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A Risk Analysis of Alternative Crop and Irrigation 
Strategies Using Biophysical Simulations 

Allen M. Featherstone, Adeyinka Osunsan, and Arla W. Biere 1 

Abstract: Combining risk programming with biophysical simulation offers potential benefits for 
helping farmers in developing countries choose cropping and irrigation strategies or for the study of farmer 
behaviour. Risk can have a significant impact on the way resources are allocated and should therefore be 
considered in empirical studies. This study uses risk programming and biophysical simulation models to 
find the expected utilityMmaximizing irrigation strategy and crop choice for southwestern Kansas farmers. 
Biophysical simulation models allow the researcher to obtain yield data for a longer time period than is 
typically available from agronomic studies, and to study risk on a very localized level. Direct expected 
utility maximization is used to determine the optimal strategies. Results from the study suggest that 
biophysical simulation models offer a promising avenue to further understanding of the impacts of risk 
on farm management decisions. Because biophysical simulation models are transferable to different 
regions of the world, biophysical simulation can be an attractive alternative to conducting risk research 
in developing countries. 

Introduction 

Combining risk programming with biophysical simulation offers potential benefits for 
helping farmers in developing countries choose cropping and irrigation strategies. Risk can 
have a significant impact on the way resources are allocated and should therefore be 
considered in empirical studies. Risk arises due to uncertainty about output prices and yields 
because of biological lags in production, uncertain and uncontrollable weather conditions, and 
volatility in world grain markets. With the use of biophysical simulation models and risk 
programming, risk analysis can be done at substantially less cost. Research can be done on 
a site-specific basis without having to set up localized experiments. Cropping recommenda
tions can then be tailored to a localized level. This paper uses risk programming and 
biophysical simulation models to find the expected utility-maximizing irrigation strategy and 
crop choice for southwestern Kansas farmers. Southwestern Kansas was used in this study 
so that comparisons could be made between actual experimental yields and yields generated 
by the biophysical simulation models. 

While there has been extensive research on the allocation of irrigation water, research 
investigating water allocation under risk has been limited. Yaron and Dinar (1982) used a 
systems analysis approach to allocate water to cotton and fruit crops during peak irrigation 
seasons to maximize the farmer's income. Dudley, Howell, and Musgrave (1971) used an 
irrigation planning model and a simple crop growth model to choose acreage for irrigated 
crops. Yaron et al. (1973) examined wheat response to soil moisture and irrigation policy 
under conditions of unstable rainfall. Chanyalew, Featherstone, and Buller (1989) looked at 
the combination of irrigated maize, irrigated grain sorghum, and dryland sorghum under 
limited groundwater using a profit maximization model. 

One of the few studies to incorporate risk into the analysis is that of Harris and Mapp 
(1986), who used stochastic dominance to compare water-conserving strategies for grain 
sorghum. Research examining irrigation strategies under uncertainty is limited due to the 
difficulty of finding adequate data on the risk variables. Few agronomic experiments are 
funded for more than five years. However, risk analysis using just five years of data would 
be considered highly suspect at the very least. Recently, biophysical simulation models have 
been refined to the point where they can produce fairly reliable yield estimates. Several 
studies have used crop growth models to evaluate production decisions (Mapp and Eidman, 
1976; Boggess et al., 1985; and Boggess and Ritchie, 1988). 
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Theory 

Typically, agricultural firms are assumed to follow the competitive economic model with 
determinant input prices and quantities and uncertain output prices and yields. Deterministic 
economic analysis assumes that a producer is indifferent to risk. Incorporation of risk into 
economic analysis considers the decision maker's perception and attitude towards risk. 
Economists generally assume that farmers make decisions consistent with the expected utility 
maximization hypothesis. That is, a farmer maximizes expected utility of profit (EU(n)), where 
n is profit, U is a nonlinear utility function, and Eis the expectation operator (Sandmo, 1971; 
and Iishii, 1977). The utility function is further assumed to be a concave, continuous and 
twice-differentiable function of profit, so that the first derivative with respect to profit is 
positive zero and the second negative. Because utility is ordinal, risk preferences are often 
modelled using the Pratt-Arrow risk aversion coefficient, which is the negative of the second 
derivative divided by the first derivative of the utility function with respect to profit. As the 
risk aversion coefficient increases, a farmer is more averse to risk. 

