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Models of production under uncertainty are central to m
odern economic theory. Besides

its obvious relevance to the theory of the firm facing 
uncertainty (Agnar Sandmo) and the

literature on price stabilization (David M.G. Newbry and J
oseph Stiglitz), production under

uncertainty is also central to the incentives, contracting, and 
principal-agent literatures .

Principal-agent models, in particular, are increasingly being app
lied to problems in all

areas of economics. An incomplete sampling would include problems as diverse as in
surance

(Arthur Raviv), auction theory (John Riley and William Samuelson), 
the failure of labor

markets to clear (the efficiency-wage literature), market regulation (T
racy Lewis and David

Sappington), and optimal risk sharing in the face of moral hazard (Ma
rk Pauly; Bengt

Holmstrom).

While state-contingent commodities, production, and markets play a 
central role in

general-equilibrium uncertainty models (Kenneth Arrow; Gerard Debreu
; Roy Radner), the theory

of production under uncertainty (Sandmo; Hayne Leland; Richard Hartman
; Yasunori Ishii;

Gershon Feder; and Newbery and Stiglitz) makes little use of these conce
pts. Broadly

speaking, producers are there viewed as choosing an input vector or scal
ar output prior to

the realization of a continuous random variable (either a random pric
e, a random demand, or a

random production input) to maximize expected utility. The combination of the input vector

and the realization of the random variable uniquely determines the prod
ucer's ex post return.

Suppose, for example, the random variable represents rainfall. Then for a given input

vector, the output for each rainfall level is uniquely determined. Once producers select

their input bundle, they have no control over the output they receive.
 If the random

variable only assumes two values ("no rain" and "rain"), the transformat
ion function between

"no-rain" output and "rain" output is necessarily (explained bel
ow) of the fixed coefficient

form illustrated in Figure 1.

The problem of production under uncertainty is, thereby, .trivialized 
because producers

are assumed to be incapable of arraying their available resource
s to prepare for different
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contingencies such as flood or drought. The traditional model arbitrarily and unnecessarily

relegates producer decisionmaking to selecting an in
put bundle with desireable risk

properties.1

This paper suggests an alternative approach to producer 
decisionmaking under uncertainty

that is simultaneously more realistic, more general, and (
perhaps most importantly for

economists) more analytically tractable than the traditional a
pproach. Moreover, the

approach is congruent with the modern axiomatic approach to 
nonstochastic production analysis

(Rolf Fare; Ronald Shephard), the state-contingent approach of 
Arrow and Debreu, and the

modern approach to decisions under uncertainty, in which actions 
are represented as mappings

from a state space to a space of outcomes. Thus, our approach offers a natural bridge

between these apparently related (but previously disparate) literatu
res.

The central idea is that producers choose not only an input vect
or but a state-

contingent output vector as well. For any input bundle, a large set of state-contingent

output vectors may be feasible. In the rainfall example, producers can allocate. capital and

labor in a way which protects them against low rainfall. Alternatively, they may allocate

the same capital and labor endowment in a way which yields high 
returns when rainfall is

high, and low or negative returns when rainfall is low.

In what follows, we first develop a notion of a state-contingent p
roduction technology.

The state-contingent technology is shown to generalize all existing
 models of production

under both price and production uncertainty. The technology is then used to analyze the

production decisions of a risk-averse producer under a very genera
l (i.e. more general than

is usually considered) version of the expected utility model. The first step is the

development and characterization of an effort-cost function h
aving properties in state-

contingent. revenues that are entirely analogous to properties us
ually possessed by multiple-

output cost functions (e.g. nonnegative and increasing marginal cos
t). The effort-cost

function is then used to characterize the production decisions of a ri
sk-averse, expected-
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utility maximizing producer in terms of two expected-utility functions: One (the it-expected

utility function) maps probability space into ex post returns, the other (the p-expected

utility function) maps state-contingent price schedules into ex post returns.

The effort-cost function is observationally equivalent to a partial ordering that

evaluates uncertain revenue alternatives exactly as a risk averter would. In the equal

probability case, this latter result implies that the effort-cost function is always

observationally equivalent to an S-concave function.

After characterizing the behavior of risk-averse producers, the power of our approach is

illustrated by applying it to the special case of the additively separable utility structure

studied extensively by David Newbery and Joseph Stiglitz. Our first result there establishes

a duality between the effort-cost function and the Tr-indirect expected utility function. The

remainder of the illustration develops comparative static results for the additively

separable case that both generalize and extend existing results for this model. The final

section concludes by summarizing and discussing some of the many possible future applications

of our model to problems involving decisionmaking under uncertainty: moral hazard, adverse

selection, insurance, futures market analyses are but a few examples.

1. A State-Contingent Technology

The standard approach to production uncertainty specifies a production function that

depends upon physical inputs committed prior to the resolution of uncertainty and a random

input that indexes the state of nature. In that model, output price uncertainty is

equivalent to having the random input shift the production function multiplicatively.

Letting x e Rn+ denote the physical inputs, 0 e R+ denote the random input, and f IRn+1 R

denote the production function, random output z(e) is then defined by

z(e) = f(x,e).

Our approach follows Arrow and Debreu by dealing in state-contingent commodities.

(There is no requirement, however, that a complete set of contingent markets exist.)
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Following Debreu, assume that "Nature" makes a choice from among a finite set of

alternatives. Each of these alternatives is called a "state" and is indexed by a finite set

of the form C2 = (1,2,3,..;.,S). S, thus, denotes the number of different states of nature.

Once ,the index is given, all possible factors determining production conditions (weather,

etc.) are known.

n
mxs)

Production relations are governed by a technology set T 5 1Rx defined by

T = (x,z) : x can produce z, x e Rn, z e 1Rmxs).

Here x is an input vector committed prior to the realization of the index of the state of

nature and z is a matrix of state-contingent outputs with typical element z (1=1,...,m)

( j=1,...,S) corresponding, ex ante, to the amount of the ith output that would be produced if

the jth state of nature occurs. Multiple outputs are explicitly allowed. Notice, however,

that if m = 1 (a single output) the technology, ex ante, is formally identical to the

standard case of multiple-output production under certainty where n inputs are used to

produce S -outputs. The only difference is that the outputs are now state-contingent. Thus,

only one output level actually occurs ex post. In the more general case, for each state

there is a distinct output vector with m separate entries each corresponding to a distinct

output.

In line with the traditional approach, all inputs are assumed to be chosen prior to

the resolution of uncertainty. However, it is easy to generalize T to cover the. more

realistic case of sequential resolution of uncertainty by redefining z to include negative

entries corresponding to inputs committed after the resolution of uncertainty. Similarly, it

is also possible to extend T to cover the case where some outputs are produced under

conditions of certainty by redefining x to include negative entries corresponding to outputs

produced under certainty.

To relate T to the more traditional approach, consider the output correspondence Z: ORn

fR
mxS 

that maps an input bundle into subsets Z(x) 5 IR
mxS 

of state-contingent outputs:+



Z(x) = z : (x,z) e T).

