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A Virtually Ideal Production System: Specifying and Estimating the VIPS Model

Robert G. Chambers and Rulon D. Pope

The class of profit functions, termed VIPS for "virtually ideal production system," consistent with

all derived demands being linear in numeric functions of output prices is characterized. A

flexible but parsimonious version of the VIPS profit function is specified and the implied supply-

response system is estimated using aggregate U.S. agricultural data.
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A Virtually Ideal Production System: Specifying and Estimating the vrps Model'

There are two distinct approaches to specifying estimable systems of equations for

consumer-demand and derived-demand models. The more popular is to specify an appropriate

dual indirect objective function with attractive properties and then use versions of Roy's identity,

Hotelling's lemma, or Shephard's lemma, as appropriate, to derive functional specifications for

the demand or supply relationships. Well-known examples of this approach include the

transcendental logarithmic (translog) family of cost, profit, and indirect utility functions, the

Generalized Leontief family, and McFadden's general linear model.

The second approach is to specify demand relationships with desirable properties and then

impose upon these relationships the requisite properties for integrability. The Stone-Geary,

Rotterdam, and Muellbauer's PIGL systems were originally derived in this fashion. Where the

first approach involves specifying an indirect objective function which guarantees integrability

but may not ensure desirable demand relationships (for example, in terms of empirical

tractability), the latter starts with the desired demand or supply form and resurrects the implied

indirect objective function and, along with it, any associated restrictions on the derived demands.

The nexus between the two approaches is the envelope relationship in its various guises (Roy's

identity, Hotelling's lemma, and Shephard's lemma).

This paper pursues the second approach in a production context. (To our knowledge, the

only previous effort in this direction was the Laitenen and Theil extension of the Rotterdam

model .to production-response systems.) Our purpose is to start with a very general derived-

dernand relationship that satisfies a criterion which is particularly convenient for empirical

production analysis. This criterion is that derived demands be linear in functions of output
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prices. These demands have other convenient properties, such as aggregate
 derived-demand

models that are internally consistent with microeconomic models. That is, they ca
n consistently

"price aggregate" in the sense of Chambers and Pope (1991) and thus cir
cumvent the Pope-

Chambers impossibility result. For example, variations in product quality leading to different

output prices can be easily, explicitly, and exactly accommodated using
 these demands and the

corresponding supplies. Moreover, like the AIDS model from consumer 
demand theory, they are

also consistent with second-order flexibility and can be specified to b
e linear in parameters.

Important special cases of the class of these demands are the linear (i
n output price) derived

demand and the linear-in-moments model introduced by Chambers and
 Pope (1992). Because

they are simple, are second-order flexible, and can price aggregate we 
refer to them, in the spirit

of Deaton and Muellbauer, as "virtually ideal".

Our first section defines and motivates the virtually ideal input demand 
functions. The

next section characterizes the class of profit functions implied by the virtua
lly ideal input demand

system and derives from it the system of supplies consistent with the virt
ually ideal system. The

third section specifies an estimable version of this general class of profit fu
nctions. The fourth

section illustrates the empirical use of this system by applying it to a set o
f aggregate production

data for the United States that has served as the basis of a number of
 empirical studies of U.S.

agricultural supply response. The final section concludes.

A Virtually Ideal Input Demand System — Definition and Motivati
on

The virtually ideal input-demand system is the integrable subset of the clas
s of input

demands assuming the form:

(1) -X i(P9W) a i(w) Ebir(w)fr(p)
r =1
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where xi(p,w) represents the profit maximizing derived demand for the ith input, p E atm„ is a

vector of output prices, and w E Or. is a vector of input prices. (Throughout, superscripts are

commodity or input indices unless otherwise noted.) Each f(p) (r = 1, ..., R) represents a distinct

numeric function of the output prices. Generally, choice of f r(p) and the magnitude of R will

be dictated by the degree to which the researcher wants to approximate (in p) the derived

demands. For example, if a researcher desired a first-order approximation, R could equal one

and a natural candidate for f(p) would be F(p) = p (in the case of scalar p). Higher order

approximations would require increasing R.