In this study, the direct expected-utility maximization approach was used because crop 
yields are probably not normally distributed (Day, 1965; and Gallagher, 1987) and because 
possible diversification strategies were of particular interest and likely to be the strategy of 
choice by a risk-averse farmer. Other empirical approaches used to analyse risk have included 
mean-variance analysis, MOTAD, and stochastic dominance. These all have the expected
utility hypothesis as a base, and could also be used with biophysical simulation models, but 
the mean-variance and MOTAD analysis are based on normal distributions. The expected 
value of a negative exponential utility function of profit was assumed to be the decision 
maker's objective function. The expected utility maximization problem can be written as: 

N 
(1) Max EU(rr) = Max L Pi - e -?..ni 

i=l 

T T 
subject to: L x1 = 1, (land constraint), and: L ri.fXJ = ni, for all i 

j=l j=l 

where rri is the net return for outcome i, riJ is total revenue minus variable cost for crop and 
irrigation strategy j for year i, 'A is the Pratt-Arrow absolute risk aversion coefficient, the X·S 

are the different crop and irrigation strategies, N is the number of years, and P; is probabilify 
of outcome i occurring. The land constraint was included so that all land was farmed. 

Biophysical Simulation Models 

Biophysical simulation models are mathematical models based on the biological and 
physical processes of daily growth. Model inputs are soil type, date of planting, plant 
genotype, initial soil moisture, soil characteristics, daily temperature, daily rainfall, and daily 
solar radiation. Because of the detailed information needed on soil type, soil characteristics, 
plant genotype, and solar radiation, these models are very site specific. Changing the soil 
characteristics will change the distribution of crop yield. Thus, results can be tailored to a 
localized area. 

Three crop growth models, the CERES maize growth model (Jones and Kiniry, 1986), the 
SORGF grain sorghum model (Arkin et al., 1976), and the PHOTO wheat growth model 
(Brakke and Kanemasu, 1979), were validated using field trials conducted at the Southwest 
Kansas Branch Experiment Station from 1974 to 1982 (Worman et al., 1988). The predictive 
accuracy of each of model was checked by comparing the experimental average, maximum, and 
minimum yields against simulated yields. The range of yields simulated with CERES maize 
and the range of yields harvested from the trials were quite close. PHOTO did not perform 
as well; the highest simulated yield was not as high as the highest actual wheat yield. 
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However, the mean simulated yield was almost the same as the mean actual yield. SORGF 
also had some difficulty in simulating extreme yield. Furthermore, SORGF produced yields 
that exceeded actual yields 66 percent of the time and the mean simulated yield was 10 
percent higher than the mean actual yield. The standard deviation of the simulated yields and 
that of the actual experimental yields were quite close for each of the models. 

Also, to check the accuracy of the models, experimental yields were regressed against the 
simulated yield. When experimental yields are regressed against simulated yields, the slope 
coefficients were 0.95 for maize, 1.009 for wheat, and 0.902 for sorghum when the intercept 
was constrained to zero. Only the slope coefficient for sorghum was statistically different from 
one. Overall, all three models reasonably simulated crop yields. Other factors such as disease, 
insects, wind, and other stress factors not accounted for in the biophysical models could 
account for unexplained variation. 

The validated models were used with 28 years of meteorological data to simulate yields 
for 28 years for 29 alternative non-irrigated and irrigated strategies defined in Table 1. The 
strategies included continuous non-irrigated cropping, fallow, and various levels of irrigation, 
ranging from 4 to 16 inches of water applied at various points in the growing season for each 
crop. The same soil type was assumed for all cropping strategies simulated (Worman et al., 
1988). The simulated yields were adjusted using the estimated slope coefficients discussed 
above. 