In words, Z(x), the state-conttn gent output set, represents all feasible combinations of

state-contingent outputs for input committal, x. Z(x) is easiest visualized by considering

the traditional case of a scalar output generated by the production function f(x, 0) when 0

can only assume two discrete values (1 and 2). Then,

Z(x) = z EfR2 : f(x,1) z
1 
and f(x,2) z2).

Z(x), in this case, is depicted graphically by the shaded area in Figure 1. The outer

boundary of Z(x), formally the efficient subset of Z(x), might be heuristically thought of as

the transformation function between state-1 and state-2 contingent outputs. The state-

contingent output set in Figure 1 corresponds to what would be derived from a fixed-

coefficient transformation function (e.g. Robert Chambers, p. 266).

In the traditional model, only the vertex of Z(x) in Figure 1 can ever be observed. This

happens because the standard model explicitly forces the inequalities in the definition of

Z(x) to be equalities. Once inputs are chosen the range of outputs available effectively

degenerates to a single point in IRmxs. Even if the producer wished to operate at a point

like A in Figure 1, it is precluded by assumption. This restriction, which departs markedly

from most modern representations of technology, necessarily circumscribes the analytical

results that emerge by imposing an overly narrow notion of technical efficiency.

The single-output, fixed-coefficient nature of this state-contingent output set

illustrates the principal shortcomings of the 'production function approach: once producers

have selected the input bundle they have no control over the single output they ultimately

receive. After the input bundle is chosen there is no substitutability between state-

contingent outputs. This is entirely unrealistic in most -cases because it implies producers

cannot organize their inputs in a manner that prepares differentially for different

contingent outcomes. A more general and realistic approach allows producers this

flexibility. Pictorially, this implies allowing the transformation function in Figure 1 to



assume something other than a fixed-coefficient form. T affords this flexibility.

To develop analytical results, it is convenient to consider the natural inverse of Z(x)

-- the input correspondence V: lexs4 Rn that maps the state-contingent output array into

subsets V(z) g Rn of inputs

V(z) = {x: (x, z) E T}.

V(z), the Input set, gives the input combinations that can produce the state-contingent

output array z. Returning to the production-function representation where 0 can only assume

two values then

V(z) = { x : f(x,1) zi and f(x,2) z2).

Thus, V(z) is the intersection of the upper contour sets (in x) of the production function

evaluated at 0 = 1 and 0 = 2.

Developing analytical results requires specifying properties of T (axioms). Our axioms

are:

Properties of the Input Set (V):

1. V(z) is nonempty;

2. p.V(zi) + (1- • µ) V(z°) g + (1- i)z°); and

3. for z' z, V(z') g V(z).

Property V.1 requires that z be producible. Property V. 2, implies that T is a convex

set (see Rolf Fare). In a static production model, convexity of T is equivalent to concavity

of the scalar production function in inputs. Concavity in inputs is typically imposed in the

standard model of production uncertainty. Property V.3 requires the input set to exhibit

free disposability of output. In words, V.3 says that if an input bundle can be used to

produce z that same input bundle is capable of. producing any smaller output array, there is

no. congestion among outputs. Pictorially V.3 allows for points like A in Figure 1.

Before proceeding, several comments 'should be made about properties V. Perhaps most

obviously, V contains no analogue of positive marginal productivities of inputs. Although



intuitive and universally imposed, such an assumption is unnecessary to what follows. Se
cond,

all of the axioms are not necessary for all of the results that follow. For example, the

main role of V.3 is to guarantee • monotonicity (positive marginal costs) of the effort-cost

function developed below. While intuitive, and graphically convenient, effort-cost

monotonicity (and hence V.3) is required only to provide a lower bound for the indirect

expected utility functions. V.2, on the other hand, is critical and represents a. central

assumption in what. follows.

Often it is desireable to work in terms of monetary returns from the technology. All

existing models of producer decisionmaking under uncertainty can be represented by a

canonical version of the current model expressed in terms of state-contingent revenues. For

the case of production uncertainty only, this requires introducing a vector p e R" of output

prices and a fixed payment (cost, asset) a e R. Because there exists no price uncertainty,

prices are not differentiated according to the state of nature that occurs. V(z) induces a

representation of the technology in terms of state-contingent revenues. Formally,

VP4(y) = { x : y = a + pz 1
(i = 1,...,S) and (x,z) e n.

Here z e 1Rm is the i-state-contingent output vector. The notation VPa y) reminds the
.1

reader that this representation of the technology is for fixed p and a.

In the case of pure price uncertainty (no production uncertainty), i.e., z e Rm there

e ffimxs
exists a complete set of state-contingent prices p A representation of the

technology in terms of state-contingent returns is

Vpa(y) = x : = a + paz and (x,z) E T, x e Rn+, z fR7).

Finally, in the case of joint production and contract uncertainty2 there exists a set of

state-contingent fixed payments (assets, costs) a e Rs and a set of state-contingent output

prices p ERmxs. A representation of the technology in terms of state-contingent revenues is++

given by

VPa(y) = x : = + paza and (x,z) E

7



In an abuse of terminology and notation, the same
 notation is used for each of the three

different types of uncertainty, and V(y) is refer
red to as the input set. This is done for

two reasons: to reinforce the notion that Vpa(y) is a can
onical technology; and for given p

and a, VPa(y) is easily shown to satisfy properties V when z'
s are replaced by y's. (A

demonstration of this fact is left to the interested reader.)

3. Producer Preferences

The producer's information and or beliefs about the relative 
likelihood of Nature

picking a particular state is summarized by it e U where
++

= { TT : it ERs + a
nd E Tr = 1).+

No state occurs with zero probability. The present paper only restricts itself to

expected-utility maximization, although more general behavioral mode
ls can easily be

accomodated. Producer preferences over state-contingent returns and inputs, therefor
e, are

S+ x R(nxs) x 
(Rn 4 

IRcaptured by 
W: R 

W(y,x) = 7riw(yi, x)

t=1.

where the elementary (ex post) utility function w: OR x 4 IR satisfies

w(yi,x) = nye g(x)).

Here FAR x R DR is continuous, strictly increasing and concave in y1' 
and nonincreasing and

concave in g while g: Cie 4 113+ is nondecreasing, continvous, and convex
. F satisfies the

von-Neumann-Morgenstern postulates. Special cases of F include the expected utility of net

return model

nye g(x)) = ñy1 - g(x))

with F strictly increasing and strictly concave and the separable utili
ty model

F(yi, g(x)) = u(y1) - g(x)

with u strictly increasing and concave.



4. The Effort-Cost Function

The function g measures the producer's disutility of committing the input bundle x to

the uncertain production •process. Special cases of g(x) include

g(x) = G(wx)

with G: IR 4 IR is strictly increasing and strictly convex and w E [Rn+ a vector of input

prices. The effort-cost function, c: [R
s 
4 R, is defined by

• c(y) = Min {g(x) : x E VPa(y)).

Result 1: The effort-cost function, c(y), satisfies:

1. c(y') c(y) c(05) for y' y;

2. µc(y + (1 - c(i) c(y + (1 - y°) 0 < i < 1 ;

3. for y restricted to the domain Rs+, c(y) is continuous.

