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Models of production under uncertainty are central to modern economic théory. Besides
its obvious relevance to the theory of the firm facing uncertainty (Agnar Sandmo) and the
literature on price stabilization (David M.G. Newbery and Joséph Stiglitz), production under
uncertainty is also central to the incentives, contracting, and principal-agent literatures .
Principal-agent models, in particular, are increasingly being applied to problems in all
areas of economics. An incompleté sémpling would include problems as diverse as insurance
(Arthur Raviv.), auction theory (John Riley and William Samuelson), the failure of labor
markets to clear (the efficiency-wage literature), market regulation (Tracy Lewis and David
Sappington), and optimal risk sharing in the face of moral haéard (Mark Pauly; Bengt
Holmstrom).

While state-contingent commodities, production, and markets play a central role in
.general—equilibrium uncertainty models (Kenneth Arrow; Gerard Debreu; Roy Radner), the theory
of production under uncertainty (Sandmo; Hayne Leland; Richard Hartman; Yasunori Ishii;
Gershon Feder; and Newbery and Stiglitz) makes little use of these concepts. Broadly
speaking, producers are there viewed as choosing an input vector or scalar output prior to
the realization of a continuous random variable (either a random price, a random demand, or a
random production input) to rﬁaximize expected utilify. The combination of the input vector
and the realization of the random variable uniquely determines the producer’s ex post return.
Suppose, for example, the random variable represents rainfall. Then for a given input

veétor, the output for each rainfall level is uniquely determined.- Once producers select

their input,bundle, they have no control over the output they receive. If the random
variablevonly assumes two values ("no rain"land "rain"), the transformation function between
"no-rain" output and "rain" output is necessarily (explained below) of the fixed coefficient
form illustrated in Figure 1.

‘The problem of production under uncertainty is, thereby, .trivializedvbecausg producers

are assumed to be incapable of arraying their available resources to prepare for different




contingencies such as flood or drought. The traditional model arbitrarily and unnecessarily
relegates producer decisionmaking to selecting an input bundle with desireable risk

properties.}

This paper suggests an alternative approach to producer decisionmaking under uncertainty

that is simultaneously more realistic, more genera}, and (perhaps most importantly for
economists) more analytically tractable than the traditional approach. Moreover, the
-approach is congruent with the modern axiomatic approach to nonstochastic production analysis
(Rolf Fare; Ronald. Shephard), the state—contingerit approach of Arrow and Debreu, and the
.modern approach to decisions under uncertainty, in which actions are representedb as mappings
from a state space to a space of outcomes. Thus, our approach offers a natural bridge
between these apparently related (but previously disparate) hteratures

The central idea is that producers choose not only an input vector but a state-
contingent output vector as well. For any input bundle, a large set of state-contingent
output vectors may be feasible. In the rainfall exémple, producers can allocate capital and
labor in a4 way which protects them against low rainfall. Alternatively, they may allocate
the same capital and labor endowment in a way which yields high returns when rainfall is
high, and low or negative returns when rainfall is low.

In what follows, we first develop a notion of a state-contingent produétion technology.
The s‘tate-contingent technology is shown to generalize all existing models of production
under both price and productlon uncertainty. The technology is then used to analyze the
production decisions of a risk-averse producer under a very general (i.e. more general than
is usually considered) version of the expected utility model. The first step is the
development and characterization of an effort-cost f unc‘tionv having properties in state-
~ contingent revenues that are entirely analogous to properties usually possessed by multiple- '
' output cost functions (e.g. nonnegative and increasing marginal cost). The eff ort-cost

function is then used to characterize the production decisions of a risk-averse, expected-
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utility maximizing producer in terms of two expected-utility functions: One (the m-expected

utility function) maps probability spacé into ex post returns, the other (the p-expected
ut_ilitj'( function) maps _state—'contingent price schedules into ex post returns.

The effort-cost function is obsérvationally equivalent to a partial ordering that
evaluates uncertain revenue alternatives exactly as a risk averter would. In the equal
probability case, this latter result implies that the effort-cost function is always
observationally equivalent to an S-concave function.

 After charactérizing the behavior of risk-avgrse pfoducers, the power of our approach is
illustrated by applying it to the special case of the additively separable utility structure
studied extensively by David Newbery and Joseph Stiglitz. Our first result there establishes
a duality between the eff ort—c;ost function and the m-indirect expected utility function. The
remainder of the illustration develops compara;cive static results for the additively |
separable case that both generalize and extend existing results for this model. The f inal
section concludes by spmmarizing and discussing some of the many possible future applications
of our model to problems involving decisionmaking under uncertainty: moral hazard, adverse
selection, insurance, futures market analyses are but a few examples.
1. A State-Contingent Technology

The standard approach to prod/uction uncertainty specifiés a production f unctibn that
depends upon phyéical inputs committed prior to the resolution of uncertainty and a random
" input that indexes the state of nature. In that model, output price uncertainty is
equiv.alent to having the random input shift the production function multiplicatively.

Letting x € IRil denote the physical inputs, 6 € R+ denote the randorﬁ input, and f : IR;M >R
»denote the production function, random output z(8) is then defined by
z(8) = f(x,6).
~-Our approach f ollows Arrow and Debreu by dealing in state-contingent commodities.

(There is no requirement, however, that a complete set of contingent markets exist.)
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Following Debreu, assume that "Nature" makes a choice from among a finite set of
alternatives. Each of these alternatives is called a "state" and is indexed by a finite set
of the form Q = {1,2,3,....,S}. S, thus, denotes the number of different states of nature.
Once the index is given, all possible factors determining production conditions (weather,
etc.) are known.

(mxS)

Production relations are governed by a technology set T S IR': X lR+ defined by

T = { (x,2) : X can produce z, X € IR':, Z € IRTXS).

Here x is an input vector committed prior to the realization of the index of the state of

nature and z is a matrix of state-contingent outputs with typical element zlJ (i=1,...,m)
(j=1,...,S) corresponding, ex ante, to the amount of the ith output that would be produced if
the jth state of nature occurs. Multiple outputs are explicitly allowed. No;ice, however,
that if m = 1 (a single output) the technology, ex ante, is formally identicél to the
standard case of multiple-output production under certainty where n inputs are used to
produce S outputs. The only difference is that the outputs are now state-contingent. Thus,
only one output level actually occurs ex post. In the more general case, for each state
there is a distinct output vector with m separate entries each corresponding to a distinct
output.

In line with the traditional approach, all inputs are assumed to be chosen prior to
the resolution of uncertainty. However, it is easy to generalize T to cover the more
realistic case of sequential resolution of uncertainty by redefining z to include negative
entries corresponding to inputs committed after the resolution of uncertainty. Similarly, it
is also possible to extend T to cover the case where some outputs are produced under
conditions of certainty by redefining x to include negative entries corresponding to outputs

produced under cer‘tainfy.

k)
’

To relate T to the more traditional approach, consider the output correspondence Z: er: -

R™° that maps an input bundle into subsets Z(x) < [RTX.S of state-contingent outputs:
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Z(x) = {z: (x,2) € Th

In words, Z(x), the sfate-conttngent output set, represents all feasible combinations of
state-contingent outputs for input committal, x. Z(x) is easiest visualized by considering
the traditional case of a scalar output generated by the production function f(x, 8) when 6
can only assume two discrete values (1 and 2). Then, |

Z(x) = {z € R, : f(x,1) = z and f(x,2) = 2},

Z(x), in this case, is depicted graphically by the shaded area in Figure 1. The outer
boundary o‘f Z(x), or;mally the efficient subset of Z(x), might be heuristically thought of as
the transformation function between state-1 and state-2 contingent outputs. The state-
contingent output set in Figure 1 corresponds to what would be derived from a fixed-
coefficient transformation function (e.g. Robert Chambers, p. 266).