Wheat is expected to be the most profitable crop, with returns over variable cost per acre 
ranging from $51.89 to $98.51 depending on the irrigation strategy (Table 2). WHT7 is the 
most profitable wheat production strategy. Sorghum is the second most profitable crop, with 
returns ranging form $10.57 to $57.48. SGM6 is the most profitable sorghum production 
strategy. Maize is the least profitable crop, with returns over variable costs ranging from 
-$31.10 to $44. 73 per acre. CRN8 is the most profitable maize production strategy. 

The last column of Table 2 contains a measure of skewness for the crop returns and 
yields. A normal distribution has a skewness measure equal to zero. Based on Table 2, 
several crop production strategies have skewed yield distributions. 

Results 

The returns over variable costs for each of the 28 years were input into the risk 
programming model. Five different Pratt-Arrow risk coefficients were used, ranging from 0.01 
to 1.0. The mean, standard deviation, and certainty equivalent value of the portfolio are listed 
in the top three rows of Table 3. 

The optimal crop production strategy for a farmer with a risk aversion coefficient of 0.01 
(nearly risk neutral) would be to plant all acreage in wheat. WHT7 is the production strategy 
that would be used. A slightly more risk averse farmer (Pratt-Arrow= 0.05) would plant 31.9 
percent of cropland in wheat (WHT7) and 68.1 percent in sorghum (SGM6). The expected 
returns per acre would drop by almost $28 dollars per acre. The standard deviation of this 
portfolio is $19.20 per acre, a reduction from $45.59 for the most profitable. The certainty 
equivalent value of the portfolio is nearly $60. If the farmer were yet more risk averse (Pratt
Arrow = 0.1), 0.5 percent of land would be in WHT3, 12.7 percent in WHT7, and 86.8 percent 
in SGM6. The most risk averse farmer (Pratt-Arrow= 1.0) would plant 2.0 percent ofland in 
WHT7 and 98.0 percent in SGM6. The expected return is $58.27 per acre with a standard 
deviation of$14.67 per acre. The standard deviation is slightly larger than for the farmer with 
a Pratt-Arrow risk aversion coefficient of 0.5. This is due to the positive skewness measure 
on SGM6. Using mean-variance analysis here with skewed distributions would have produced 
a result inconsistent with expected utility maximization. 

The shadow prices of the crops not in the optimal solution are listed in Table 3. The 
shadow prices are in units of certainty equivalent of income per acre. They are derived using 
the method found in Preckel, Featherstone, and Baker (1987). The shadow prices provide 
useful information for farmers considering irrigation strategies for the individual crops. As 
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Table !-Alternative Cropping Strategies Considered 