The effort-cost function measures in utility units the cost of producing a given state-

contingent revenue vector. c(y) has essentially the same properties as are usually imposed

on multiple-output cost functions: Marginal cost for each state-contingent revenue is

nonnegative (property 1) and nondecreasing (property 2). Moreover, if g(x) = wx, the effort-

cost function has all the properties traditionally associated with cost functions

(homogeneity and concavity in w and Shephard's Lemma) (Shephard; Rolf Fare).

The effort-cost function derived here is based on the canonical representation of the

technology, VPa(y), and thus holds for fixed p and a (suppressed notationally). One can also

define an effort-cost function mapping the primitives, i.e., the state-contingent outputs,

into effort units. The properties of such an effort-cost function, apart from its domain,

are identical to those in Result 1 after replacing y with z. (The derivation of these

properties is left to the reader but the method of proof is virtually identical to the proof

of Result 1. An effort-cost function of this type is used in section• 6.) •

Although properties 1.1 - 1.3 are virtually identical to those of multiple-output cost

functions under certainty, they now have a somewhat different economic meaning. Figure 2



depicts the isocost contour:

I(C) = { y E RS: c(y) = C

for S = 2. By Result 1.1, I(C) is negatively sloped. Result 1.2 implies that I(C) is

concave to the• origin as drawn. For concreteness sake, take the two states of na
ture to be

"rain" (measured along the vertical axis) and
 "no rain" (measured along the horizontal axis).

The point (A) where a bisector cuts I(C1) repre
sents the certainty outcome (same revenue in

both states) for that .cost level. The slope of I(C1) at A measures the rate at whic
h rain-

state revenue must be sacrificed in order to comp
ensate exactly (in effort-cost units) for

increases in no-rain revenues. As such, it represents a local measure of technologi
cally

induced "risk" (or, alternatively, of the cost of sel
f insuring). Suppose that both states

are equally probable. In Figure 2, more than one un
it of rain-state, revenue must be

sacrificed to increase no-rain revenue by one unit al
ong I(C1). Thus, moving from the

certainty outcome at A to, say, point B implies W(y
,x) falls. At A the marginal utilities of

both the "rain" and "no rain" revenues are equal but 
moving to B implies rain revenues fall

more than no-rain revenues rise. Because cost is constant, moving from A to B always 
means a

utility loss. Hence, no risk-averse individual would operate on I(
C1) below the bisector.

By the same reasoning, moving from B to A always
 implies a utility gain. But A involves

"complete self-insurance". Thus, the curvature of I(C) offers a natural measu
re of the

insurance premium associated with .points A and B.

Figure 2 also illustrates another important shortcom
ing of the standard model of

production under uncertainty. That is, unlike the present model, it does not recog
nize that

whether a particular state of nature would be class
ed as either "good" or "bad" in some

generic context generally depends on the technology
. Consider I(C2) in Figure 2. As drawn,

the slope of. I(C2) at the bisector just reversed the situati
on at A. Now, no risk-averse

individual would operate on I(C2) above the bisector
. Put another way, whereas on I(C1), the

no-rain state is the one requiring insurance, now 
the rain state requires insurance. This
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might occur, for example, 'if the input bun
dle consistent with I(C2) was devoted Mainly toward

drought control. Only for very special functional structures, for exa
mple, c(y) homothetic,

will it be true that the division between good an
d bad states is independent of the scale of

operation.

5. The Tr-Indirect Expected Utility Function

The producer chooses a state-contingent revenue vector to solve

U(7r) = Max { TriF(yi, c(y))).

1=1

U: II 4 R is the it-indirect expected utility function.
 The convexity of c(y) and the strict

concavity of F guarantee an unique solution. Denote

y(7r) = argmax TriF(yi, c(y))).

1=1

Our next result establishes the properties of U(Tr) and y(Tr
).

Result 2: U(Tr) and y(Tr) satisfy:

1. U(7r) F(0,c (Os));

2. µWe ) + (1 - tr) U(Tr°) U(Irrri + (1 - Tr°) 0 < < 1;

3. U(n) is continuous;

4. - ir0)iF(yi(n ), c(y(Tri )) - F(yi(ir°), c(y(e))] ?-• 0; and

5. if y >-s y(n) then c(y) c(y(n)).

In the statement of the result a >-s 
b is to be read "a second-order stochastically

dominates b given Tr."

Result 2.1 establishes .a lower bound for the 7r-indirec
t expected utility function.

Property 2.2 is that the 7r-indirect expected utility functi
on is convex in it. Convexity here
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is a well-known consequence of the producer's objective function being linear in the

probabilities (i.e., the expected utility model). The economic implications of this result,

however, are somewhat different than usually derived from the convexity properties of other

indirect objective functions. Here convexity implies that the value of information is.

positive. Suppose the producer can observe a signal which takes the value 0 with probability

µ and 1 with probability (1-µ). The producer's subjective probability distribution, given

the observance of a signal of 0 (resp. 1) is given by 7r° (resp. m'). Without a signal, the

producer's subjective probability distribution is inr° + (1 - µ)7r1 . Result 2.2 implies that it

is always beneficial to observe the signal.

Result 2.3 says that U(Tr) has no breaks. Result 2.4 implies that changes in the

probability vector and changes in the elementary revenue utility function, at the optimum,

are positively "correlated". Intuitively, therefore, one expects an increase in a particular

*state's probability of occurrence to be associated with an increase in the utility maximizing

revenue for that state once cost levels are compensated. It is misleading, however, to infer

from 2.4 that the 7r-indirect expected utility function is increasing or nondecreasing in any

particular probability. The simplicial nature of IT precludes any single probability from

changing in isolation.

Finally, 2.5 shows that in a neighborhood of the equilibrium, the effort-cost function

defines a partial ordering over uncertain revenue alternatives that is equivalent to what a

risk-averse individual would choose. To understand 2.5 note that if y ›-s y(7r) but c(y) <

c(y(n)), then a risk-averse producer should prefer y to y(Tr) violating the definition of

y(Tr). Moreover, in the equal probability case, i.e., Tri = 1/S (i =1,...,S), the following

corollary follows immediately from property 5 in Result 2:

Corollary 2.1: If it = 1/S (i =1,...,S) then c(y) c(y(7r)) if y >-rn y(Tr).

The notation a
m 

b is to be read "a is ma jorized by b" or more simply "b ma jorizes.

a". Therefore, the Corollary implies that in a neighborhood of the equilibrium, the effort-

12



cost function is always consistent with Sc
hur concavity (abbreviated as S-concavity) in the

equal probability case. (For the definition 
and discussion of ma jorization, S-concavity, and

related concepts, consult Albert Marshall and I
ngram Olkin, notice, however that our notation

differs slightly from their notation.) Intuitively, for y to ma jorize y' means that both

these state contingent revenue vectors have the sam
e mean but that y' is "more evenly"

distributed than y. Or, more simply, y is riskier than y'. If regions of c(y)'s domain

exist for which 2.5 is not satisfied, an expected-utilit
y maximizer will never produce in

those regions.

6. The p-Indirect Expected Utility Function

As noted earlier, just as one can define an effort-co
st function in terms of revenue,

one can develop an effort-cost function in terms of the
 primitives, i.e. the state-contingent

outputs. Define this effort-cost function by

C(z) = Min { g(x) : x E V(z)).