In the traditional model, only the vertex of Z(x) in Figure 1 can ever be observed. This
happens because the standard model explicitly forces the inequalities in the definition of
Z(x) to be equalities. Once inputs are chosen the range of outputs available effectively
degenerates to a single point in IRTXSQ Even if the producer wished to operate at a point
like A in Figure 1, it is precluded by assumption. This restriction, which departs markedly’.
from most modern representations of technology, necessarily circumscribes the analytical
results that emerge .by imposing an overly narrow notion of technical efficiency.

The single-output, fixed-coefficient nature of this state-contingent output set
illustrates the principal sﬁortcomings of the production function approach: once producere
have selected the input bundle they have no control over the single output they ultimately
receive. After the input bundle is chosen there is no substitutability between state-
contingent outputs. This is entirely unrealistic in most 'eases because it implies producers
cannot organize their inputs in a manner_that prepares differentially f or different
contingent outcomes. A more general and realistic approach allpWs producers this

" flexibility. Pictorially, this implies allowing the transf ormation function in Figure 1 to
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assume something other than a fixed-coefficient form. T affords this flexibility.
To develop analytical results, it is convenient to consider the natural inverse of Z(x)

. : _mxS
-- the input correspondence V: IRX;lx > R:

that maps the state-contingent output .ar_r'ay into
- subsets V(z) < IR:'l of inputs‘
V(z) = {x: (x, 2) € T}

V(z), the input set, gives thé inéut combinations that can produce the state-contingent
outpuf array z. Returning to the production-function representation where 6 can only assume
two values then

V(z) = { x: f(x,1) = z and f(x,2) = 22).
Thus, V(z) is the intersection of the upper contour sets (in x) of the production function
evaluated at 6 = 1 and 68 = 2. ‘ |

Developihg analytical results requires specifying properties of T (axioms). Our axioms
are:

Properties of the Input Set (V):

1. V(z) is nonempty; _

2. pV(z’) + (1- p) V(z°)A S V(uz’ + (1- w)z%); and

3. for z’ z 2z, V(z’') s V(2). |

Property V.1 requires that z be producible. Property V. 2, implies that T is a convex
set (see Rolf Fire). In a static production model, convexity of T is equivalenf to concavity

_of the scalar production function in inputs. Concavity in inputs is typically imposed in the
standard model of production uncertainty. Property V.3 requires the input set to exhibit
free disposability of output. In words, V.3 says that if an input bundle can be used to

N produce z that same input bundle is capable of producing any smaller output array, there ‘is
no. congestion among outputs. Pictorially V.3 allows for points like A 'in. Figure 1.

Before pi"oceeding, several comments should be made about properties V. Perhaps most

obviously, V contains no analogue of positive marginal productivities of inputs. Although
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intuitive and univeréally imposed, such an assumption is unnecessary to what follows. Secc'md,
all of the axioms are not necessary for all of the results that follow. For example, the
main role of V.3 is to guarantee monotonicity (positive marginal costs) of the effort-cost

f unction developed below. While intuitive, and graphically convenient, effort-cost
monotonicity (and hencé V.3) is required only to pxjovide a lower bound for the indirect
expected utility functions. V.2, on the other hand, is critical and represents a central
assumption in what. follows.

Often it is desireable to work in terms of monetary returns from the technology. All
existing models of ‘producer decisionmaking under uncertainty can be represented by a
. canonical version of the current model expressed in terms of state-contingent revenues. For
the case of 'production uncertainty only, this requires introducing a vector p € RT+ of output
prices and a fixed péyment (cost, asset) a € R. Because there exists no price uncertainty,
prices are not differentiated according to the state of nature that occurs. V(z) induces a
representation of the technology in terms of state-contingent revenues. Formally,

VPy) = { x : y =a+pz (i =1,...,S) and (x,2) € T).
Here z, € lR‘i1 is the i-state-contingent output vector. The notation Vpa(y) reminds the
reader that this representation of the technology is for fixed p and a.

In the case of pure price uncertainty .(no production uncertainty), i.e., z € IRT' there
exists a complete set of state-contingent prices p € IRT’:S. A representation of the
technology in terms of state-contingent returns is

VPy) = { x : A ‘= a+pz and (x,z) € T, x € [R':, Z € IRT}.
Finally, in the case of joint production and contract uncertainty2 there exists a set of

state-contingent fixed payments (assets, costs) a € R® and a set of state-contingent output

. S . . . .
prices p € lRT’: . A representation of the technology in terms of state-contingent revenues is

_given by

VP(y) = { x :'yl =a +pz and(x2) e T).
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In an abuse of terminology'aﬁd notation, the same notation is used for each of the three
different types of uncertainty, and VP%(y) is referred to as the input set. This is done for
two réasons: to reinforce the notion that VP(y) is a canonical technology; and f of given p
and a, Vpa(yi is easily shown to satisfy properties V when 2z’s are replaced by y's. (A
demonstration of this fact is left to the interested reader.)

3. Producer Preferences
The producer’s information and or beliefs about the relative likelihood of Nature

picking a particular state is summarized by t € T S IRi where
s
M={n:neR andZn=1).
++ i
=1
No- state occurs ‘with zero probability. The present paper only restricts itself to

expected-utility maximization, although more general behavioral models can easily be

accomodated. Producer preferences over state-contingent returns and inputs, therefore, are

(mxS) n

captured by W: IRi'+ x R X IR+ >R

S

W(y,x) = z nlw(yl, X)

1=1
where the elementary (ex post) utility function w: R x IR:l > R satisfies
w(yl,x) = F(yl. g(x)).

Here 1":[R+ x R » R is continuous, strictly increasiﬁg and concave in Yy and nonincreasing and
concave in g while g: [R? - IR+ is nondecreasing, continyous, and convex. F satisfies the
von-Neumann-Morgenstern postulates. Special cases of F include the expected utility of net
fetur‘n model

Fly, gx)) = I-_'(yl - g(x))
with F strictly increasing and st’rictlylcopcave and the separable utility model

F(yl, g(x)) = u(yl) - g(x) |

with u strictly increasing and concave.



4. Tile Effort-Cost Function

The function g measures the producer’s disutility of committing the input bundle x to

the uncertain production process. Special cases of g(x) include

g(x) = G(wx)
with G: IR+ > lR+ is strictly increasing and strictly convex and w € IR'L a vector of input
prices. The effort-cost function, c: [Rf > R, 'is defined by

“cly) = Min {g(x) : x € VP(y)).

Result 1: The effort-cost function, c(y), satisfies:

L cly’) zcly) = c(OS) for y' z y;

2 pely )+ 1 -p ey zclyy +U-wy) O0<p<l;

3. for y restricted to the domain lRi, c(y) is continuous.