The reader will note that (1) contains no direct representation of the system of associated

supplies. Because our focus is on derived demands, that exclusion is intentional. Generally,

derived demands and supplies from a common profit function will not be in the same polynomial

class (in p). Thus, for example, specification of the supplies in a form similar to (1) would

generally limit the class of integrable derived demands so as to make (1) either degenerate or

trivial. Consider an example. Suppose that p is a scalar, R = 1 and f(p) = p, and that the

desired supply form is the same as (1). By Hotelling's lemma, the associated profit function

must be quadratic.' As our results below indicate, this is overly restrictive. Thus, to preserve

as much generality as possible while still retaining the tractable form in (1) for the derived

demands, no additional restrictions are placed on supplies. Once the profit function consistent

with (1) is deduced, supply functions can be derived via Hotelling's lemma: these supply

functions will reflect the restrictions in (1).

What makes (1) attractive when other demand systems might be specified? First, (1) can

be explicitly and nontrivially made to be integrable (derived from profit maximization). Further,

it can be made second-order flexible. This is shown in the next section. Finally, empirical
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production analysis often involves some form of aggregation either over different microeconomic

units or over different quantities. This happens for both inputs and outputs. System (1) has been

specified to permit easy aggregation over different output prices.

We have chosen to highlight the aggregation of farm level output prices. This is not to

say that input variations are not important, but we feel that output quality variation is more

typically of concern. Clearly fruits and vegetables exhibit great intraseasonal and spatial variation

in price. Moreover, even a commodity like wheat exhibits substantial quality and price variation

(see Nuckton and Gardner for a recent discussion). Recent empirical work (Chambers and Pope,

1991) also indicates that output-price aggregation is a problem in analyzing wheat supply

response. While we concentrate on output-price aggregation, future work must address the

possibility of both input and output price aggregation. In any case, the approach discussed here

should aid in other production aggregation problems regardless of the source of the heterogeneity.

To illustrate briefly how (1) might be used in aggregation, consider the single output case.

Let there be k = 1, K agents facing K output prices PK.

"intercept" in (1) varies as a(w) k = I, ..., K. Hence,

-Xk= aik (NV) E b(w) fr(po, k = 1,...,K.
r=1

Average aggregate or "representative" demand is

i
-X E 

1 E xki (W) + E b(w) r

K k=1 r=1

Suppose also that the

1i r 1
where iii(w) = — ak and f = E f r (Pk) . If for example, f'(Pk) = Pk and f2(Pk) =

K k=1

K
- 7- 2 _

then f
1 

—(p) = 
1 E pk and -  p ik , .e., the first two moments about zero enter -I( i •
K k=1 K k=1

Thus, the aggregate input demand equation would be linear in the. moments (about zero).
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Because the second moment about zero is the second central moment (variance) plus the mean

squared, the above could easily be rewritten in terms of the variance.

1 x---N
Another possibility for aggregate price indices is the mean and — Pk Pn. Pk' which

K k=1

is similar to the PIGLOG income index used by Muellbauer but applied here to output prices.

These indices are consistent for R = 2 with f'(Pk) = pk and f2(Pk) = Pk en pk. Thus, the form in

(1) can accommodate many price indices at the aggregate level. For that reason, we refer to the

integrable version of (1) as a "virtually ideal input demand system" by analogy to the "almost

ideal demand system" of Deaton and Muellbauer.2

Finally, a complete production system generally includes both demand and supply

functions. Supply functions consistent with an integrable version of (1) are presented in the next

section. The supply functions are themselves not aggregable using the same aggregators used

in the aggregate demands. But they will generally be aggregable using a different set of price

indices.