The reader can easily verify that C(z) satisfies propertie
s 1.1 - 1.3 in Result 1 -(apart

from the obvious change in domain). Frequently, one is interested in determining how the

state-contingent vectors a and p affect the allocation of
 state-contingent outputs by the

producer.. The Tr-indirect expected utility function, whic
h suppresses these vectors, is

inappropriate this case. This section develops a representation that can be us
ed. To

conserve on notation and to emphasize the role of p and 
a, we revert to the equal-probability

case. And for simplicity we also concentrate on the case of a
 scalar output (the results

easily extend to the case of vector outputs)

y = a + pz.

Define the p-indirect expected utility function II: IRSx2 4 IR by

11(p,a) i= Max S.-1 F(ai + pizi, C(z)).

1=1

The strict concavity and monotonicity of F() and the c
onvexity of C(z) insure that a unique

13



global solution exists to this problem. Denote the optimizer

z(p,a) = argmax S-1 F(ai + p C(z)).

=1

Our next result develops the properties of 1.1(p,a) and z(p,a

Result 3: 2i(p,a) and z(p,a) satisfy:

1. 1.1(p,a) S-1 E C(0
S
));

1 =1

2. 2/(p,a) is nondecreasing • in a;

3. 11(p,a) is nondecreasing in p;

4. (i) 1/(p,a) is concave in a;

(ii) if F is jointly concave in p and z, 1./(p,a) is concave in

5. for a restricted to ER
s 

ti(p,a) is continuous in a;++

P;

6. E F[a.'1 + , a'), C(z(p ,a' ))] - EFfei+p'izi(p°,a 11 °),C(z(p°,e))]

1=1 1=1

aom mot poizi(p,poizi(pot .ao), c(z(potF[a.c: a' )),C(z(p' ,a' ))1 0;

1=1 1=1

7. if a + pz )- a + pz(p,a) then C(z) C(z(p,a)).

Property 3.1 is the same result as 2.1 for this formulation. Properties 3.2 and 3.3

show that in any state of nature the producer always prefers either a higher initial wealth

or a higher commodity price. Properties 3.4 (i) and (ii) are easily interpreted in terms of

randomization of payment schedules. Suppose that the states of Nature (i = 1,2,...,S)

actually refer to weather states. If demand conditions for the commodity depend upon random

factors other than weather, returns from producing a given level of output in state i may

themselves be random. To illustrate, suppose that if state i occurs and the producer

14



produces z the 'producer's return is y' = p' z1+ a with probability ;I and y° = ,oz ao

with probability 1 - A. Result 3.4 (i) says that the producer always prefers to receive the

expeated value of the downpayment La + (1 - pal (i = 1,2,...,S) for a given pi to facing

the additional uncertainty that the randomization of the downpayment introduces. Property

3.4 (ii) gives a sufficient condition for the producer to prefer facing lip; + (1 - µ)p°1 (for

given a1) rather than facing the additional uncertainty that weather-state contingent

randomization of the output price brings. (Randomization of returns is discussed further in

the next section.) Property 3.5 is a smoothness condition. Property 3.6 is essentially the

same as property 2.4 except stated in terms of prices and initial wealths. Property 3.7 is

another manifestation of 2.5.

If ii(p,a) is differentiable it also manifests a generalization of Hotelling's Lemma:

z (p,a) = [81.1(p,a)/ap 1/[811(p,a)/8a. 1.

We now examine the monotonicity properties of z(p,a) in the state-contingent initial

wealth (fixed payment) and price vectors. In the absence of risk aversion, differences in

initial wealth have no impact on output allocation decisions. But differences in initial

wealth can affect output allocation decisions for risk-averse producers. In the present

framework, this is particularly interesting because it implies that changes in both prices

and the fixed payment may cause changes in the state-contingent output vector.

Result 4: If there is no price uncertainty, .F is differentiable in y, and the effort-

cost d
1

(ii) pz (p,a) +a < pz (p,a) +a if and only if a < a.
1

Result 4 is particularly easy to understand: if C(z) is symmetric there are in effect no

technically good or bad states of nature because, at least in terms of costs, state-

contingent outputs are interchangeable. Hence, the only way to encourage higher output in

one state over another, given fixed prices, is to give the producer a greater marginal

incentive to increase state-contingent output. Because the farmer is risk-averse (Marginal
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utility of income is decreasing), providi
ng a greater marginal incentive for a higher state

-

contingent output for fixed p implies 
decreasing the initial wealth of the producer.

However, as is shown in .part (ii) of the re
sult, the extra output only partially offsets the

initial .wealth variation.

Absent risk aversion, producers equate pric
e and marginal cost in each state. So, if

costs are also symmetric, more is produced in 
states where prices are high. Result 4 shows

that this 'substitution effect' between states mi
ght be offset by a wealth effect for risk-

averse individuals. A standard result in uncertainty models is that the
 substitution effect

predominates if the coefficient of relative risk avers
ion (or if base wealth is zero, the

coefficient of proportional risk aversion) is less than 1. This result holds here
, with

appropriate modifications. For fixed C(z), the elementary utility function F yi
elds a

function F(y, C(z)) which behaves as a von Neumann
-Morgenstern utility function in y = a +

pz. Thus, a coefficient of partial risk aversion may 
be defined as

RP(pz) = - pz F11/ F1.

Although the response of effort to price difference
s between states is ambiguous in the

absence of information on RP , a simple stochastic d
ominance argument shows that differences

in effort will never completely offset the effects o
f price variation so that revenue is

always higher in high-price states

Result 5: If there is no wealth uncertainty, F is tw
ice differentiable in y, and the

effort-cost function, C(z), is symmetric: (i) if RP < 
1 then (p1 - pj)(zi(p,a) - zj(p,a)) 2--

0; and (ii) yi(p,a) < yj(p,a) if and only if pi < pi.

Results 4 and 5 yield information on producer's o
utput vectors when prices and wealth

vary over the set of states of the world, that is the
 vector p (and a) is not equal to some

scalar p. This is different from the notion of supply r
esponse most commonly analyzed in the

literature on uncertainty and stabilization, which 
focuses on upward or downward shifts in

the entire trajectory of state-contingent prices. This issue is addressed in the next

16



section.

The symmetric effort-cost case also allo
ws an analysis of producer risk attitudes in

terms of S-concavity. Because S-concavity of t1 in p or a implies that
 the producer prefers

the relevant variable to be stabilized at the m
ean, it may be of more interest than concavity

results presented in Result 3.4.

Result 6: If 11.(p,a) is continuously differentiable, and the ef
fort-cost function, C(z),

is symmetric: CO (11(p,a) is Schur-concave in a if 
there is no price uncertainty; and (ii)

(11(p,a) is Schur-concave in p if there is no wealth unc
ertainty and pi > pi implies

Fi(a + pizi(p,a), C(z));(p,a) < Fi(a + pizi(p,a), aznzi(p,a).

Result 6 (1) gives conditions under which differences 
in base wealth across states will

reduce welfare. Because the producer is risk averse, differences in wea
lth across states

will, ceterts paribus, reduce welfare relative to the ca
se where the same mean wealth is

available in every state.