The effort-cost function measures in utility units the cost of producing a given state-
contingent revenue vector. c(y) has essentially the same properties as are usually imposed
on multiple-output cost functions: Marginal cost for each state-contingent revenue is
nonnegative (property 1) and nondecreasing (property 2). Moreovef, if g(x) = wx, the effort-
cost f \inction has all the properties traditionally associated with cost functions
(homogeneity and concavity in w and Shephard’s Lemma) (Shephard; Rolf Fare).

The effort-cost function derived here is based on the canonical representation pf the
technology, VP%(y), and thus holds for fixed p and a (suppressed notationally). One can also
define an effort-cost function mapping the primitives, i.e., the state-coﬂtingent outputs,
into effort units. The properties of such an effort-cost function, apart from its domain,
are identical to those in Result 1 after replacing y with z. (The derivation of these
properties is left to the reader but the method of ‘proof is virtually identical to the proof
of Result 1. An effort-cost function of this type is used in section 6.)

Although properties 1.1 - 1.3 are virtually identical to those of ."multiple-output »cost

functions under certainty, they now have a somewhat different economic meaning. Figure 2
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depicts the isocost contour:

C) = (y € R: c(y) = C)
for S = 2. By Result 1.1, I(C) is negatively sloped. Result 1.2 implies that I(C) is
concave to the origin as drawn. For concreteness sake, take the two states of nature to be
"rain" (measured along the i/ertical axis) and "no rain" (measured along the horizontal axis).
The point (A) where a bisector cuts I(Cx) represents the certaintyv outcome (same revenue in
both states) for that cost level. The slope of I(C) at A measures the rate at which rain-
state revenue must be sacrificed in order‘ to compensate exactly (in effort-cost units) for
increases in no-rain revenues. As such, it represents a local measure of technologically
induced "risk" (or, alternatively, of the cost of self insuring). Suppdse that both states
are equally probable. In Figure 2, more than one unit of rain-state revenue must be
sacrificed to increase no-rain revenue by one unit along I('Cl). Thus, mo‘_ring from the
certainty outcome at A to, say, point B implies W(y,x) falls. At A the marginal utilities of
both the "rain" and "no rain" revenues are equal but moving to B implies rain revenues fall
more than no-rain revenues rise. Because cost is constant, moving from A to B always means a
utility loss. Hence, no risk-averse individual would operate on I(Cl)- below the bisector. |

By the same reasoning, ‘moving f rorrt B to A always implies a utility gain. But A involves
"complete self-insurance". Thus, the curvature of I(C) offers a natural measure of the
insurance premium associated with points A and B.

Figure 2 also illustrates another important shortcoming of the standard model of
production under uncertainty. That is, unlike the present model, i.t does not recognize that
whether a particular state of nature would be classed as either "good" or "bad" in some
generic context generally depends on the technology. Consider I(Cz) in Figure 2. As drawn,
the slope of" I(C ) at .the bisector just reverses the situation at A. Now, no risk-averse
individual would operate on I(C ) above the blsector Put another way, whereas on I(Cx)’ “the

no-rain state is the one requiring insurance, now the rain state requires insurance. This
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might occur, for example, 'if the input bundle consistent with I(C;) was devoted mainly toward

drought control. Only for very special f unctional structures,Af or example, c(y) homothetic,
will it be true thaf the division between good and bad states is independent of the scale of
operation.
5. The m-Indirect Expected Utility ‘Function

The producer chooses a stat-e-contingent revenue vector to solve

S

U() = Max (ZniF(yl, c(y)).

y i=1

U: T » R is the n-indirect expected utility function. The convexity of c(y) and the strict
concavity of F guarantee an unique solution. Denote
s

y(n) = argmax (anF(y‘, c(y)).

y i=1

Our next result establishes the properties of U(m) and y(m).
Result 2: U(m) and y(m) satisfy:

1. Ulm) = F(O,c.(OS));

2. p.U(n"-) + (1 -p) Ur®) = Uun’ + (1 - p) °) 0<u<l

3. U(n) is continuous;
S .

a. Z(nl‘ - n‘:)[F(y‘(nl), elytn’)) - Fly (x°), cly(n®)] = 0; and
i=1

if y >g y(rt) then cly) = c(y(m)).

4

In the statement of the result a > b is to be read "a second-order stochastically
dominates b given m."
Result 2.1 establishes.a lower bound for the n-indirect expected utility function.

Property 2.2 is that the m-indirect expected utility unction is convex in m. Convexity here

11




is a well-known coﬁsequence of the producer’'s objective function being linear in the
probabilities (i.e., the expected utility model).. The economic implications of this result,
however, are somewhat different ‘than usually derived from the convexity properties of other
indirect objective functions. Here convexity implies that the value of inf ormation is.
positive. Suppose the broducer can observe a signal which takes the value O with probability
p and 1 with probability (1-pu). The producer’s subjective probability distribution, given

the observance of a signal of O (resp. 1) is given by n°® (resp. n’). Without a signal, the
producer’s subjective probability distribution is un® + (1. - p)n’. Result 2.2 implies that it

is always beneficial to observe the signal.

Result 2.3 says that U(m) has no breaks. Result 2.4 implies that changes in the
probability vector and changes in the eiementary revehue utility function, at the optimum,
are positively "correiated". Intuitively, therefore, one expects an increase in a particular
state’s probability of occurrence to be associated with an increase in the utility maximizing
revenue for that ‘state once cost levels are compensated. It is misleading, however, to infer
from 2.4 that the m-indirect expected util;ty function is increasing or nondecreasing in any
particular probability. The simplicial nature of T precludes any single probability from
changing in isolation.

Finally, 2.5 shows fhat in a neighborhood of the equilibrium, the effort-cost function
def ir;es a partial ordering over uncertain revenue alternatives that is equivalent to what a
risk-averse individual would choose. To understand 2.5 note that if y > y(jt) but c(y) <
c(y(m)), then a risk-averse pfoducer should prefer y to y(m) violating the definition of
y(m). Moreover, in the equal probability case, i.e., T o= /s (i =1,...,S), the following
corollary follows immediately from property 5 in Result 2 |

Corollary 2.1: If ﬁl = /S (i =1,...,S) then c(y) =z c(y(n)) if y *x.n y(n).

The notation a g™ b is to be read "a is majorized by b" or more simply "b'major'izeé .

a". Therefore, the Corollary impiies that in a neighborhood of the equilibrium, the effort-
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cost function is always consiste‘nt‘with Schur concavity (abbreviated as S-concavity) in the
equal probability case. (For the definition and discussion of ma jorization, S-concavity, and
relatec.:l concepts, consult Albert Marshall and Ingram Qlkin, notice, however that our notation
differs slightly from their notation.)A Intuitively, for y to majorize y” means that both
these state contingent revenue vectors have the same mean but that y’ is "more evenly"
distributed than y. Or, more simply, y is riskier than y’. If regions of c(y)’s domain

exis;c for which 2.5 is not satisfied, an expected-utility maximizer will never produce in
thosé regions. |

6. The p-Indirect Expectebd Utility Function

As noted earlier, just as one can define an effort-cost function in terms of revenue,
one can develop an effort-cost f unction in terms of the primitives, i.e. the state-contingent
outputs. Define this effort-cost function by

C(z) = Min { g(x) : x € V(z)}.