Variable Maize Cropping Strategies 

CRNJ 4" irrigation before planting 

CRN2 8" irrigation before planting 

CRN3 4" irrigation in mid-July 

CRN4 4" irrigation before planting, 4" irrigation before tasselling 

CRN5 8" irrigation before planting, 4" irrigation before tasselling 

CRN6 4" irrigation before planting, 4" irrigation before tasselling, 

4" irrigation at beginning of ear growth 

CRN7 8" irrigation before planting, 4" irrigation before tasselling, 

4" irrigation at beginning of ear growth 

CRNB 4" irrigation before planting, 4" irrigation before tasselling, 

4" irrigation between tasselling ear growth, 4" at ear growth 

CRN9 Maize fallow rotation 

CRNJO Dryland production 

SGMJ 

SGM2 

SGM3 

SGM4 

SGM5 

SGM6 

SGM7 

SGMB 

SGM9 

SGMJO 

WHTJ 

WHT2 

WHT3 

WHT4 

WHT5 

WHT6 

WHT7 

WHTB 

WHT9 

Grain Sorghum Cropping Strategies 

4" irrigation before planting 

8" irrigation before planting 

4" irrigation in mid-July 

4" irrigation before planting, 4" irrigation at 9-leaf stage 

8" irrigation before planting, 4" irrigation at 9-leaf stage 

4" irrigation before planting, 4" irrigation at 9-leaf stage, 

4" irrigation at boot stage 

8" irrigation before planting, 4" irrigation at 9-leaf stage, 4" at boot stage 

4" irrigation before planting, 4" irrigation at 9-leaf stage, 

4" irrigation at boot stage, 4" irrigation at flowering 

Sorghum fallow rotation 

Dryland production 

Wheat Cropping Strategies 

4" irrigation before planting 

8" irrigation before planting 

4" irrigation before planting, 4" irrigation at boot stage 

8" irrigation before planting, 4" irrigation at boot stage 

4" irrigation before planting, 4" irrigation at boot stage, 

4" irrigation at soft dough stage 

8" irrigation before planting, 4" irrigation at boot stage, 

4" irrigation at soft dough stage 

4" irrigation before planting, 4" irrigation at jointing, 

4" irrigation at boot stage, 4" irrigation at soft dough stage 

Wheat fallow rotation 

Dryland production 
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Crop 

CRNI 

CRN2 

CRN3 

CRN4 

CRN5 

CRN6 

CRN7 

CRNB 

CRN9 

CRNIO 

SGMI 

SGM2 

SGM3 

SGM4 

SGM5 

SGM6 

SGM7 

SGMB 

SGM9 

SGMIO 

WHTI 

WHT2 

WHT3 

WHT4 

WHT5 

WHT6 

WHT7 

WHTB 

WHT9 
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Table 2-Distribution of Yields and Returns for the Alternative Crop 
and Irrigation Strategies 

Mean Yield I Std. Dev. Yield I Mean Return 1 I Std. Dev. Return I 
bu/acre I $/acre I Skewness 

49.7 40.6 -24.89 81.19 1.47 

59.7 40.5 -15.62 80.94 1.07 

69.4 42.6 12.11 85.20 0.54 

71.0 39.3 -2.00 78.66 0.58 

78.0 38.2 -15.20 76.30 0.43 

106.9 24.8 42.59 49.69 -0.22 

110.1 22.5 34.30 45.07 0.11 

115.3 21.7 44.73 43.36 0.21 

56.6 40.7 1.54 81.48 1.17 

36.4 40.0 -31.10 80.09 1.97 

69.2 32.8 22.58 57.32 -0.31 

85.8 23.7 35.74 41.40 -0.85 

85.6 29.0 46.13 50.74 -1.39 

90.6 21.2 41.54 37.06 -1.22 

97.3 16.1 40.53 28.14 -0.81 

107.7 8.6 57.48 15.07 1.09 

108.1 8.4 47.33 14.71 1.10 

108.0 8.6 47.24 14.97 0.99 

74.9 28.1 41.81 49.25 -0.73 

46.1 31.1 10.57 54.41 0.50 

31.8 11.6 63.79 45.89 1.13 

33.6 12.2 59.77 48.24 0.89 

45.1 11.8 92.56 46.69 -0.04 

46.7 12.6 88.10 49.61 -0.05 

45.5 11.7 83.23 46.32 -0.07 

47.0 12.5 78.72 49.19 -0.09 

53.3 12.3 98.51 48.46 -0.49 

30.6 11.1 69.89 43.66 0.67 

24.4 8.3 51.89 32.75 0.95 

1Returns above variable cost. 
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Table 3-Risk Programming Results for Various Pratt-Arrow Risk Coefficients 

Pratt-Arrow Absolute Risk Aversion Coefficients 
Variable O.Ola 1 0.05b 1 0.1° I 0.5d I l.Oe 