Result 6 (ii) gives conditions under which differences in
 prices across states will

reduce welfare. The condition certainly holds if the same z1 is produced in each state.

Thus, the condition is also satisfied for any technology 
sufficiently close to this case.

Thus, the less flexible the technology (i.e.,the closer t
o fixed proportions), the more

likely price uncertainty is to be welfare reducing.

Now consider the general case when the cost function is s
ymmetric. By Result 5(i), if

the producer is very risk-averse (RP is greater than one)
, zi will not increase with pi.

And, more generally, the more risk-averse is the indi
vidual, the more slowly will zi increase

with pl. Also, the more risk-averse is the individual, the 
more rapidly ex post marginal

utility of revenue decreases with more revenue. Hence, as would be expected, the higher is

the coefficient of risk aversion, the more likely price 
uncertainty is to be welfare

reducing.
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7. The Special Case of Additively Separable Utility

To this point, the analysis has used a very general utility structure. To illustrate

the power of the state-contingent production model, the utility structure is now specialized

to the form assumed in Newbery and Stiglitz's seminal work on price stabilization and

production under risk,

F(yi, g(x)) = u(y1) - g(x).

Without loss of generality cardinalize units so that u(0) = 0.

A Dual Relationship

Our first result in this section helps establish a duality between the effort-cost

function c(y) and U(n). For arbitrary y, the definition of the Tr-indirect expected utility

function implies that under additive separability

whence

U(n) S' Triu(;) - c(y),

1=1

c(y) S"1 niu(y ) - U(n).

1=1

Moreover, because

c(y(n)) = S-1 En1u(y1(70) -
1=1

it follows that

max { S-1 ETru(y) - U(Tr)},
Tr ell 

I
1=1

•
has a well-defined solution given by c(y(n)). The dual effort-cost function, c(y), is

defined:

18
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Denoting

•
c(y) = max {S-1 E u(y) - U(n)).

TrETI
1=1

n(y) = argmax S-1 E Triu(yi) - U(7)),
TrETI 1=1

•
the properties of c(y) and Tr(y) are summarized in the following

 result.

Result 7: When F(371, g(x)) = u(y1) - g(x), c (y) and n(y) satisfy:

1. c co ) - u(ir);
• •

2. c (y') c (y) c (0s
) for y' y;

• ••
3. tic (y ) + (1 - c

•
(y

o
) c (Ay + (1 - ti) y°) 0 < < 1

4. for y E R
S 

c
•
(y) is continuous;

++
• • r,

5. if y >-5 y° then c (y ) c (y");

6. E Ori(y) - Tr (0))[(,,) - u(y1°)1 0

i=1

7. c (y(n)) = c(y(n)).

Results 2 and 7 establish a duality between U(Tr) and c(y) for the a
dditively separable case.

Either is recapturable from the other given knowledge of the other
 and u(y). Thus, as with

other duality results, it is a matter of indifference as to whether 
analysis proceeds in

primal terms (that is the state-contingent revenues) or in dual te
rms (that is in terms of

the probabilities).

The properties of c(y) as listed in Result 1 are a subset of thos
e listed in Result 7 (1

- 6). Unless these additional properties are imposed upon c(y),
 the function c (y) recaptured

from the dual program will not be the original c(y). However, an obvious consequence of

Result 7 is
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U(Tr) = Max fs-1 En1u(371) - c(y)).
1=1

•
Regardless of whether c(y) is the original effort-cost function, using it in the producer's

•
maximization problem generates the same economic choices as c(y). Hence, c(y) is

observationally equivalent to c(y). Consequently, no generality is lost in imposing

properties 7.1 - 7.6 upon c(y).

Much as indirect-utility minimization in consumer theory offers an algorithm for

recapturing the relative consumer prices that will rationalize an observed vector of consumer

demands, the dual relationship between U(n) and c(y) thus offers an, algorithm for recapturing

subjective probalities from the simplex TT that will rationalize any observed set of state-

contingent revenues.

Additive Separability and li(p, a)

We now turn our attention to /Op, a . Consider again the case of scalar output where the

payment schedule satisfies:

where pi, a1, z

y = a
i 
+ pz

E (i = 1, 2, ... ,S). This is properly interpreted as the case where output

• prices, output, and fixed payments (beginning wealth levels) are all state-contingent. For

the remainder of the paper, assume that both u(y) and C(z) are at least twice differentiable.

Monotonicity Results

Our first result here establishes another sufficient condition for a monotonic

relationship between the fixed payment schedule and the vector of the state-contingent

outputs. Earlier it was established (Result 4) that symmetry of C(z) was sufficient for such

a relationship. However, symmetry of the effort-cost function is a polar case, where the

character of the technology severely mitigates the effects of production uncertainty.

Another polar case is given by the absence of effort-cost economies of scope across states of

nature. In this case, what is done to prepare for one state of nature is independent of what
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is done to prepare for other states of natu
re -- at least in effort-cost, terms.. We shall

refer to this case as exhibiting no effort 
economies of scope. If the producer gains

something by preparing for distinct states joint
ly, then effort economies of scope exist.

The formal requirement for the presence of effor
t economies of scope is

C(z, 0,...,0) + C(0,z 2
,0,...,O) + ...+ C(0, ...,0, zs

) > CU).
1 

Effort economies of scope are absent when the inequa
lity always holds as an equality

implying that C(z) can be represented as having an addi
tively separable cost structure:

C(z) = Exi(zi)
L.,

where x1(z1) (i = 1, ...,S) is nondecreasing, convex, and t
wice differentiable. We can then

establish:

Result 8: If no effort economies of scope exist and there exists a 
reordering of 2, c2'

= [1], ...,(SD, such that [ii [A implies x'1(z) z:xliji(z) for all z e IR+, then zui ?..-

z only if a - a z Cp - p ).
Ol [11 01 [11 01 01

Result 8 has the following interpretation: Given the presence
 of naturally good and bad

states, a "bad-state" state-contingent output can be higher 
than a "good-state" state-

contingent output only if the fixed payment in the bad state i
s set low enough relative to

the good state fixed payment to encourage extra bad-state pr
oduction. And particularly, if

there is no price uncertainty:

Corollary 8.1: Under the conditions of Result 8, if there is no price uncer
tainty then

a
til 
-a O.

Ii]
s 

It is well known that many economic choice problems, 
such as labor supply, may involve

backward-bending solutions in which the income effects
 of higher prices counteract, and

outweigh, substitution effects. It has been less widely observed that, for the separable

objective function, this backward-bending solution arises if
 and only if the coefficient of

relative risk aversion is greater than 1 (John Quiggin 1991
; Newbery and Stiglitz). To
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exclude this possiblity, our attention i
s initially confined to the case where u()• is 

a

constant relative risk aversion utility 
function. We begin with the case al = 0, 371

Result 9: If a = 0 (i = 1,2,...,S) and u(y) = Ay
R 
(0 < R < 1, A > 0), then

E
_ (po)i-R]uzi(p, ,a))1-R (zi(poipa))i-Ri at. 0.

1=1

Result 9 establishes that changes in each state-co
ntingent price are positively

= p
1 
z

1
.

correlated with changes in their respective state-c
ontingent output. This is easily seen by

setting all price changes except one to zero to 
get

•

LP 

>

tp1 ittzikp kzikP a) 

0.