A Virtually Ideal Production System

Our main restriction for the derived demands beyond (1) is that they emerge from the

following maximization problem:

(2) n(p, w) = Max {py wx : (x,y) E T)

where T 91m, x 911:. is a compact and strictly convex production possibilities set. It is well-known

that n(p,w) is positively linearly homogeneous and convex in p and w (Chambers). Moreover,

because our assumptions on T guarantee the existence of a unique solution to (2), Hotelling s

Lemma implies that

(3) - x (1), vv) = (P, (i = 1, 2, ..., n)

ys(P, w) = its(p, w) (s = 1, m)



where ni aniaw. (i n) and ns an/aps (s = 1, ..., m). (Subscripts on functions denote

partial derivatives.) Our main theoretical result is (the proof is in an appendix):

Result: The derived-demand structure derived from (2) satisfies (1) if and only if

it(p,w) = A(w) + C(p) + E Br(w) F (p).
r = 1

with the derived demands and supplies given by

-x = Ai(w) + E Bir(w) f r(p) 1, ..., n),
r = I

yS = Cs(p) + E B r(w) f(p) (s = 1, m).

r = 1

The profit function in the Result is referred to as the virtually ideal production system

(VIPS) profit function. The result establishes that the system of derived demands in (1) is

consistent with profit maximizing behavior if and only if the profit function (and hence the entire

system) can be 'characterized in terms of 2(R + 1) independent functions: A(w), C(p), and R

.13r(w) and f(p) functions. Notice, however, that the system as represented in (1) has

n + R(n + 1) functions. In most practical instances, therefore, the rank of the VIPS derived-

demand system will be considerably smaller than (1) suggests. (So long as n > 1 and each

demand actually depends on p, the rank of the VIPS derived-demand system will be smaller than

that in (1).) Thus, the requirements for integrability of the derived demands in (1) substantially

reduce the number of independent functions required to represent derived demands and profit

maximizing supply.

.The choice of R (i.e., the number of f(p) functions) may usefully be discussed in the

context of the Result. Generally R will be chosen with an eye toward making either ic(p, w) or

xl(p, w) at least second-order flexible in both w and p. Thus, the choke is somewhat arbitrary
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and will be dictated by the needs of the researcher and involves as much craft as theory. The

usual choice is to make n(p, w) second-order flexible in p. But a strength of the VIPS model

is that appropriate choices of R and f r(p) permit making derived demand second-order flexible.

For example, suppose that we choose R = 2 and the PIGLOG specification above, then both

n(p, w) and xi(p,w) are second-order flexible in p.

Another criterion which may guide the choice of R and f r(p) (r = 1,...,R) is the desired

aggregation properties of the resulting system. Pope and Chambers have shown that no single

price index can aggregate derived demands and supplies jointly so long as quantity aggregates

are sums of individual quantities. The VIPS model has the ability to aggregate derived demands

and supplies jointly. The Pope-Chambers impossibility result is circumvented by allowing

supplies to be aggregated using a different set of multiple price aggregates than is used for the

derived demands.

To illustrate this property of the VIPS model let us return to the aggregation formulation

discussed earlier where aggregate derived demands were representable in terms of
K

7'0) = pk and 72(p) =
2

pk . Referring to the Result, it is now apparent that the

-2 2
corresponding supplies would be aggregable using the index f( p) = E pk and

K k=1

C1 (p) = —1 E Cik (pk). Thus, by relaxing the requirement of a single aggregate price index
k=1

we can specify meaningful aggregate supply-response systems. The desired properties of the

price aggregators would then be a useful guide to the choice of f 
r (p) (r = 1,...,R).

For the VIPS profit function to be consistent with known properties of profit functions,

it must be both convex and positively linearly homogeneous in prices. In making the Result

operational, that is, in specifying a potentially estimable system based upon the VIPS profit

function, the main difficulty is in specifying versions of the Br(w) and r(p) functions consistent
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with the homogeneity and convexity properties of profit functions. Because we seek a system

that can be estimated solely by linear regression methods, our focus in what follows will be on

satisfying the simpler homogeneity properties. (However, by appropriate choice of functional

specification our discussion can be extended to encompass convexity using the methods

developed by Diewert and Wales.)