The reader can easily verify that C(z) satisfies properties 1.1 - 1.3 in Result 1 -(apart
from the obvious change in domain). Frequently, one is interested in determining how the
state-contingent vectors a and p affect the allocation of state-contingent outputs by the
producer. The m-indirect expected utility function, which suppresses these vectors, is
inappropriate this case. This section develops a representation that can be used. To
conserve on notafion and to emphasize the role \of p and a, we revert to the equal-probability
case. And for simplicity we also concentrate on the case of a scalar output (tﬁe results

easily extend to the case of vector outputs)

W= MR
Define the p-indirect expected utility function U: foz > R by
. 'S
= -1
U(p,a).= Max S Z_l-‘(al + P2 C(z))t
1=1 :

The strict cbncavity and monotonicity of F() and the convexity of C(2) insure that a unique
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global solution existé to this problem. Denote the optimizér
s
-1
z(p,a) = argmax S Z F(al‘+ P2 C(2)).

1=1
Our next result develops the properties of U(p,a) and z(p,a):

Result 3: U(p,a) and z(p,a) satisfy:
s
I Ulp,a) = ™) Fla, C(O));
1 s

i=1
2. U(p,a) is nondecreasing in a;
3. U(p,a) is nondecreasing in p;
4. (i) U(p,a) is concave in a;
(ii) if F is jointly concave in p and z, U(p,a) is concave in P;

5. for a restricted to Ri U(p,a) is continuous in a;

3 s

Y ’ 7 7 ’ ’ ’ - ’ ’ o o o o
6. ZF[al + plzl(p , a’), C(z(p’,a’))] ZF[al+p121(p ,a ),C(z(p,a))]

i=1 i=1

s s
+ ZF[a‘; + p';zl(p°, .a°), C(z(p®,a®))] -ZF[a‘; + p;’zl(p’, a’)),Clz(p’,a’))] = 0;
1=1 1=1
7. if a + pz > a+ pz(p,a) then C(z) = C(z(p,a)).
Property 3.1 is the same result as 2.1 for this formulation. Properties 3.2 and 3.3
show that in any state of nature the producer always prefers either‘ a higher initial wealth

or a higher commodity price. Properties 3.4 (i) and (ii) are easily interpreted in terms of

randomization of payment schedules. Suppose that the states of Nature (i = 1,2,...,S)

actually refer to weather states. If demand conditions for the commodity depend upon random

[}

factors other than weather, returns from producing a’ given level of output in state i may

themselves be random. To illustrate, suppose that if state i occurs and the producer
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produces zl, the producer’s return is y’l = p'l zl+ a’l with probability p and y‘; = b‘:z} + a‘;
with probability 1 = u. Result 3.4 (i) says that the producer always prefers to receive the
egpec‘:ted value of the downpayment u.a'l + (1 - u)a: (.i = 1,2,...,S) for a given pl.to facing
the additional uncertainty that the randqmization of the downpayment introduces. Property
3.4 (ii) gives a sufficient condition for the producer to prefer facing ;,1p'l + (1 - p)p‘l’ (for
given al) rather than facing the additional uncertainty that weather-state contingent
r‘andovmizatio‘n of tbe output price brings. (Randomization of returns is discussed further in
the next section.) Property 3.$ is a smoothness condition. Property 3.6 is essentially the
‘same as property 2.4 except stated in térms of prices and initial wealths. Property 3.7 is
another manif esfation of 2.5. )

If U(p,a) is differentiable it also manifests a generalization of Hotelling’s Lemma:

z(p,a) = [8U(p,a)/dp 1/[8Up,a)/Ba 1.

We now examine the monotonicity properties of z(p,a) in the state-contingent initial
wealth (fixed payment) and price vectors. In the absence of risk aver‘éion. differences in
initial wealth have no impact on output allocation decisions. But differences in initial
wealfh can affect output allocation decisions for risk-averse producers. In the present
framework, this is particularly interesting because it implies that changes in botﬁ prices
and the fixed paymént may cause changes in the s%ate-contingent output vector.

Result 4: If there is no price uncert-:ainty,.F is differentiable in y, and the effort-
cost functjon, C(z), is symmetric then: (i) zl(p,a) > zj(p,a) if and only if a = aj; and
(ii) pzl(p.a) +a < sz(p,a) + a if and only if a < aj.

Result 4 is particularly easy to understand: if C(z) is symmetric there are in effect no
technically good or bad states of nature because, at least in terms of costs, state-
contingent outputs are intebchangeaﬁle. Hence, the only way to encourage higher output in

one state over another, given fixed prices, is to give the producer a greater marginal

incentive to increase state-contingent output. Because the farmer is risk-averse (marginal
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utility of income is decreasing), providing a greater marginal incentive for a higher state-

contingent output for fixed p irhplie_s decreasing the initial wealth of the producer.

However, as is shown in part (ii) of the result, the extra output only partially offsets the

initial ‘wealth variation.

Absent‘ risk aversion, producers equate price and marginal cost in each siate. So, if
costs are also symmetric, more is .produced in states where prices are high. .Result 4 shows
that this 'substitution effect’ between states might be off sét by a wealth effect for risk-
averse individuals. A standard result in uncertainty models is that the substitution effect
predominates if the coef ficient of relative risk aversion (or if base wealth is zero, the
coefficient of proportional risk aversion) is less than 1. This result holds here, with
appropriate modif ications. For fixed C(z), the elementary utility function F yields a
‘function F(y, C(z)) which behaves as a von Neumann-Morgenstern utility function in y = a +
pz. Thus, a coefficient of partial risk aversion may be defined as

RP(pz) = - pz Fyy/ F;1.

Although the response of effort to price differences between states is ambiguous in the
absence of information on RP , a simple stochastic dominance argument shows that differences
in effort will never completely offset the ef fects of price variation so that revenue is
always higher in high-price states

Result 5: If there is no wealth uncertainty, F is twice differentiable in y, and the
~effort-cost function, C(z), is symmetric: (i) if RP <1 then (p; - pj)(zl(p,a) - zy(p,a)) =
0; and (ii) y,(p,a) < yj(p,a) if and only if p; < py

Results 4 and 5 yield information on producer’s output vectors when prices and wealth
vary over the set of states of the world, that is the vector p (and a) is not équal to some
scalar p. This is dif ferent from the notion of supply response most 'commonly analyzed in the
literature on uncertainty and stabilization, which focuses on upward or downward shifts in

the entire trajectory of state-contingent prices. This issue is addressed in the next
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section.

The symmetric effort-cost case also allows an analysis of producer risk attitudes in
terms of S-concavity. Because S-concavity of U in p or a implies that the producer prefers
the relevant variable to be stabilized at the mean, it may be of more interest than concavity
résults presented in Result 3.4.

Result 6: If U(p,a) is continuously diff erentiable, and the effort-cost function, C(z),
is symmetric: (i) U(p,a) is Schur-concave in a if there is no price uncertainty; and (ii)
U(p,a) is Schur-concave in p if _there is no wealth uncertainty and p; > p; implies

Fy(a + pzi(p,a), C(2))zy(p,a) < Fi(a + pjzj(p,a), C(2))z)(p,a).