Hence, each state-contingent supply is upward
 sloping in its "own" state-contingent price.

An obvious corollary is

Corollary 9.1: Under the conditions of Result 9 if all prices in
crease proportionately,

i.e, = > 1 (i = 1,2,...,S), then

0 1-RE (po)i-R[(zi(t), ,a))1-R ,_)) I 2..

tZ1"°1 a

1=1

If the state-contingent price trajectory shifts up
 proportionately, then on average the

state-contingent supply response will be positive.
 Corollary 9.1 when combined with the

first-order conditions for the producer establish
es that a proportional price shift leads to

an increase in producer effort in a generalized 
sense.

Corollary 9.2: Under the conditions of Result 9 and Corollary
 9.1,

E C1(z(p1,a)) (zi(p' ,a)) E Ci(z(p°,a)) (zi(p°,a)).

t=i 1=1

Formally Corollary 9.2 establishes that the eff
ort-cost scale elasticity after the

proportional price change exceeds the effort-cost
 scale elasticity before the price change.
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In the special case where there are consta
nt returns to scale in terms of effort cost,

Corollary 9.2 implies that effort as measu
red by effort cost increases with a proportional

price change. Formally,

Corollary 9.3: If C(tz) = tC(z) t > 0, then under the conditions o
f Result 9 and

Corollary 9.1, C(z(p' ,a)) C(z(p°,a)).

Result 9 and its corollaries can be extended to the c
ase of fixed base wealth simply by

replacing the coefficient of relative risk aversion with 
the coefficient of proportional risk

aversion. In general, however, the more interesting case than 
either of the two studied is

when both the price and the fixed payment ( initial wealt
h) can vary across states. Not

surprisingly, generally it is impossible to disentangle the 
effects of simultaneous changes

in both p and a because each has an income effect and 
a substitution effect. However, if the

way in which these changes occur is restricted, very strong
 results are available even

without restrictions upon the utility structure. Specifically, suppose that any price change

or fixed payment change must leave the producer better off
 in the sense that

(1)
y, = ao pozo p, (z, zo,.

1

Result 10: Suppose the change in a and p is restricted to the form o
f (1), then

E u, (a: + poi (z,i _ zoi ))[p,i _ poi i[zi(p,

1=1

By Result 10 if only one price changes, the corresponding s
tate-contingent supply response

will be positively correlated with that change.

Increases in Price and Payment Risk

So far the results of this section have been about 
monotonicity relationships between

changes in either the state-contingent price vector or t
he fixed-payment vector... But equally

important is the issue of how uncertain production res
ponds to changes in risk not associated

with the technology, i.e., changes in either price risk or f
ixed-payment risk. Newbery and

Stiglitz have studied the effect of increases in multiplica
tive risk (either price or

23
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production) upon the organization of produc
tion. In the present model, an obvious way to

study how increasing the riskiness of the 
fixed-payments and the state-contingent prices

affects production is to recognize that the stat
e-contingent prices and fixed payment may

.themselves be randomized. As noted in the discussion of Result 3, this is parti
cularly

sensible when 2 indexes states of Nature only relevant to produc
tion (e.g. weather

conditions), and demand conditions depend upon ra
ndom factors not indexed by O. Formally,

the producer can then be envisioned as facing 
in each state of nature a conditional (on the

state of nature) price and fixed-payment distributi
on: if state i occurs then with

probability 1/ K > 0, the state-contingent price is p
 and the state-contingent fixed

payment is a
I) 

(i = 1,...,S) (j = 1,...,K). (The equal-probability case is considered to

conserve on notation. The results generalize in a straightforward fashion.)
 Our previous

results represent the special case of this later schem
e where state-contingent price (and

-1

fixed payment) is always fixed at the mean of this dis
tribution, e.g. pi = K E

J=1

long as pu pik (similarly for the fixed-payment scheme) for some j
 and k, the randomized

rewards scheme ma jorizes the reward scheme that we
 have been considering. Put simply, the

randomized reward scheme is riskier in the sense of Mi
chael Rothschild and Joseph Stiglitz

than the one we have been considering.

Since the elementary utility function F(y, g(x)) is conca
ve in y, a Rothschild-Stiglitz

(R-S) increase in the riskiness of the randomized re
ward scheme in any state will always

reduce welfare (also see Result 3.4).3 But the ques
tion of the supply response to increased

risk remains unsettled for the present model.

These considerations lead us to consider the more
 general question of what happens when

a producer facing a randomized reward scheme is su
bject to an R-.'S increase in risk. This

includes the special case of a shift from the type of
 state-contingent reward scheme

considered previously to a randomized payment scheme
. Our next result covers the case when
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the state-contingent price is non random and the riskiness of the state contingent fixed

payment is increased.

. Result 11: Suppose that. each state-contingent price is not randomized and the fixed

payment scheme is made riskier in the R-S sense. A producer with nonincreasing absolute risk

aversion increases expected utility by expanding each state-contingent output beyond the

level optimal under the less risky fixed-payment scheme.

Increasing the riskiness of the fixed payment in each state gives the producer with

nonincreasing absolute risk aversion the incentive at the margin to increase output in all

states of nature. An exact analogue is not available for the state-contingent price vector.

However, we can establish:

Result 12: Suppose the state-contingent fixed payment is .not randomized and the state-

contingent payment scheme is made riskier by an R-S increase in the riskiness of the state-

contingent prices: if u' (p1 z1 + a )plis convex in price the producer increases expected

utility by expanding each state-contingent output beyond the level optimal under the less

risky scheme. If u' (pizi + a )p1 is concave in price the producer increases expected utility

by reducing each state-contingent output below the level optimal under the less risky scheme.

It follows easily from Result 12 that:

Corollary 12.1: If the producer's coefficient of relative risk aversion is constant and

smaller than unity, the producer increases expected utility by reducing each state contingent

output below the level optimal under the less risky scheme.

Results 11 and 12 generalize results originally due to Newbery and Stiglitz in several

directions: they indicate what happens by increasing two sorts of payment risk (per unit and

fixed payment); production uncertainty can be of any general form and not just multiplicative

uncertainty as in Newbery and Stiglitz (multiplicative production uncertainty is equivalent

to price uncertainty); and effort no longer need be a scalar variable. Each • of ,these

generalizations is an immediate byproduct. of the richer formulation of the producer problem



used here.

8. Conclusion

This paper develops a representation of pro
ductign uncertainty which is simultaneously

more realistic, more general, and more anal
ytically tractable than the traditional

production-function approach. Not only is the approach congruent with the
 Arrow-Debreu

state-contingent model, but it is also congruent 
with modern axiomatic models of

nonstochastic technologies (Chambers; Rolf Fare).
 Various indirect representations of the

technology (effort-cost function, Tr-indirect expe
cted utility function, and the p-indirect

expected utility function) have been derived and th
eir economic properties analyzed. In each

instance, the representations generalize existing m
odels of producer behavior. The power of

the new approach has been illustrated by applying 
it to the additively separable utility

case. Our results there include a duality between the effo
rt-cost function and the indirect

expected utility functions and generalizations of th
e central results on supply response in

such models.

