herself to some production risk in order to balance the price risk. This finding that a risk-averse
producer does not prefer production certéinty in the presence of price uncertainty is extended in the
next section to encompass the possibility of hedging through unbiased forward markets.

Optimal Producer Behaviour in the Presence of A Forward Market

We now consider how the ability to hedge in a forward market chahges producer bghaviour.
The Kuhn-Tucker conditions are again necessary and sufficient for producer equilibrium. Therefore,
optimal behaviour i:s, characterized by:

(2) Tu'(r)p; -c(wy)Zmu’(r) <0 20, (i=12,..S), and
Zmu'(n Q- py) =0.
Combining these expressions yields:
Lemma 4: For an interior equilibrium to (2), the producer’s equilibrium must satisfy:
Zodwy) =q,  and
Zcdw,y)/p) = 1.

The first condition in Lemma 4 has the straightforward interpretation of an arbitrage condition
between production and hedging behavior. The left-side is the cost of increasing output in every state of
nature by one unit. Because this additional output could always be sold on the .fowvard market, interior
equilibrium requires that the marginal cost should always equal the forward price, otherwise there would

exist unexploited opportunities for raising expected profit while holding risk constant. The second




condition is simply a repetition of Lemma 3 and has similar implications. Notice, however, that making

use of the second condition permits rewriting the first condition (multiply each c(w,y) by p./ p, ) to lmply
that the forward market price should equal the expected value of the state-contingent output prices as
evaluated in terms of the shadow probabilities if an interior equilibrium is to exist. Because these
shadow probabilities again have the interpretation of being the probabilities that lead a risk-neutral
individual to choose the same output vector as a risk-averse individual, this last condition then impliee
that a risk-neutral individual facing these shadow probabilities should have no incentive to sell (or buy)
any amount in the forward market. This is as it should be. But also notice that the Lemma places an
important restriction on the domain from which g can be chosen:

Corollary 1: An interior equilibrium to (2) requires that q be a convex combination of the state-
contingent prices.

Corollary 1 establishes that an interior equilibrium is not consistent with the forward price either:
exceeding the largest state-contingent price, or being smaller than the smallest state-contingent price.
Of course, if these conditions were violated the producer could make infinitely large expected profit by
_ setting the hedge at plus infinity or minus infinity respectively. ‘

The DHFAD separation result shows that production is independent of producer risk attitudes
for an interior solution. Moreover, if the forward market is unbiased, i.e., q = 3m;p, forward sales just
equal total output and the producer’s forward sales are also independent of producer degree of risk
aversion. This renders the risk-averse producer’s production decisions trivial unless production
uncertainty is also present. The producer simply produces at the point where marginel cost is equal to
the forward price and sells the entire output forward.

Our more general model illustrates the origin of the DHFAD separation property. The certain
production model used in the more traditional approach imposes that there is only one state contingent
output and, hence, marginal cost is independent of the states. The first condition in Lemma 4 then
shoWe fhat this marginal cost, in equilbrium, only eepends upon q.-

_As is well-known the DHFAD separation result depends etitically upon the assumption that

producers can only choose one output. If that assumption is relaxed to Z, the following natural
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analogue of Result 1 shoyvs that producers will not generally choose a ye I* and that PY efficienc;‘/
prices will be positively correlated with state-contingent outputs.
Corollary 2: If condition Z is satisfied, then any interior solution, y, to (2) must satisfy:
Ze(wyly; - u(y)l 2 0.
Using Corollary 2 and Lemma 4

Corollary 3: If Z is satisfied, then for any interior solution to (2)

X c(wyy)y: = qu(y).
Hence,
Corollary 4: If Z is satisfied, q >X;np, then for any interior solution to (2),

X c(wy)y, 2 uy)Zim p.
Under Z, the value of the state-contingent output vector evaluated at PY efficiency prices must always
be at least as large as the hédged value of expected output. And under the presumption that the
forward price is at least és large as the expected price, the value of the state-contingent output vector
evaluated at efficiency price.s must always exceed expected value of the mean output.