Result 6 (i) gives conditions under which differences in base wealth across states will
reduce welfare. Because the producer is risk averse, differences in wealth across states
will, ceteris paribus, reduce welf are relative to the case where the same mean wealth is
available in every state.

Result 6 (ii) gives conditions under which differences in prices across states will
reduce welfare. The condition certainly holds if the same z, is produced in each state.
Thus, the condition is also satisf jed for any technology sufficiently close to this case.

Thus, the‘ less flexible the technology (i.e.,the closer to f ixed proportibns), the more
likely price uncertainty is to be welfare reduc&ng.

Now consider the general case when the cost function is symmetric. By Result 5(i), if
the producer is very risk-averse (RP is greatér thaﬁ one), z; will not increase with p;.

And, more generally, the more risk-averse is the individual, the more élowly will z; increase
with p,. Also, the more risk-averse is the individual, the more rapidly ex post marginal
utility of revenue decreases with more revenue. Hence, as would be expected, the highef is
. the coefficient of risk aversion, the more likely price uncertainty is to be welfare

"reducing.
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7. The Special Case of Additively Separable Utility

To this point, the analysis has used a very general utility structure. To illustrate

the power of the state-contingent production model, the utility structure is now specialized

to the form assumed in Newbery ana Stiglitz’s seminal work on price stabilization and
production under risk,
F(yl, g(x)) = u(yl) - g(x).

Withdut loss of generality cardinalize units so that u(0) = O.
A Dual Relationship

Our first result in this section helps establish a duality between the effort-cost
function c(y) ‘and U(m). For arbitrary y, the definition of the m-indirect expected utility
function implies that under additive separability

s
-1 -
Um =z S anu(yl) cly),
i=1
whence
s
-1 -
c(y) = Sy muly) - Uln).
i=1
Moreover, because
v s
cly(m) = s ZHlu(yl(n)) - Uln),
i=1
it follows that

S

max { S'Ianu(yl) - U(m)},

nell
i=1

has a well-defined solution given by c(y(w)). The dual effort-cost function, c'(y). is

* defined:




S

c'(y) = max (S'lznlu(y‘) - U(m)}.

nell
1=1

Denoting
s

n(y) = argmax ( S“anu(yl)v- U(m)},

nell
=1

the properties of c'(y) and n(y) are summarized in the following result.
Result 7: When F(yl, g(x)) = u(yl) - g(x), c'(y) and n(y) satisfy:
1. ¢'(0) = - Ul |
L ] » B
2. cly’) =z cl(y) =zc (OS) for y/ =z y;
L s o . 4 °
3. pc(y )+ (1 =-pcly)=zclpy +(1-py) 0<pu<l
4, for y € IRi- c‘(y) is continuous;
. ! o . ! * o
5. ify > ¥ thencl(y ) zc(y);
s
’ o ’ ]
6. Y(m(y) - m(y°Duly) - vyl =0
1=1
7. ¢ (y(m) = clym).
Results 2 and 7 establish a duality between U(n) and c(y) for the additively separable case.
Either is recapturable from the other given knowledge of the other and u(y). Thus, as with
other duality results, it is a matter of indifference as to whether analysis proceeds in
primal terms (that is the state-contingent revenues) or in dual terms (that is in terms of
the probabilities).
The prope_rt_ies of é(y) as listed in Result 1 are a subset of those listed in Result 7 (1
- 6). Unless these additional properties are imposed upon c(y), the function c'(y) recaptured

from the dual program will not be the original c(y). However, an obvious consequence of

Result 7 is ' . 5




S

U(n) = Max (S'Ianu(yl) - ¢y

y 1=1

Régar‘dless'of whether c'(y) is the original effort-cost function, using it in the producer’s

maximization problem generates the same economic choices as c(y). Hence, c’(y) is
observationally equivalent to c(y). Consequently, no generality is lost in imposing
properties 7.1 - 7.6 upon c(y).

Much as indireét-utility minimization in consumer theory off ervs an algorithm for
recapturing the relative consumer prices that will rationalize an observed vector of consumer
demands, the dual relationship between U(n) and c(y) thué offers an_algorithm for recapturing
subjective probalities from the simplex T that will rationalize any observed set of state-
contingent revenues.

Additive Separability ana U(p,a)

We now turn our attention to U(p,a). Consider again the case of scalar output where the

payment schedule satisfies:

Y =3 T PE »
where P, a, 2 € IR¢ (i =12,...,S). This is‘properly interpreted as the case where output
_prices, output, and fixed payments (beginning wealth levels) ére all state-contingent. For
the remainder of the paper, assume that both u(y) and C(z) are at least twice differentiable.
Monotonicity Results

Our first result here establishes another sufficient condition for a monotonic
relationship between the f ixed payment schedule and the vector of the state-contingent
outputs. Earlier it was establisﬁed (Result 4) that symmetry of C(z) was suff icieﬁt for such
a relationship. Howevér, symmetry of the effort-cost function is a polar case, where the
character of the technology severely mitigates the effects of pxjoduction uncertainty.

Ano;cher pqlarf case is given by the absence of effort-cost écoxiomies of scope écross states of
nature. In this case, what is done to prepaf-e for one state of nature is independent of what
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is done to prepare for other states of nature -- at least in effort-cost terms. We shall
refer to this case as exhibiting no ef fort economies of scope. If the producer gains
something by preparing for distinct states jointly, thep eff orf. economies of scope exist.
The qrmal requirement for the presence of effort ecoanies of scope is
C(_zl, o,...,0) + C(O,zz,o,...,O) + ...+ C(O, ...,0, zs) > C(2).
Effort economies of scope are absent when the inequality always holds as an equality

implying that C(z) can be represenEed as having an additively separable cost structure:
s
C(z) = le(zl)
=1
where xl(zl) (i =1, ...,S) is nondecreasing, convex, and twice differentiable. We can then
establish:

Result 8: If no effort economies of scope exist and there exists a reordering of Q, Q

= {1, ...,[S], such that [i] = [j] implies x('.”(z) 21[31(2) for all z € R, then z, =

o " Py

Result 8 has the following interpretation: Given the presence of naturally good and bad

i - =
Zy only if 3y, = 2y Z,(P
states, a "bad-state" state-contingent output can be higher than a "good-state" state-
contingent output only if the f ixed payment in the bad state is set low enough relative to
the good state fixed payment to encourage extra bad-state production. And particularly, if
there is no price uncertainty:

Corollary 8.1: Under the conditions of Result 8, if there is no price uncertainty then

- = .

3y " 3y =0

It is well known that many economic choice problems, such as labor supply, may involve

backward-bending solutions in which the income effects of higher prices counteract, and

outweigh, substitution éf fects. It has been less widely observed that, for the separable

ob jéctive'f unction, this backward-bending splution arises if and only if the coeff icient of

relative risk aversion is greater than 1 (John Quiggin 1991; Newbery and Stiglitz). To
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exclude this poséiblity, our attention is initially conf ined to the case where u()-is a

constant relative risk aversion utility function. We begin with the case a = o, ¥ =P 2

Result 9: If a = 0 (i = 1,2,...,S) and u(y) = AR (0 <R <1, A>O0), then

11

s

¥ Up - (02 Rz, (p* 2" - (z,(p%a)) "] = 0.