The additively separable utility model only serves a
s a starting point for applications

of the general model. For example, the effort-cost function offers a nat
ural method for

freeing existing moral-hazard models from their reli
ance upon scalar "effort" and scalar

output models of production uncertainty. And by disentangling the uncertain technology in a

simple but informative fashion from the producer'
s beliefs about the likelihood of various

states of nature occuring, the model at the same 
time promises a way to circumvent some of.

the more analytically difficult problems associated
 with moral-hazard analyses (e.g. the

first-order problem) as well as offering a natura
l way to model differences in opinion about

the state of nature. The model also offers a clear way to generaliz
e existing models of

insurance markets to situations where productive 
activity takes place both in the presence of

moral hazard and the presence of adverse selection.

26



Appendix: Proof of Results

Result 1: Because V(Y) is nonempty there exi
sts an x such that x e VPa(y). The effort-cost

minimization problem can now be restated
 as

Min {g(x) : g(x) s g(x) and x e VPa(y)).

The continuity and monotonicity properties. 
of g insure that the new feasible set is both

closed and bounded. Therefore a minimum exists. To prove property 1 first denote

x(y) e argmin {g(x) : x e VPa(y)).

For y' y property V.3 implies that

x(y ) e Vpa(y)

where

c(371) = g(x(y1 ))

min {g(x) : x E VPa(Y))

= c(y).

That c(y) c(0.) now follows trivially.

Convexity follows by noting that V.2 implies (1 
> i > 0)

p,x(yi ) + (1 -  )x(?) e VIDa(gyi + (1 - y0).

Thus,

lic(y') + (1 - µ)c(?) lig(x(y') + (1 -

g(inc(yi ) (1 -

a-. min {g(x) : x e Vpa(ilyi + (1 — 11)Y0))

= c(wri + (1 -

The first inequality follows from the convexity o
f g. Convex functions defined over an open

set, e.g. .y e Rs++, are continuous (Rockafellar, p. 
82). The result is established.

Result 2: By definition
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UCrt E rciF(yi, c(y))

1=1

set y = Os to obtain property 1. Convexity is established by

U(Tri ) + (1 - pc)I(ns3) = ILE Tel Flyi(Te ),c(37(Te )))

1=1

+ (1 - elF(yi(Tr°), c(y(n )))

1=1

niFty (n), c(y(n)))

1 = 1

+ (1 - ,i) Tr7F(y1(Tr), c(y(n)))

1=1

= (we, + (1 - p)Tr7)F(371(;), c(y(;)))

1=1

= U(Krri + (1 - ii)Tr°)

for it = µTr' + (1 - parr° and 0 < pc <1. The inequality follows by the optimality of y(Tri )
 and

y(e) for Tr' and 71
o
, respectively. Continuity follows from convexity because 11 is a

n open

set (Rockafellar). By the definition of y(n)

E TrilF(yi(Te), c(y(n1 ))) E Teinyi(n°), c(y(Tr°))),

1 = 1 1 = 1

E nc:F(yiOr°), c(y(Tr°))) E ir7F(y1(7ri ), c(37Cre
1=1 1=1

Adding these inequalities and rearranging establishe
s 4.. To establish 5 suppose the

contrary, that is, y )-s y(n) and c(y) < c(y. (ir)). The strict concavity of F in yi and its

nonincreasingness in c(y) then imply
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E niF(y , c(y)) E TriF(yi(n), c(y(n)))

i=i 1=1

contradicting the fact that y(n) is an opti
mizer.

'Corollary 2.1: In the equal probability case y >-s y(n) and 
y >-rn y(n) are equivalent if EI

= E, Yi(Tr).

Result 3: Except for 3.2 - 3.4, the proof of Result 3 is v
irtually identical to Result 2.

To prove, 3.2 consider increasing any element 
of a from al to ail: If the producer chooses

exactly the same set of state-contingent outpu
ts as before, expected utility increases by the

strict monotonicity of FO. Hence, the optimal response to changing a can
not lead to a fall

in expected utility. Result 3.3 is proved analogously. The following chain of inequalities

proves 3.4:

11(p,pa + (1 - ) S-1 EF{p[ai+ + (1 - +

1=1

+ (1 - p)z,»

E F(ti(ai+ pizi) +(1 -

1=1

LC(z) +(1 -

s-i E 1.1F(a1+ pizi,C(z)) + (1

1=1

= gli(p,a) + (I - ),

where z = z(p,a) and z' = z(p,a' ). The first inequality follows by the definition 
of 1/(p,a)

as the maximum, the second inequality follows b
y the convexity of C(z) and the fact that F()

is nonincreasing in g. The third inequality follows by the concavity
 of F in y and g. The

last equality is definitional. Result 3.4(ii) is proved similarly.

Result 4: (i) The proof is by contradiction. Because there is no price uncertainty, without

(a' + p z a' ),
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loss, of generality choose units so that the 
Price equals one. Suppose the effort-cost

function is symmetric and choose i and j suc
h that in the optimum the producer chooses (zi

z ) > O. Also suppose. contrary to the result that (a1 
- a) > 0. Reallocating z to the ith

J • 
 j

state and z1 
to the jth state, respectively, causes no change 

in cost if C(z) is symmetric.

Define

v(z + a1)  = F(z + a1, 
C(z)).

Jj 

v(z + a) is strictly increasing and strictly conca
ve. Thus reallocating z and z1 

in this

J 1 
J 

manner allows us to operate in terms of v instead of F
 because C(z) is unchanged. This

reallocation changes the producer's expected utility by
 the amount

D = S 1{v(z + a) - vtz + a1) + v(z + a) - v(z + a)).J •

The strict concavity of v() implies

(a)

and

(b)

D > S v' (z + a )(z - z) + v1 (z + a )(z - z))
I I I J

D > S (z + a )(a - a) + v' (z + a )(a - a )).1 1 J I J J

By the presumption that in the optimum (z1 
- z) > 0 (a) requires that

(c) v' (z1 + a) - v' (z + a) < 0
J

otherwise the reallocation increases the producer's expec
ted utility contradicting the

presumption that the original allocation was an optimum
. By the presumption that (a1 - a) >

0, (b) requires that

(d) vi (z + a ) - v' (z - a ) > 0

otherwise the reallocation increases the producer's exp
ected utility. But (d) and (c) are

contradictory. This completes the proof of (i).

The proof of 4(11) is also by contradiction. First, we require a technical lemma

Lemma: If C(z) is symmetric, a + pz >-m a + pz(p,a),
 and z ›-m z(p,a), then C(z) = C(z(p,a)).

Proof: If C(z) is symmetric then Result 1.2 implies C(z
) is Schur-convex (Marshall and

Olkin). • Hence, if z >-m z(p,a) then C(z) C(z(p,a)). But if a + pz >-rn a + pz(p,a), Result
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3.7 implies C(z) C(z(p,a)) establishing the lemma.

To proceed with the proof now suppose
 that al < aj but that at the optimum yi > y1. In

state i the producer produces zi = y1 - al and in state j the producer produces zj = yj - aj.