Mean 98.51 70.57 62.88 58.52 58.27 

Standard deviation 47.59 19.20 14.95 14.63 14.67 

Certainty equivalent 86.44 59.91 53.07 43.15 41.04 

Shadow Prices for Activities Not in the Optimal Solutionsf 

CRNJ -114.46 -106.66 -102.23 -110.83 -122.54 

CRN2 -105.03 -98.61 -95.21 -106.28 -117.53 

CRN3 -82.10 -80.23 -76.51 -83.96 -93.37 

CRN4 -91.92 -90.19 -88.59 -103.41 -114.11 

CRN5 -102.70 -99.01 -98.33 -119.05 -130.35 

CRN6 -42.68 -39.67 -41.18 -64.00 -73.05 

CRN7 -47.32 -39.73 -40.36 -58.25 -66.52 

CRN8 -37.53 -28.40 -28.29 -41.25 -48.35 

CRN9 -88.53 -82.65 -78.87 -87.37 -98.44 

CRNJO -118.09 -105.86 -100.66 -109.69 -121.34 

SGMJ -62.67 -57.50 -59.59 -83.59 -90.75 

SGM2 -45.42 -40.15 -45.22 -69.14 -74.77 

SGM3 -37.96 -40.22 -47.82 -82.74 -88.54 

SGM4 -41.04 -36.86 -41.11 -59.76 -63.63 

SGM5 -31.63 -13.67 -15.14 -24.52 -27.20 

SGM6 -17.70 - - - -
SGM7 -26.68 -6.37 -5.60 -3.27 -2.98 

SGMB -26.86 -6.72 -6.16 -4.72 -4.64 

SGM9 -44.74 -42.67 -45.62 -65.52 -70.75 

SGMJO -73.69 -64.05 -64.03 -81.00 -88.40 

WHTl -24.23 -11.38 -10.77 -18.11 -19.82 

WHT2 -30.08 -18.43 -17.35 -20.55 -21.52 

WHT3 -2.91 -0.18 - -1.02 -1.78 
WHT4 -9.01 -7.05 -6.23 -4.18 -4.47 

WHT5 -12.19 -9.52 -9.35 -10.32 -11.01 

WHT6 -18.32 -16.47 -15.72 -13.84 -14.10 

WHT7 - - - - -
WHT8 -18.09 -3.80 -1.12 -0.74 -1.13 

WHT9 -31.20 -13.78 -12.52 -20.78 -23.23 

aoptimal portfolio: WHT7 = 100 percent. 
hoptimal portfolio: WHT7 = 31.9 percent, SGM6 = 68.1 percent. 
00ptimal portfolio: WHT7 = 12.7 percent, WHT3 = 0.5 percent, SGM6 = 86.8 percent. 
dOptimal portfolio: WHT7 = 2.5 percent, SGM6 = 97.5 percent. 
0 0ptimal portfolio: WHT7 = 2.0 percent, SGM6 = 98.0 percent. 
fin units of certainty equivalent per acre. 
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a farmer gets more risk averse, the wheat fallow strategy (WHT8) becomes more attractive. 
Thus, under some price combinations, it is likely that wheat fallow would be in the optimal 
solution. SGM7 continues to be more attractive for more risk-averse strategies because the 
penalty cost continues to decrease as risk aversion increases. FuJ.I irrigation of sorghum is a 
risk-reducing strategy for sorghum, whereas no irrigation of wheat is a risk-reducing strategy 
for wheat. CRN8 in all cases has the smallest penalty cost for maize for inclusion in the 
optimal portfolio. Given different price expectations where maize is relatively more profitable, 
CRN8 would be the maize strategy most likely to be used. 

·The results illustrate that crop simulation models can be useful in generating 
distributions of yields over a longer time frame for risk analysis. Checking distributions 
generated by biophysical simulation models with actual experimental data suggests that yield 
distributions generated with biophysical simulation models do not differ greatly from 
experimental data. The results also show that the yields can then be input into risk 
programming models to take economic behaviour into account. 

In addition, calculating certainty-equivalent values for those cropping activities that do 
not enter the optimal portfolio can further help producers understand the consequences of 
different cropping and irrigation strategies. These shadow prices can then be useful for 
altering recommendations as market conditions change. 

Conclusions 

This study used biophysical simulation models and risk programming to investigate 
alternative crop production and irrigation strategies. The biophysical simulation models were 
used to generate crop yields based upon historical weather patterns. The simulation models 
were used because time-series data are often not available for a long enough period to use risk 
analysis. Comparing simulated yields to actual experiment station yields suggests that the 
simulation models perform reasonably well. 