1=1

Result 9 establishes that changes in each state-contingent price are positively
correlated with changes in their respective state-contingent output. This is easily seen by
setting all price changes except one to zero té get

) - (32, (p 20" - (z,(p° ) "] = 0.

.Hence, each state-contingent supply is upward sloping in its "own" state-contingent price.

An obvious corollary is

Corollary 9.1: Under the conditions of Result 9 if all prices increase proportionately,

’

' p>1(i=12,..,8S) then

o
= pp

ie, p .

s
) N (CXI (z,(p%a))' "] = O.
1=1
If the state-contingent price trajectory shifts up proportionately, then on ailerage the

state-contingent éupply response will be positive. Corollary 9.1 when combined with the

first-order conditions for the producer establishes that a proportional price shift leads to

\]

an increase in producer effort in a generalized sense.

Corollary 9.2: Under the conditions of Result 9 and Corollary 9.1,

S : S

z C (z(p’,2) (z(p’,2)) = Z C‘(z(po,a)) (z,(p°,a)-

1=1 1=
Formally Corollary 9.2 establishes that the effort-cost scale elasticity after the

proportional price change exceeds the effort-cost scale elasticity before the price change.
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In the special case where there are constant returns to scale in terms of effort cost,
Corollary 9.2 implies that effort as measured by effort cost increases with a proportional

price change. Formally,'

Corollary 9.3: If C(tz) = tC(z) t > O, then under the conditions of Result 9 and
Corollary 9.1, C(z(p’,a)) = C(z(p°®,a)). |

Result 9 and its corollaries can’be extended to the case of fixed base wealth simply by
replac.ing the coefficient of relative risk aversion with the coefficient of proportional risk
averéion. In general, however, the more interesting ca;c,e than either of the two studied is
when both the price and the fixed payment (initial wealth) can vary across states. Not
surprisingly, generally it is impossible to disentangle the effects of simultaneous changes
in both p and a because each has an income effect and a substitution eff eét. However, if the
way in which these changes occur is restricted, very strong results are available even
without restrictions upon the utility structure. Specifically, suppose that any price change
or fixed payment changé must leave the producer better off in the sense that

w m R R

Result 10: Suppose the phange in a and p is restricted to the form of (1), then
s Z w (@ + pjz] + p)(z] - z)lp; - p;liz(p"1a") - z(p,a)l =

By Result 10 if only one price changes, the corresponding state-contingent supply response
will be positively correlated with that change.

Increases in Price and Payment Risk

So far the results of this section have been about monotonicity relationships between
changes in either the state-contingent price vector or the fixed-payment vector. But ¢ciually
1mportant is the 1ssue of how uncertain productxon responds to changes in risk not .associa£ed
with the technology, i.e., changes m either price risk or f ixed- payment risk. Newberj'/ and

Stiglitz have studied the effect of increases in multiplicative risk (exther price or
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production) upoh the organization of production. In the present model, an obvious way to
. study how increasing the riskiness of the f 1Xed-payments and the state-contingent prices
affects production is to recognize that the state-contmgent pnces and fixed payment may
themselves be randomized. As noted in the discussion of Result 3,. this is particularly
sensible when Q indexes states of Nature only relevant to production (e.g. weather
conditions), and demand conditions depend upon random f actors.not indexed by Q. Formally,
the producer can then be enviéioned as facing in each state of nature a conditional (on the.
state of nature) price and f ixed-payment distributipn: if state i occurs then with
probability 1/ K > 0, the state-contingent price is pU and the state-contingent fixed
’paymént is a, Gi=1..S) (j =1,..,K). (The equal-probability case is considered to
conserve on notation. The results generalize in a straightf orward fashion.) Our previous

results represent the special case of this later scheme where state-contingent price (and’

K

fixed payment) is always f ixed at the mean of this distribution, e.g. P, = K Z pu. So

long as le * P (similarly for the fixed-payment scheme) for some j and k, the randomized
rewards scheme majorizes the reward scheme that we have been considering. Put simply, the
randomized reward scheme is riskier in fhe sense of Michael Rothschild and Joseph Stiglitz
than the one we have been considering.

Since the elementary utility function F(y, g(x)) is concave iny, a Rothschild-Stiglitz
(R-S) increase in the riskiness of the randomizéd' reward scheme in any state will always
reduce welfare (also see Result 3.4).3 But the question of the supply response to increased
risk remains unsettled for the present model.

These considerations lead us to considexf the more general question of | what happens whe‘n’
a producer facing a randomized reward scheme is subject to an R-S increase in risk. This
includes the special case of a shift f rom the type of state- contmgent reward scheme

considered previously to a randomized payment scheme. Our next result covers the case when
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the state-contingent price is non random and the riskiness of the state contingent f iged
payment is increased.

}‘lesult 11: Suppose that each state-contingent price is not randomized and fhe fixed
payment scheme is made riskier in the R-S sense. A producer with nonincreasing absolute risk
aversion i_ncr‘eases expected utility by expanding each. state-contingent output beyond the
level optimal vunder the less risky fixed-payment scheme.

increasing the riskiness of the fixed payment in each state gives the producer with
nonincreasing absolute risk aversion the incentive at the margin to increase output in all
states of nature. An exact analogue is not available for the state-contingent price vector.
However; we can establish:

Result 12: Suppose the state-contingent fixed payment is not randorﬁized and the state-
contingent payment scheme is made riskier by an R-S increase in the riskiness of the state-
contingent prices: if u’(pl zl + a )plis convex in price the producer increases expected
utility by expanding each state-contingem output beyond the level optimal undér the less
risky scheme. If u’ (plzl + a )pl is concave in price the producer increases expected utility
by reducing each state-contingent output below the level optimal under the less risky scheme.

It follows easily from Result 12 that:

Corollary 12.1: If the producer’s coefficient of relative risk aversion is constant and
smaller than unity, the broducer increases expected utility by reducing each state contingent
output below the level optimal under the less risky scheme.

Resulis 11 and 12 generalize results originally vdue to Newbery and Stiglitz in several
directions: they indicate what happens by increasing two sorts of payment risk (per gnit and
fixed payment); production uncertainty cém be of any general form and not just multiplicative
uncertainty as in Newbery .and Stiglitz (multiplicative production uncertainty is equivalent
to pr;ice uncertainty); and effort no longer ne’gd be a scalar variable. Each of these

generalizations is an immediate byproduct. of the richer formulation of the producer problem
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used here.
8. Conclusion

This paper develops a representation of 'pr'oduc‘tiqn uncer;tainty which is simultaneously
more realistic, more general, and more analytically tractable than the tfaditional
production-function approach. Not only is the approach congruent with the Arrow-Debreu
state-contingent model, but it is also congruent with modern axiomatic models of
nonstochastic technologies (Chambers; Rolf Fare). Various indirect representations of the
technology (effort-cost function, n-indirect expected utility function, and the p-indirect
expected utility fﬁnction) have been derived and their economic properties analyzed. In each
instance, the representations generalize existing models~ of producer behavior. The power of
the new approach has been illustrated by applying it to the additively separable utility |
case. Our results there include a duality between the effort-cost function and the indirect
expected utility functions and generalizations of the central results on supply response in
such models.