Now consider the alternative production vec
tor given by ei = yj - al and zlj = y1 - aj. This

new production vector (resp. return vector) i
s majorized by the optimal production vector

(resp. optimal return vector). Hence, the Lemma implies that it is equally costly
 to the

optimal. But the strict concavity of FO in y implies expected
 utility is higher with the

new vector than the optimal vector yielding a cont
radiction.

Result 5: To prove (i) we first show that if p 
< p

1 
it cannot be true that z = z.

Suppose to the contrary that p < p1 
and z

1 
= z in the optimum. A shift to z - 3 and z1 

+

6 results in a new schedule that is ma jorized by 
the old schedule. Because C(z) is S-convex

(see the proof of the Lemma), costs cannot increa
se for the new schedule. If costs remain

the same with the new schedule, the change in the 
objective function is giver.' by

.c5 [piFi(a + pizi, C(z)) - piFi(a + pzf C(z))]

which is positive for 6 > 0, if RP < 1. Thus, this reallocation must result in a strictly

greater expected utility (remember cost cannot incr
ease) contradicting the optimality of the

original allocation. A similar argument establishes that z can never be
 strictly greater

than z. • This establishes W.

To prove (ii) suppose to the contrary that pi < p1 but that yi > yi in the optimum.

There always exists a c > 0 such that the revenue v
ector that results by substituting

y' = y - pc and y = y + p c where the origina
l production vector majorizes the new

production vector. Because C(z) is S-convex, the new production ve
ctor is less costly. But

even if costs were to remain the same with the
 new production vector instead of decrease, th

e

new revenue vector second-order stochastically domin
ates the original production vector and

hence will be preferred to the original by all risk av
erters again contradicting the

optimality of the original vector.
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Result 6: Theorem 3.A.4 in Albert Marshall and Ingram Olkin yields the following conditions

for an arbitrary continuously differentiable function 0: I 4 IR to be S-concave: (i) is

symmetric, (ii) 0(1)(z) = 80/8z1 is increasing in i for all z e V (that is arranged in

descending order). Assuming C(z) is symmetric, it follows immediately that in the absence of

price uncertainty 1./(p,a) is symmetric in a and in the absence of wealth uncertainty tgp,a) is

symmetric in p. Hence, we only need to verify that (ii) above holds under the conditions

stated in the result. For 11(p,a) continuously differentiable, the envelope theorem in the

absence of price uncertainty implies

&Waal = S-1F1(a1 + pzi(p,a), .C(z)).

Similarly, the envelope theorem in the case of a certain fixed payment yields

= S-1F1(a + pizi(p,a), C(z));(p,a).

Rearranging the ai and the pi in descending order as required gives the result after making

use of Result 4 (i) and (ii).

Result 7: Properties 1, 3, 4, and 7 are all proved analogously to methods used in Result 2.

Separate proofs are not provided. Consider y' y. By the fact that u is nondecreasing in

y .

c (y) = E Tri(y) u(y1) - U(n(y))

s E Tri(y) u(y;) - U(Tr(y)l

1=1

E Trity' u(rd - U(Tr(yi ))

1=1
•

= c (y' )

which establishes 2. By definition
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S.

c(r) E Tri(y°).u(y;) - U(n(y°))

1=1

Subtracting the definition of c
*

 (y
0
) from the aboye yields

c (y •o 0, c(y) E .1(y) u(y1)o 0i) E Tri(y ,u(yi).

1=1 1=1

If y' >-s y the right hand side of this expression is positive thus 
establishing 5.

c(yorn E Triwylorn - U(n)

1=1

for all it E Tr. Thus, c(y(n)) is an upper bound for

over it E IT. Because

E Tr1u(y1(70) - U(n)

1=1

c(y(Tr)) = E Tr1u(y1(70) - U(Tc)

1=1

the upper bound is an achievable least upper bound over 
it E II, where

c(y(n)) = max E n111(37100) - U(it)

Tr ETI 1=1
• •

= c (y(n)).

Result 8: If there are no effort economies of scope

C(z) =x1(z1)

1=1

By the presumptions of the result a reordering of C2, 
= [1], ...,[S]), exists such that

ti] [j] implies x[111
 
(z) xi; i ,(z) for all E IR. Also suppose that in the optimum zril

z for some [ii [A. The producer's first-order conditions require
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Su' 
(a111 

+ p
In ztii 

) X1' 1(z111) = S-lui (a + p
01 z01 

- x11çz11)
.01 

S-111' (a +p z - x1' (z ).
1j1 01 111 j1 111

The inequality follows by the concavity of u and the c
onvexity of x and the presumption that

z
111 

?. 2
01
. Hence,

S't' 
(a111 

+ p
111 zEil 

- x1I11 ) S lui (a p 2111) - X
Ejl 
(2 ).

where the last inequality follows by the definition of Cr . The 
fact that u( ) is strictly

concave then requires that a +p z +p z .
111 til 111 1J1 01 111

Result 9: Result 9 follows directly by applying 3.6 to this utility structure.

Result 10: Apply 3.6 to establish that

E 0 
oo o oo 0

u(a 
+ pz + p, (z, z y

) u( 
+ ,z 4. _ (z, zo

)
, a: 0.

1=1

The expression in the result must be larger than the left-hand side 
here by the strict

concavity of u( ). The result is demonstrated.

Result 11: For the incentive scheme where the farmer receives the fixed payment al in state

i, the farmer's optimum, z, is characterized by

S lu' (piz1 adpi C1(z)

i = 1,2,... ,S. An R-S increase in risk for the fixed payment schedule can be repr
esented by

the addition of a random variable ci to al such that E( ei I al) = 0 (1 = 1, 2,... ,S).

If the producer exhibits nonincreasing absolute risk aversion u' 0 is a c
onvex function.

Hence, it follows immediately that

-
S (p

1
z

1 
+ a1+ edp Su' (p z + a )p

(i = 1, ,S) where Ec denotes the expectation over el. For each state of nature expected

marginal utility under the riskier reward scheme exceeds marginal 
effort cost at z thus

establishing the resulf..

Result 12: For thern incentive scheme where the farmer receives a determ
inistic payment pi in

state i, the farmer's optimum, z, is characterized by
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S. IV (pizi + adpi = C1(z)

i = 1,2,...,S. A R-'S increase in risk can be represented by th
e introduction of another

random variable ci such that E(c1.1 pi) = 0. Now prodeed exactly as in Result 11
 to establish

the result under the conditions stated.
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Footnotes

1. The resulting choice set is very 
restricted. Jack Meyer (1987) shows that the choice set

in the standard firm problem (Sandmo;
 Feder) may be regarded as a line in mean-sta

ndard

deviation space. This result is generalized 
by Michael Ormiston and John Quiggin (1991).

2. Here it is assumed that f2 indexes all p
ossible sources of uncertainty including both

production and payment uncertainty. This assumption is relaxed in sections 6 and 7
 below.

3. By contrast, since producers may vary the
ir output across states, the effects of

differences in prices between states is ambiguous
. That the producer may prefer some price

variation across states is well documented from t
he price instability literature (Newbery and

Stiglitz). Result 3.4 (ii) yields a sufficient con
dition for the producer to prefer a fixed

price p to a state-contingent price vector with
 mean p.
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