In generating candidate functions to satisfy the Result, the proof of the Result offers a

clear strategy: Find 2(R +1) functions satisfying the properties of profit functions and then

proceed to generate the functions in the Result by the use of reference vectors. As a practical

matter, researchers often proceed conditionally: f r(p) and R are specified using some attractive

criteria. Given this choice, A(w) and Br(w) (r = 1,...,R) are specified based upon differentiability,

homogeneity, familiarity, and simplicity of estimation. In the following section, we pursue this

strategy, which is similar in spirit to the work of Howe, Pollak, and Wales in developing the

quadratic expenditure "system of consumer demands. Because there are an infinite number of

possible functions satisfying the Result, our search is guided by the principles of parsimony and

flexibility as espoused by Fuss, McFadden, and Mundlak.

An Estimable VIPSLIM Profit Function

Attention here is restricted to the case of a scalar output. The extension to multiple

outputs is straightforward. For a scalar output, the requirement of positive linear homogeneity

virtually eliminates the term C(p) in the VIPS model because it must assume the form cp, c

91. A(w), does not suffer from this same difficulty. An obvious, practical, and familiar choice

is the Generalized Leontief function
n n

A (w) = (1/2)E E aij (wi wi)1f2
1=1 j
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with aij = aii E (i = 1,2,..,n). This choice of A(w) is particularly convenient because its

properties are well understood. Moreover, sufficient parametric restrictions for convexity are

well-known: A(w) is convex if aij < 0 for all i j.

In choosing a specification for E Br(w) f r (p), we want to choose something that is
r=1

simple but still informative. To highlight the aggregation properties of (1) we specify what we

refer to as the VIPSLIM form (for virtually ideal production system — linear in moments). Our

choice is predicated upon the ability of the VIPS model to price aggregate in the sense of

Chambers and Pope (1991), and a desire to have price aggregators which are capable of fully

characterizing the distribution of prices at the micro level. Under very weak regularity properties,

the moments (about zero) of the price distribution provide this quality (Bickel and Doksum).

Therefore, we choose

f r (p) = pr (r = 1,2,...,R).

•

To satisfy homogeneity globally, each Br(w) must be homogeneous of degree I - r. For

simplicity, we only address the case of R = 2, i.e., a quadratic profit function. (The reader can

easily extend this to arbitrary R). As noted earlier, this allows aggregate demand to depend on

the mean and variance (and hence on the mean squared) of the price distribution. Specify 131(w)

as

B (w) = E bi (Wi/Wk)

i*k

and specify B2(w) as

B2(w) = giE wi

where bi and g are parameters to be estimated. The single product VIPSLIM supply function

is y = c + 131(w) + 2132(w)p. Thus, the supply function is linear in output price but as is obvious

frorrf(1), input demands are not. This highlights the fundamental aggregation property discussed
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above: to be aggregable, supply and input demands must be affected in fundamentally different

fashions by output price heterogeneity and thus must rely on different price aggregators. In the

VIPSLIM model specified here the aggregate derived demands and profit depend upon the first

R moments while supply depends upon the first R-1 moments.

The VIPSLIM profit function has (n+2)(n+1)/2 parameters and is linearly homogeneous

in input and output prices. Therefore, so long as the relevant Wronksian matrix (see Chambers,

Chapter 5) is invertible, the VIPSLIM form provides a second-order approximation to an arbitrary

differentiable profit function parsimoniously. Moreover, it belongs to the class of generalized

linear profit functions introduced by McFadden. Consequently, its parameters can be estimated

using linear multivariate regression techniques. Notice, however, that the VIPSLIM model treats

(as does the original McFadden model) one input price asymmetrically in the specification of the

131(w) function. Hence, one of its factor demands (here factor demand k) will have a slightly

_ different form than the other factors. All, however, remain linear in the moments of p,

preserving the fundamental VIPSLIM property.