The additively separable utility model only serves as a starting point for applications
of the general model. For example, the effort-cost f unction offers a natural method for
freeing existing moral-hazard models from their reliance upon scalar "effort" and scalar
output models of production uncertainty. And by disentangling the uncertain technology in a
simple but informative fashion from the producer’s beliefs about the likelihood of various
states of nature occuring, thg model at the same time promises a way to circumvent some of.
the more analytically difficult problems associated with moral-hazard analyses (e.g. the
first-order problem) as well as offering a natural way to model differences in opinion about
the state of nature. Thé model also offers a clear way to generalize existing models of
insurance markets to situations where productlve activity tai{es place'both in the presence of

moral hazard and the presence of adverse selectlon
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Appendix: Proof of Results

Result 1: Because VP*(y) is nonempty there exists an ; such that ;: e VP%(y). The effort-cost
minimization problem can now be restated as
Min (g(x)- : glx) s g(;:) and x € VP(y)).

The continuity and monotonicity properties. of g insure that the new feasible set is both
closed and bounded. Therefore a minimum exists. To prove property 1 first denote

x(y) € argmin {g(x) : x € V*(y))
For y’ = y property V.3 implies that

x(y’) € VP(y)
where

cly’) = gx(y’))

v

min {g(x) : x € VP (y)}

]

c(y).
That c(y) = c(Os) now follows trivially.
Convexity follows by noting that V.2 implies (1 > p > 0)
px(y’) + (1 - wWx(y?) e VPuy’ + (1 - p) ).

Thus,

pely’) + (1 - pe(y®) = pglx(y’) + (1 - welx(y™)’
= glux(y’) + (1 - Wxy)
= min {g(x) : x € VP (uy’ + a - py™»

cluy’ + (1 - wyd).

The first inequality follows from the convexity of g. Convex f unctions defined over an open
set, e.g. 'y € R , are continuous (Rockafellar, p. 82). The result is established.

++

A Result 2: By definition
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s.
Uln) = z an(yl, cly))

1=1
set 'y = Os to obtain property l. Coqvéxity is established by
< .
pUe’) + (1 - pua®) = p) @ Fly@),cly@)))
=1 .
s

s -w) mFy ), cly(m®))
l=11
S
") n;r(yl(%), c(y(m)))
l=11
S
+a-py nF(y,(m), e(y(m)
l=11
S
= ¥ (s 1 - p)n?)F(yl(;t), c(y(m))

1=1
' 0 *

= Ulpun’ + (1 - )
ur’ + (1 - p)no and O < p <l. The inequality follows by the optimality of y(m’) and

for m =
respectively. Continuity follows from convexity because T is an open

y(no) for m’ and no,

‘set (Rockafellar). By the definition of y(m)
s

S
z n’lF(yl(no), cly(@®),

z !/ Fly (n'), ey’ ))

i=1

v

i=1

S S
z n‘:r(yl(n%. clym®)) = Z n?F(yx(n' ), cly(m’ ).
i=1 i=1 :
To establish 5 suppose the

Adding these inequalities .and rearranging establishes 4.
contrary, that is, y > y(n) and c(y) < c(y(n)). The strict concavity of F in y, and its
nonincreasingness in c(y) then imply
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s ' ] )

T afiy, ety) = § Fly,m, oym)

1=1 _ 1=1
contradicting the fact that y(m) ie an optimizer.
Corollary 2.1: In the equal probability case y >¢ y(rn) and y - y(n) are equivalent if El v,

= 5, yy(m. |

Result 3: Except for 3.2 - 3.4, the proof of Result 3 is virtually identical to Result 2.
To prove, 3.2 consider increasing any element of a from a to a" . - If the producer chooses
exactly the same set of state-contingent outputs as before, expected utility increases by the
strict monotonicity of F(}. Hence, the optimal response to changmg a cannot lead to a fall

in expected utility. Result 3.3 is proved analogously. The following chain of inequalities

proves 3.4:
s
Ulp,na + (1 - pla’) = s™ ZF(p[a+ pzl+ (1-pla +pz’l
S W R 1 171
1=1
Clpuz + (1 - p)z’))

S

v

st z F(p(a+ pz) +1 - wia] + pza ),
1=1
pC(z) +(1 - p)C(z’))

S

v

s™ z uF(a+ pz,C(2) + (I - pF(| + pz .Clz')
i=1 s

pU(p,a) + (1 - p)Ulp,a’),

where z = z(p,a) ‘and 2’ = z(p,a’). The first inequality follows by the definition of U(p,a)
as the maximum, the second inequality followe by the co-nve:-(ity of C(z) and the fact that F()
is nonincreasing in g. The third inequality follows By the concavity of F in y and g The
last.equality is def iﬁitional. Result 3.4(ii) is provedfsimilarly.

Result 4: (i) The proof is by contradiction. Because there is no price uncertainty, without
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loss of generality choose units so that the price equals one. Suppose the effort-cost

function is symmetric and choose i and j such that in the optimum the producer chooses (zl -

zj)_> 0. Also suppose contrary to the result that (a‘ - aj) > 0. Reallocating z) to the ith

state and zl to

Define

v(zJ + 'al) is str

the jth state, respectively, causes no change in cost if C(z) is symmetric.

v(zj + al) = F‘(zJ +a, C(2)).

ictly increasing and strictly concave. Thus reallocating zJ and z, in this

manner allows us to operate in terms of v instead of F because C(z) is unchanged. This

reallocation changes the producer’s expeéted utility by the amount

D

= S'l(v(zJ + a‘) - v(zl + ai) + v(zl + aj) - v(zJ + aj))_.

The strict concavity of v() implies

-1 ’ - ] -
(a) D>S (v (zJ + al)(z‘l z‘) + Vv (zl + a“)(zl . zj))
and
(b) D> s v (zJ + al)(al - aj) + v’(zl + aj)(aj - al)).

By the presumption that in the optimum (zl - zJ) > 0 (a) requires that

(c)

’ - 1/ <
v (z‘ + aj) v (zj + a‘) 0

otherwise the reallocation increases the producer’s expected utility contradicting the
N .

presumption that the original allocation was an optimum. By the presumption that (a‘ - aj) >

0,‘ (b) requires that

(a)

’ - 1! -
v (z‘+aj) v (zJ ai) >0

otherwise the reallocation increases the producer’s expected utility. But (d) and (c) are

contradictory.
The proof
Lemma: If C(z)

Proof: If C(z) i

This completes the proof of (i).
of 4(ii) is also by contradiction. First, we require a technical lemma
is symmetfic, a + pz >, a + pz(p,a), and z >n z(p,a), then C(z) = C(z(p,a)).

s symmetric then Result 1.2 implies C(z) is Schur-convex (Marshall and

Olkin). - Hence, if z >, z(p,a) then C(z) = C(z(p,a)). But if a+ pz »q a + pz(p,a), Result
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3.7 implies C(z) = C(z(p,a)) establishing the lemma.