~The first equality in Lemma 4 has yet another interpretation. By.:that equality,
Ymfe(wy) m] = q,

the expected value of marginal costs normalized by probabilities equals the forward price. This fact
allows us to establish (a proof of this Corollary is.in the Appendix):
Corollary 5: If the forward market is unbiased, |

Zmfedw,y) m - ql(pe- q)/p > 0.
Because q is the expected value of ¢, (w,y)/ =,, Corollary 5 establishes that the covariance between
¢ (w,y)/ m,and the percentage divergence of the state continéent price from the forward price (pk - q)/p
is positive. Hence, on average, one finds higher marginal costs associated with state-contingent prices
higher than the forward price. |

We now establish a key result, namely, that given an unbiased forward market and a

reasonable restriction on the probabilities, a risk-averse producer will never choose y belonging to I*.

Result 2: If Z is satisfied, there exists an i and k such that TP, > mp, and m 2> mx, and the forward




market is unbiased, then any interior solution to (2) will not satisty ye I*.

The intuition behind this result is clear. For a risk-neutral individual, mp; is (proportional to)
the marginal return from raising y, by one unit. Unless prices and probabilities are perfectly inversely
correlated, the first condition on the probabilities is always satisfied, there will always exist at least one
state having this marginal return higher than another states. The second condition on the probabilities
just insures that this greater marginal return comes from having p; higher than some other prices and
not from one state always being more probable than other states. So, for example, if i and k are
equally probable the assumption is always satisfied if i and k have two different prices associated with
them. As such, it is a very plausible assumption to make on the state of the world. Now if the
producer starts with a certain output vector, all of which is sold forward, the producer is effectively risk-
neutral in relation to small risks. Hence, he or she is indifferent to small changes in the dispersion of
returns. But it is also clear that an increase in expected profit can be obtained by reducing output in
some relatively low 'return states and correspondingly increasing output in some high return states.
Thus, he or she has to be better off. From Result 2, it follows immediately that
Corollary 6: If Z is satisfied, all states are equally probable, and the forward market is unbiased, @hen
any interior solution to (2) will not satisfy ye I* unless pe I*.

Thus, the cumulative effect of Corollary 2, Result 2, and Corollary 6 is to show that so long
as true price uncertainty exists the DHFAD separation result of the existing literature on futures markets
arises not because a forward market expands the opportunity set available to producers, but because
the standard presumption of zero production risk is implausible. The DHFAD separation result is thus
an artifact of the implausible assumption of production certainty.

In the standard formulation of production under uncertainty, no arbitrage conditions of the kind
derived in Lemma 4 arise. This is because in the multiplicative uncertainty case (of which the usual
formulation of price uncertainty is a special case) where y = z6, the only option to the producer is to
increase z, yielding an increase of 6; in state i, and this cannot be offsett exactly by any changé in the

forward market position.

A New Separation Theorem




Our final result on forward contracts demonstrates, however, that even under production

uncenrtainty, a separation result can hold given an appropriate information structure on the market.
Result 3: Suppose S = 2, and there is price uncertainty, then any interior production equilbrium for (@)
will be independent of the producer’s risk preferences.

This separation result is reminiscient of spanning arguments familiar from finance theory. To
see the intuition, suppose that S =2 but that there is no forward market. Then the best the producer
can do is to make sure at the margin that there is no systematic loss in expected profitability, holding
the riskiness of the production portfolio constant. This is the import of Lemma 3. Now if the producer
is given access to a foward market satisfying the conditions of the Result, then the producer’s
production and hedging opportunities span the states of nature thus providing a complete set of
contingent markets. Put another way, the spanning of the states of nature by the investment
opportunities gives the producer a way of guaranteeing a certain retumn in each state of nature thus
insuring local risk-neutrality.

By itself, Result 3 is of somewhat limited interest because it only applies to S = 2. However, it
points the appropriate direction in which to search for more genel;al separation.results and that is in the
direction of the informétion structure of the market. The next section pursues this point.