Asymmetries are encountered for other normalized forms such as the "normalized

quadratic". This asymmetry is attractive because the form is simple yet allows for a variety of

nonnested models with only changes in normalization. However, some may prefer symmetric

model structures. Giving up linearity in parameters, it is easy to specify symmetric versions of

the VIPSLIM model that closely approximate the Diewert and Wales formulation.' There are

many reasonable ways that the functions of w can be parameterized. Our purpose here is not to

delineate the best possible specification (this depends upon the needs of the study) but to

illustrate one that is easily estimable.
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An Illustrative VIPS Model

To illustrate the VIPSLIM model and its applicability, we make the strong assumption that

the United States agricultural production sector can be accurately modeled using a single-output

aggregate profit function. While a number of other authors have made similar assumptions in

estimating aggregate profit and cost functions (Ball and Chambers; Antle; Shumway; Capalbo

and Denny; Ball), doing so here should not be interpreted as reflecting a belief on our part that

such an aggregate profit function is plausible. Specifically, we do not assume that the estimated

model represents a model derived using the LIM aggregation procedure discussed above. Rather

our purpose is to illustrate the estimation of a model in the VIPSLIM form using a data set that

has been the basis for a number of other applied production studies. For this illustration, assume

that aggregate U.S. agricultural output is produced using a constant returns to scale technology

(this assumption is imposed because of the manner in which the data were constructed) using

six aggregate inputs: land .(A), labor (L), pesdcides(P), fertilizer (F), materials (M), and capital

(K). Land was treated as a fixed input, so that the assumption of constant returns to scale

implies that the variable profit function (land-rent) function can be represented as:

n*(p, wL, wp, wF, wm, wK; A, t) = A n(p, wL, wp, wF, wm, wK; t).

Here t stands for time. Its inclusion reflects the fact that our data are time series in nature and

captures the possibility of technical change over the sample period. We accommodate the

presence of technical change by modifying A(w) and c(p) as follows:

A(w; t) = (1/2) E Ea (wi wj)½ + t E w, , and

c(1), t) = cp + t•rsp.

where the xi, are parameters to be estimated.
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In what follows, n(p, wL, wp, wF, wm, wK; t) is the focus of our attention. Applying the

Shephard-Hotelling lemma yields the following per-acre supply and input demand functions,

respectively:

y/A = c + tts + E (wiwk) 2gp/E wi,
i*k 1=1

(4) -xi/A = t + (1/2)E aii (wiwi)(112) + bi(piwk) -
j=1

-1/2/A = trk + (1/2)E aii(WIWk)(112) (p/wk)E bi(wiwk) P2giE wi
j=1 i*k 1=1

J

J2

(i#k), and

2

Estimating equations were obtained by appending an additive error term to each equation in (4).

These error terms were assumed to be contemporaneously correlated but intertemporally

independent and identically distributed around a mean of zero to permit the application of simple

constrained multivariate regression techniques.

The data used to estimate the model in (4) were annual data for U.S. agriculture and were

provided by V. Eldon Ball of the Economic Research Service, United States Department of

Agriculture. The data cover the period 1948-1989. Descriptions of the original data sources and

the philosophy and methods used for the construction of variables, including the price of capital,

are contained in Ball (1985) and Ball (1988).

Estimation Results

Because the VIPSLIM model treats input k asymmetrically, the choice of which input

price to use as the numeraire in 131(w) is somewhat arbitrary. Therefore, we estimated five

versions of the VIPSLIM model with each version corresponding to a different numeraire in

13[(w): The estimated parameters and their asymptotic standard errors for the version using

pesticide price as the numeraire are presented in Table I. The parameters were estimated using
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the iterative, seemingly-unrelated regression routine available in SAS/PC. Estimated price

elasticities derived from these parameter estimates are reported in Table 2. All are plausible and

well within the range of elasticities reported in other studies.

We should note, however, that different versions of the VIPSLIM model performed

differently. In particular, depending upon which input price was chosen as the numeraire, we

encountered a fairly wide range of estimates for the supply elasticity (.09 to .24 at sample means)

and a wider variation in the own-price elasticity of the pesticide demand equation (upward

sloping derived demands were found for some sample periods). The difficulty with the pesticide

equation is not surprising given the difficulty of correctly specifying an annual, aggregate model

of pesticide use (Chambers and Lichtenberg). In principle, therefore, the asymmetry offers a path

by which nonnested hypothesis testing or other model selection techniques could be used to

isolate the "best" model within the V1PSLIM family.