Risk programming was used to investigate the crops and irrigation strategies that 
maximize expected utility of income for a risk-averse farmer. Direct expected utility 
maximization was used because yield distributions and incomes were skewed. Direct expected 
utility maximization also allows for a detailed interpretation of shadow prices on those crops 
and irrigation strategies that do not enter the optimal portfolio. 

The results from the paper suggest that biophysical simulation models may be useful for 
risk analysis. These models are able to use historical weather data to project crop yields in 
the past. Because of the nature of agronomic experiments, insufficient data are usually 
available for risk analysis. Biophysical simulation models offer a promising avenue to further 
understanding of the impacts of risk on farm management decisions. 

Note 

1Kansas State University. 
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Discussion Opening-Chung L. Huang (University of Georgia) 

Various risk models and mathematical programming techniques have been developed to 
address risk and uncertainty in decision making involving crop production, pest management 
strategies, farm programmes, and rural bank portfolio behaviour. A common feature of these 
economic analyses is the incorporation of the decision maker's perception and attitude towards 
assuming risk into the framework of expected utility maximization hypotheses for modelling 
expectations of possible outcomes and their probabilities. Methodologically, a wide range of 
approaches has been used to solve decision-making problems involving risk and uncertainty 
of future events, varying from using conservative estimates for the uncertain elements to 
methods that explicitly incorporate probability density functions for the uncertain parameters. 
More recently, plant growth simulation models that consider the interactions of stochastic 
weather conditions, soil type, plant growth, moisture stress and irrigation decisions within an 
integrated bioeconomic framework have become important research tools. The present paper 
contributes appropriately to this class of growing risk analysis literature. 
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While the paper can be considered as generally outstanding, it lacks explanation of the 
theoretical model and methodology used. The paper only indicates that the decision maker's 
objective function was maximized assuming a negative exponential utility function of profit. 
The forms of the utility function represent different attitudes towards risk. The specification 
of the model implies that the decision maker is risk averse and has an attitude towards risk 
unrelated to wealth. It is not clear why this is the case. Although the probabilities of possible 
outcomes for different production strategies were explicitly incorporated in the objective 
function, there is no explanation of how the probability function was derived. Most 
importantly, the model assumes a profit-maximization framework. We all know that prices 
influence farmers' decisions, especially production adjustments. In the short run, farmers 
adjust by changing current inputs; in the longer term, solutions come by changing technologies 
and scale dimensions. It is not clear how price variations among crops and over time were 
considered in the formulation. 

The authors rightly point out that biophysical simulation models are plant genotype and 
location or site specific. Any changes in input data such as soil characteristics result in 
different distributions of crop yields. Thus, it is suggested that the application of biophysical 
simulation models offers the advantage of transferability to different regions of the world and 
the capability of generating distributions of yields over a longer time frame for risk analysis. 
Given its site-specific nature, it seems that some sensitivity analyses reflecting differences in 
soil and weather should be performed to measure the stability of model results. In fact, the 
requirement of very detailed and specific input information would be an obstacle that limits 
the transferability. In the absence of experimental data, I wonder how the researchers would 
validate and calibrate the performance of the simulation models. Furthermore, if the growth 
simulation models are sensitive to plant genotype, then changing cultivars would appear to 
render the generation of yields distribution over a long period of time unnecessary or invalid. 

More specifically, the results show no differences between risk aversion coefficients of0.5 
and 1.0, and they should be reported as such. Apparently, many farm plans are similarly 
organized. Hence, changes in risk aversion coefficients between 0.5 and 1.0 do not reduce net 
return or entail changes in the optimal portfolio. 

The authors are to be commended for the enormous efforts devoted to bridging the gap 
between economic analysis and biophysical simulation techniques in an application to 
determine optimal crop choice and irrigation strategies. 

[Other discussion of this paper and the authors' reply appear on page 119.] 
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