Optimal Producer Behaviour in the Presence of Futures Markets

We now conclude our analysis by considering the possibility that producers do encounter basis
risk. In doing so, it is important to recognize that just as producer’s production alternatives under
uncertainty are unduly limited by the traditional models, the producer’s hedging alternatives have been
unrealistically limited to contingent contracts for the commodity which he or she is produces. In reality,
a much wider scope for the diversification of risk exists. There are futures markets for an increasing
variefy of commodities and financial instruments. Therefore, it is logical to examine the implications of
this increased latitude for risk diversification on producer behavior when we consider the issue of basis
risk. Hence, we now turn to an analysis of the producer's behavior when there éxist an active set of K

futures markets in which he or she can cross hedge. Again, the Kuhn-Tucker cbnditions are necessary

and sufficient for producer equilibrium. Therefore, the producer’s optimal behavior is characterized by:




(3  rUEp-cWYIEUM) S0 y2 0 (i=12..8),

AU, =0,  (=1.2..K). '

The first set of equations in (3) has exactly the same interpretation as the conditions given by
(1) and (2). The second set of conditions in (3) represents a set of arbitrage conditions for the futures
markets which requires the producer to make zero expected marginal utility in each of his futures
operations. These arbitrage re[ations and the first set of equations, however, also yield an arbitrage
relationship that connects the producer’s production operation with his or her operations in the futures
markets. We have:

Lemma 5: For an interior production equilibrium to (3), the producer's equilibrium must satisfy the
arbitrage conditions:

T(cwy)pJbl =0,  (j=1.2,...K), and

Z(cwyy)py) = 1.

The second inequality is yet another manifestation of Lemma 3. To provide an alternaiive
interpretation of the first condition to the requirement that the futures market be unbiased when
evaluated in terms of the shadow probabilities, notice that c,(w,y)/p, represents a risk-neutral
individual's cost-benefit ratio from increasing the k-state output, b, represents the k-state marginal
profit on the jth futures contract. The result requires that state-contingent outputs be chosen so that
these vectors be orthogonal to one another, or in other words uncorrelated. The intuition is simple: The
existence of futures markets offers the producers K more markets in which to take a position. The
producer being risk-averse would like to balance the risk that arises in the commodity market for which
he produces (both price and production) against the risk present in these other markets. In doing so,
however, he or she must insure that no systematic opportunites for increasing expected profit while
holding its dispersion constant exist. The first K conditions in Lemma 5 insure this last result that all
systematic opportunities for increasing expected profit have been exploited. .‘To see this more clearly,
suppose that instead of equalling zero, any one of the first K expressions in Lemma 5 were strictly
positive. Let the contract for which this is true be the jth futures contract. Then the producer could

increase his or her jth futures position by one unit. This generates a revenue change of b, in each
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state k. The original state k revenue can now be restored by changing the k-state output by - b, /p, .

Revenue would be unchanged but costs would now change by -Y,(c.(w,y)/p)b, < 0. Hence, the
producer could achieve the exact same revenue vector bht at reduced cost. Thus, the original
allocation could not have been optimal.

Obvious analogues to Corollaries 1- 6 apply to Lemma 5. Therefore, we shall not repeat thém
but we shall leave their derivation and interpretation to the interested reader. Instead we focus on |
isolating sufficient conditions for a separation result. To that end we introduce the following spanning
condition:;

S: There exist S - 1 futures markets for which the matrix B ¢ RS x RS is invertible:

B = [e, b', b%,...,.b%"".
Here e € R® is the unit vector. S requires e and the basis vectors, employing our original abuse of
terminology, to span S space (quite literally the basis vectors provide a basis for S'space). Notice in
particular that the condition requires that no two basis vectors or any subset of the basis vectors be
perfectly correlated with one another.
_ Result 4: Suppose S is satisfied then any interior solution to (3) must have thé producer's‘ p‘roduction
decisions independent of his or her risk preferences.

Here again the intuition is similar to that for Result 3. Therefore, it need not be repeated.
However, we do note that Result 4 greatly strengthens Result 3 as it shows that as the number of
independent futures markets proliferates, it becomes more likely that producers decisions will be
independent of their risk preferences.

Concluding Remarks

This paper revisits the DHFAD separation results from the theory of the risk-averse, competitive
firm facing price risk but not production risk using a more general formulation of production under
uncertainty. Using this formulation, we show that that result hinges upon an overly restrictive
representation of the technology. Hence, the DHFAD separation result will not generally apply.

However, one can establish true separation results which, like the spanning results in the finance

literature, depend upon the information structure of the market. In deriving these results, we also

















































(3) mu'(Rp; -c(Wy)Zmu'(n) <0 y2 0 (i=12..9),

T mu(r)b, = 0, (i=12,..K).