To proceed with the proof now suppése that a; < a; but that at the optimu‘m yy> ¥y In
state i the producer produces .z, =y - and in state j the f)roducer produces zy=y; - 3
Now consider the alternative production vector given by _z’, =y -y and z’J =y - a This
new pr;oduction vector (resp. return vector) is majorized by the optimal production vector
(resp. optimal return vector). Hence, the Lemma implies that it is equally costly to the
optimal. But the strict concavity of F() in y implies expected utility is higher with the
new vector than the optimal vector yielding a contradiction.

Result 5: To prove (i) we first show that if pJ <P it cannot be true that z = zJ.
Suppose to the contrary that pJ <P and z = zJ in the optimum. A shift to zJ - & and z +
5 results in a new schedule that is ma jorized by the old schedule. Because C(z) is S-convex
‘(see the proof of the Lemma), costs cannot increase for the new schedule. If costs remain
the same with the new schedule, the change in the objective function is given by

3 [p‘Fl(a + Pz, c(z)) - p]Fl(a + Pz C(2))]
which is positive for & > 0, if ®RP < 1. Thus, this reallocation must result in a strictly
greater expected utility (remember cost cannot increa_se) contradicting the optimality of the
original allocation. A similar argument establishes that zJ can never be strictly greater
than z .- This establishes (i).

To ‘prove (ii) suppose to the contrary that pJ < P, but that y] > Y, in the optimum.
‘There always exists a € > O such that the revenue vector that results by substituting

y' = yJ - pje and y" =y +PE where the original production vector ma jorizes the new

’
J
production vector. Because C(z) is S-convex, the new production vector is less costly. But

even if costs were to remain the same with the new production vector instead of decrease, the

new revenue vector second-order stochastically dominates the original production vector and

hence will be pref erred to -the original by all risk averters again contradicting the

*

optimality of the original vector.




Result 6: Theorem 3.A.4 in Albert Marshall and Ingram Olkin yields the following conditions
for an arbitra.ry continuously differentiable function ¢: I 5 R to be S-concave: (i) ¢ is
symmetric, (ii) ¢(,(z) = 8¢/38z, is increasing in i for all z € D (that is ar‘r‘anged. in
descending order). Assuming C(z) is symmetric, it follows immediately that in the absence of
price uncertainty U(p,a) is symmetric in a and in the absence of wealth uncertainty U(p,a) is
symmetric in p. Hence, we only need to verify that (ii) above holds under the conditions
stated in the result. For U(p,a) continuously differentiable, the envelope theorem in the
absence of price uncertainty implies
dUW/8a; = S°IF,(a; + pz(p,a), .C(2)).

vSimilar"ly, the envelope theorem in the case of a certain fixed payment yields

| dU/8p; = S°IF,(a . Pizi(p,a), C(z))zi(p,a).
Rearranging the aj and the p; in descending order as required gives the result after making

use of Result 4 (i) .and (ii).

Result 7: Properties 1, 3, 4, and 7 are all proved analogously to methods used in Result 2.

Separate proofs are not provided. Consider y’ = y. By the fact that u is nondecreasing in

Iy

S

c(y) = Z m(y) uly) - Ulnly)
=1 ’
S

< Z m (y) uly!) - Uln(y))
1=1
S

< Z nl(y’) u(y’l) - Uln(y’))
1=1
=cy)

which establishes 2. By definition
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s
c'(y') z Z nl(yo).u(y'l) - U(n(yo))
1=1
Subtracting the definition of c'(yo) from the above yields
| s s
Sy - = T oyt uy) - ] m (y)u(y))-
1=1 1=1 ' »
If y’ o the right hand side of this expression is positive thus establishing S.

s
clym) = | muly (@) - Um
1=1
for all ;t e M. Thus, c(y(m) is an upper bound for
S .
z ;tlu(yl(n)) - U(;t)
1=1
over ;t € TI. Because

s
clym) = § mulym) - Um)
1=1 :
the upper bound is an achievable least upper bound over m € T, where
_ S
c(y(m)) = max Z nlu(y‘(n)) - U(m)
;ren =1
.
= ¢ (y(m)).
Result 8: If there are no effort economies of scope

s
C(z) = le(z‘)
1=1

By the presumptions of the result a reordering of @, Q' = { [1], ...,[SD), exists such that

[i] = [j] implies -x[’”(z) = x[’”(z) for all z € R . Also suppose that in the optimum z, =

zm for some [i] = [jl. The producer’s first-order conditions require
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-1, I} -1, )
ST’ (ay, * Py - X7y =S¢ @, * P - m(z )

-1, ’
=S (am+ §)! ) B xm(zu)

The inequality follows by the concavity of u and the convexity of x and the presumption that

z = z . Hence,
(1} §)]

-1 P 7 -1 7
S ui(a,, + pmzm) 24,7 =S (@, Py 2y - m( w”

where the last inequality follows by the def inition of Q’. The fact that u() is strictly

concave then requires that a_ = + p + pm z“].

Result 9: Result 9 follows directly by applying 3.6 to this utility structure.

w ¥ Puwn® 2w

Result 10: Apply 3.6 to establish that

s
Z u(a‘; + p(;z(; +pilz) - z‘;)) - u(a‘l’ + p;’z‘: + p‘:(z’l - z':)) z 0.
1=1
The expression in the result must be larger than the left-hand side here by the strict
concavity of u(). The result is demonstrated.
Result 11: For the incentive scheme where the farmer receives the fixed payment a; in state
i, the farmer’s optimum, é, is characterized by
s (pz, * ap, = c,(2)
i =12,...,S. An R-S increase in risk for the fixed payment schedule can be represented by
the addition of a random variable g; to a, such that E(gla) =0 (i =1, 2,...,5).
if the producer exhibits nonincreésing absolute risk aversion u’() ié a convex function.
Hence, it follows immediately tﬁat
S'lEcu’ (plél +a+ €)p, = S'lu'(plil +a)p,
i= 1,...,S) where E¢ denotes the expectation err g,- For each state of nature expected
marginal utility under the riskier reward scheme exceeds marginal effort cost at z thus
establishing the resulf.
Result 12: For the incentive scheme where the farmer receives a éeterministic payment P, in
state i, the farmer’s optimum, i,. is characteriied by |

34



-1, - _ -
S u (plzl + al)pl = Cl(z)

i =12,..,S. A R-S increase in risk can be represented by the introduction of another

random variable g, such that E(eylp;) = O. Now proceed exactly as in Result 1l to establish

. the result under the conditions stated.
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Footnotes

1. The resulting choice set is very restricted. Jack Meyer (1987) shows that the choicé set
in the .standard firm problem (Sandmo; Feder) may be regarded as a line in mean-standard
deviation space. This result is generalized by Michael Ormiston and John Quiggin (1991).

2. Here it is assumed that Q indexes all possible sources of uncertainty including both
production and payment uncertaint};. This assumption is relaxed in sections 6 and 7 below.
3. By contr;ast, since producers may vary théir output across states, the effects of

_dif ferences in priceé between states is ambiguous. That the producer may prefer some price
variation across states is well documented from the price instability literature (Newbery and
S_tiglitz). Result 3.4 (ii) yields a sufficient condition for the producer to prefer a fixed

price p to a state-contingent price vector with mean p.
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