For each version of the model difficulties were encountered in satisfying convexity

properties of profit functions. One of the calculated eigenvalues for the Hessian matrix of the

pesticide-normalized version of the VIPSLIM profit function evaluated at sample means was

negative. Hence, the estimated VIPSLIM profit function is not convex at that point. Difficulties

with convexity were encountered at other points in the sample. However, as most students of

the existing empirical literature on agricultural supply-response systems know, failure to satisfy

convexity in estimated profit functions is not unique to this study. Moreover, similar problems

have been encountered previously for versions of this data set (Ball, 1988). Therefore, no attempt

was made to correct for the failure to satisfy convexity of the VIPSLIM model because the

purpose of the present study is not to explain aggregate response but to illustrate how the

VIPSLIM model might be applied.
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Conclusion

This paper's contributions are two: to characterize exhaustively the family of profit

functions consistent with derived-demand functions being affine in functions of the output prices;

and to propose and estimate one member of this class of profit functions using aggregate U.S.

data. The profit function chosen, which we have dubbed VIPSLIM, has the attractive property

of being able to aggregate consistently in the sense of Chambers and Pope (1991) as well as

being linear in the sample moments of the output price.
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Endnote

I. In a related paper we show that the VIPS profit function derived below is consistent with

derived demands assuming the form in (1) and supplies of the form:

L

y 1(1), w) - ai(13) ÷ E 13'(oce(w)
4=1

2. Both of these specifications employ two price aggregators thus circumventing the

impossibility result of Pope and Chambers which is for single price aggregations.

3. A symmetric version of the VIPSLIM model was specified and estimated with results

similar to those reported below. Giving up linearity in parameters, B2(w) could be made

to be the simple Cobb-Douglas homogeneous of degree minus one. However, this would

also add additional parameters to be estimated.

I
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Table 1: Coefficients and Standard Errors of the US VIPSLIM Model

Parameter 

au

aLP

aLF

aLm

aLK

a p p

a p F

a p M

a p K

aFF

aFm

aFK

amm

a Ng(

ala

YL

Estimate Standard Error 

-8.242582 0.983050

1.493558 0.395451

-0.394250 0.274661

-3.646507 0.775624

0.219843 0.484850

0.892916 0.358189

-0.996692 0.349708

1.304924 0.774904

-2.297284 0.535933

0.247581 0.380703

0.043853 0.401890

1.971695 0.201058

-0.718115 1.856245

-1.915917 0.616212

0.918254 0.763407

0.041067 0.004392 •
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YR - 0 . 0 1 4 6 2 5 0.001897

7F -0.021272 0.002238

I'm -0.052898 0.005380

A -0.045110 0.003729

c 2.117302 0.342188

Ys 0.276324 0.008206

bt, 0.589044 0.110945

bF -0.351864 0.075438

bm 0.140474 0.191226

bK -0.463031 0.122426

g 0.173032 0.018957 .
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. Table 2: Elasticities Calculated at the Sample Mean

price->

lquantity

, ..

Output Labor Pesticide Fertilizer Materials Capital

.

Output 0.19432 -0.007255 -0.011881 -0.069030 -0.027107 -0.079051

,

Labor 0.021525 -0.27236 0.025111 0.023383 0.21613 -0.013785

i

Pestic 'le 0.52508 0.37403 -0.40311 -0.26807 -0.85572

-

0.62779

,

Fertilizer 1.36546 0.15589 -0.11998 -0.46745 -0.019229 -0.91469

.,

Materials 0.089626 0.24086 -0.064021 -0.003214 -0.41172 0.14847

Capital 0.35653 -0.020955 0.064068 -0.20855 0.20252 -0.39361

•
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Appendix: Proof of the Result

Sufficiency is clear: apply Hotelling's lemma to the profit function in the Result to obtain

(1). The following establishes necessity. Integrability requires Hotelling's lemma. Hence;

ni(p,w) = - x t(p,w) = a' (w) + If (w) f r (p).