The first set of equations in (3) has exactly the same interpretation as the conditions given by
(1) and (2). The second set of conditions in (3) represents a set of arbitrage conditions for the futures
markets which requires the producer to make zero expected marginal utility in each of his futures
operations. These arbitrage rel_ations and the first set of equations, however, also yield an arbitrage
relationship that connects the producer’s production operation with his or her operations in the futures
markets. We have:

Lemma 5: For an interior production equilibrium to (3), the producer’s equilibrium must satisfy the
arbitrage conditions:

T (C(W,Y)/pIb, = 0, (i=1.2,..K), and

Z(edwy)/p) = 1.

The second inequality is yet another manifestation of Lemma 3. To provide an altemaiive
interpretation of the first condition to the requirement that the futures ,markét be unbiased when
evaluated in terms of the shadow probabilities, notice that ¢, (w,y)/p, represents a risk-neutral
individual's cost-benefit ratio from increasing the k-state output, b, represents the k-state marginal
profit on the jth futures contract. The result requires that state-contingent outputs be chosen so that
these vectors be orthogonal to one another, or in other words uncorrelated. The intuition is simple: The
existence of futures markets offers the producers K more markets in which to take a position. The
producer being risk-averse would like to balance the risk that arises in the commodity market for which
he produces (both price and production) against the risk present in these other markets. In doing so,
however, he or she must insure that no systematic opportunites for increasing expected profit while
holding its dispersion constant exist. The first K conditions in Lemma 5 insure this last result that all
systematic opportunities for increasing expected profit have been exploited. _‘To see this more clearly,
suppose that instead of equalling zero, any one of the first K expressions in Lemma 5 were strictly

positive. Let the contract for which this is true be the jth futures contract. Then the producer could

increase his or her jth futures position by one unit. This generates a revenue change of b, in each




state k. The oriéinal state k revenue can now be restored by changing the k-state output by - b/, /p, .
Revenue would be unchanged but costs would now change by -Z.(c(w,y)pJbl, < 0. Hence, the
producer could achieve the exact same revenue vector bht at reduced cost. Thus, the original
allocation could not have been optimal.

Obvious analogues to Corollaries 1- 6 apply to Lemma 5. Therefore, we shall not repeat thém
but we shall leave their derivation and interpretation to the interested reader. Instead we focus on |
isolating sufficient conditions for a separation result. To that end we introduce the following spanning
condition:

S: There exist S - 1 futures markets for which the matrix B € RS x RS is invertible:
B = [e, b', b%,...,.b%"".

Here e € R® is the unit vector. S requires e and the basis vectors, employing our original abuse of
terminology, to span S space (quite literally the basis vectors provide a basis for S space). Notice in
particular that the condition requires that no two basis vectors or any subset of the basis vectors be
perfectly correlated with one another.

_ Result 4: Sup_pose S is satisfied then any interior solution to (3) must have thé producer'§ production
decisions independent of his or her risk preferences.

Here again the intuition is similar to that for Result 3. Therefore, it need not be repeated.
However, we do note that Result 4 greatly strengthens Result 3 as it shows that as the number of
indepen'dent futures markets proliferates, it becomes more likely that producers decisions will be
independent of their risk preferences.

Concluding Remarks

This paper revisits the DHFAD separation results from the theory of the risk-averse, competitive
firm facing price risk but not production risk using a more general formulation of production under
uncertainty. Using this formulation, we show that that result hinges upon an overly restrictive
representation of the technology. Hence, the DHFAD separation result will not generally apply.
However, one can establish true separation results which, like the spanning results in the finance

literature, depend upon the information structure of the market. In deriving these results, we also
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deduce a probabilistic law of supply and a number of other results on producer behaviour that aﬁply
to risk-averse firms facing price uncertainty.
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Proofs

Lemma 1: Both parts of the lemma are proved in an identical fashion, so the proof of the second part
is left to the reader. To prove the first, suppose contrary to the lemma that y(p) ¢ I*. Then define, y’ €
*byy =(y, .., y) where y = Zmy(p). Because p € I*, expected revenue for y’ is the same as for
y(p). Now notice that y’ = P’y(p) where P’ is the row stochastic matrix defined by having each row
corréspond to © . Hence, by Z, c(w,y’) < c(w, y(p)).
Lemma 2: Z implies c(w, P'y(p)) < c(w, y(p)), where P’ is defined as in the prbof of Lemma 1.
Hence, for y(p) to be optimal it must satisfy
Zmp,Yi(P) - ¢(W, Y(P)) = R(y(P)Zmp; - c(W, P'y(P)).

Rearranging establishes

Zmp; [YiP) - m(y(P)] 2 c(w, y(p)) - c(w, P’y(p)) 2 0.
Lemma 3: A necessary condition for a producer equilibrium is that

U (PYi- C(W, ¥ )P -C(W,Y)Zum’ (P - C(W, Y ) < O
(i=1,2,..,S). Hence, .

L TRy oW, ¥ ) S (CWY)PISmU (B - oW ¥ )-

Summing over all i gives

Xmu'(py;- (W, Y ) < Zi(c(W,Y)/p)Zml’ (Pyx - (W, Y ),

‘and division using the fact that u is strictly increésing gives the result. The result for an interior solution -

follows immediately by using complementary slackness.

Result 1: Consider using the shadow probabilities, c(w,y)/p; (i = 1, 2, ...,S), derived in Lemma 3 to
maximize expected profit for the same p and cost structure faced by a risk-averse individual. Using
these shadow probabilities leads to replacing mp; with c(w,y) (the PY efficiency prices for y) in the
expected profit m;';lxirﬁization problem. This leads a risk-neutral individual to pick the same y as the
risk-averse ‘individual chose. Now apply Lemma 2 using these shadow probabilities.

Lemma 4: The p.roof of the second equality is the same as the proof of the second equality in Lemma

3 and will not be repeated. To prove the first equality, notice that for an interior solution (2) requires

that




2mU(n)p = Ze(w,y) Zmu'(n).

Substituting this result into the second expression in (2) yields the desired equation.
Corollary 5: If the forward market is unbiased then Theorem 2.16 of Hardy, Littlewood, and Polya
(p-26) applied to the harmonic and ordinary means implies qX,, p.' > 1, whence, 2P -9)/ p <0
and q Z,m(Py - Q) Py < 0. S (C(W,Y)/m)(Py - Q)Y Py = TG (WY) - q 2 (cw,y)/py) = 0 using Lemma 4.
Result 2: The proof is by contradiction. Suppose contrary to the result that the interior optimizer y* e
I* ie., y, = uwy* for all i. Under Z, the second part of Lemma 1 implies that y* also solves
Min {c(w)y): Zmy; = u(y*).

Hence from the first-order conditions, which are necessary and sufficient, for this problem it must be
true that c(w,y)/m; = c(w,y)/r, for all i and k. Also, because the forward market is unbiased it must be
true that if this y* is optimal, the optimal hedge must involve selling the entire amount forward. Thus
the producer is risk-neutral in a neighborhood of the certainty outcome y*. Now suppose states i and k
satisfy the condition stated in the Result. An increase in output by the small but positive amount § in
state i and a corresponding decrease in outpui by & in state k leads to the followfng change'in expected
utility, u'(r)d [rp, - mp, - c(w,y*)(1 - m/m)], where r = q u(y*) - c(w,y*). Under-the conditions of the
Result this change in ;expected utility must be strictly positive contradicting the supposition that y* was
optimal.
Result 3: Suppose S = 2, then Lemma 4 implies

C;(W,Y) + c,(wW)y) = q, and

Ci(W,Y)/p; + Cy(W,y)/ p, = 1.
Provided that there is price uncertainty (p,=p,), this set of equations has a solution given by

Ci(W,Y) = py(q - P.)/(P; - Po), and

Co(W,Y) = P, (Py - Q)/(p; - p,).
Corollary 1 now establishes that marglnal costs are nonnegative as required and the above can be
used to determine the production equnlubnum mdependent of the producer’s nsk preferences.

Lemma 5: The second equation follows as in Lemma 3 and Lemma 4. ‘For an interior solution, the

first-order conditions require




' (r)p; -C(W,Y) Zmu’'(r) = 0 i=1.2,..S), and
Iy (), - q) =0, (=1.2,...K).
" The first S conditions imply
() = CWY/P)Zmu(n)  (i=12,...9).
To get the first K equalities substitute this last expression into each of the K futures market conditiorjs
recognizing that u'(r,) is strictly positive. x

Result 4: Under S the set of equalities in Lemma 5 are an invertible system of equations, independent

of the producer’s risk attitudes, which can be solved for the equilibrium c(w,y)/ p, (i = 1,2,...,S).
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