There are two approaches to establishing the necessary conditions for integrability. One can

assume differentiability of the demands, as is typically done in consumer demand theory (Howe,

Pollak and Wales; Lewbel). Or, one can use the reference vector approach pioneered by Gorman

and used extensively by Blackorby et al. (see, e.g., pp. 56-7).

Because the latter does not require differentiability of demands and thus is more general,

we employ it here. While more general, the reference vector approach also turns out to be

simpler mathematically because it does not require the deployment of the relatively exotic

Frobenius theorems on integrability of system of partial differential equations (see e.g. Lewbel).

Because its use may not be familiar to some readers, before proceeding with a complete proof

we illustrate its use for the simple case where R = 1 and n = 1. Then, (1) degenerates to

x(p, w) = a(w) + b(w) f(p)

(superfluous superscripts are dropped). Now find two separate output price vectors (the reference

vectors), call them ro' and p2, such that x(pl, w) * x(p2, w). Then if (1) and Hotelling's lemma

are to apply it must be true that

w) = a(w) + b(w) f(p1)

-1cw(P2, w) = a(w) b(w) f(132)

and f(p1) * f(p2). If we now set fl = f(p1),.f2 = f(p2), a(w) =. -Tcw(pl, w), and [3(w) = -/cw(p2, w)

the above can be reinterpreted as two functional equations in two unknow functions (a(w), b(w)).

And it can be rewritten in matrix form as

21



where

[a(w)1 e _ [11 
F=

P (w) 1

m(w) = [e, F]

f 11
 

f2

a(w)I_b(w)

which allows us to solve for a(w) and b(w) as

a(w) .= (e - 0)-1 (e a(w) - f' [3(w))

b(w) = (f2 - f')' (13(w)

This establishes that x(p, w) can be expressed completely in terms of the parameters f2, ft, and

the functions 13(w) and cc(w) which themselves are derivatives of it(p, w) evaluated at the

reference vectors p2 and p' respectively, and hence are integrable.

Substitute these results into (1) and use Hotelling's lemma to get

[12 - fl] nw (P, W) = f2 lc (PI, W) - fl irw (P2, W)

4- f(P) (lc (P2, w) - it. (pi, w)).

Now integrate over w to establish that

(f2 - f) n(P, w) = f2 101)1, w) - f' 742, w)

+ f(P) 042, w) - n(P1, w))

+ h(p)

where h(p) is a constant of integration. This is the general form found in the Result.

In the general case, set the p vector in (1) to the R+1. distinct reference vectors 13', ...

p', where the reference vectors are now chosen so that the matrix [e : i] is invertible. Here

e is now a (1xR) column vector of ones and F is a (l+r)xR matrix with typical element, f r(pk).

This operation gives the following invertible system of functional equations:
mki(w) = ai(w) 4.. Er bir (w) f rk 

(i= 1, ..., n), (k= 1, ..., R+1)
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where mk(w) = It(pk, w) (hence mki(w) = Tri(pk,w)) and ft = fr (pk). Invert this (R+1)x(R+1)

system to get

at (w) = Ek nket(w),

b(w) = Ek vrkmk,(w),

where nk and vrk E R (k = 1, 2,....,r+l, r = 1,2,...,R). Substitute these results back into the

Hotelling-Shephard lemma to get:

ni(P,w) = I, nkmk,(w) + Er(Ek vrkmk,(w)) f(p),

i = 1, 2, ..., n. Now integrability of TE requires that each rill is integrable. Integrating this system

of derived demands yields:

n(p,w) = h(p) + Ek nkmk(w) + Er(r.q, vrkmk(w)) if (13).

Now define A(w) = El( nkmk(w) and Br(w) = Ek vrkrnk(w) r = 1,...,R to achieve the form in the

Result. This establishes necessity.
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