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Robustness of Non-Parametric Measurement of Efficiency and Risk Aversion 

 The use of frontier functions in the economics literature is pervasive.  Frontier functions 

are employed to measure a wide variety of phenomena, but they are most frequently employed to 

measure firm or industry efficiency levels (Førsund et al., 1980).  Most frontier estimation 

methods fall into one of two categories:  mathematical programming based methods, commonly 

referred to as data envelopment analysis (DEA), and statistically based techniques such as 

corrected ordinary least squares or maximum likelihood for estimation of stochastic frontier 

functions.  Although the estimation of frontiers differs based on the method chosen, almost all 

methods share one common feature, they do not account for the presence of risk averse behavior 

on the part of the firm (Coelli, 1995).   

 In a paper by Preckel, Ahmed, and Ehui, (2000) a non-parametric method for the 

measurement of firm efficiency and risk aversion is developed.  This method is a modification of 

DEA and allows the user to simultaneously determine the firm’s efficiency score and level of 

risk aversion.  This study extends the initial method set up by Preckel, Ahmed, and Ehui by 

extending the Monte Carlo framework to handle a wider variety of agent behavior.  The accuracy 

of both the efficiency scores and risk aversion measurements will be computed and analyzed.  

The literature on frontier methods, with a few notable exceptions, has been sparse with regard to 

Monte Carlo comparisons.  Most existing studies focus on model performance in the face of 

differing transformation technologies assuming firms are expected profit maximizers (e.g., Gong 

and Sickles 1989, 1992 and Settlage 1999).  Although producer risk aversion almost certainly 

plays a role in production and investment decisions, few studies examine the effect that risk 

aversion has on the ability to correctly measure efficiency.   
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 There also exists a substantial literature on the elicitation of utility functions and risk 

aversion levels.  There are two methods commonly used to elicit utility functions: interview 

methods and data driven approaches.  Hardaker, Huirne, and Anderson (1997) found that most of 

the interview-based methods encounter problems in the estimation of risk aversion levels.  Other 

methods rely on comparing the actual production results to the production plan that is predicted 

by modeling the producer.  Roughly speaking, the risk aversion parameter is varied until the 

predicted plan matches the observed plan as closely as possible.  These data driven elicitation 

methods have also been found somewhat lacking.  The present method is also a data driven 

approach.  However, it does not require the direct construction of a model of the production 

possibilities of the producer.  Rather, observations of the behavior of other producers are used to 

define technology.  

Efficiency Background and Model Layout 

 Efficiency is classified in two categories, technical efficiency and allocative efficiency.  

Technical efficiency deals with the question of whether it is technically feasible for a firm to 

produce more output given the inputs that the firm used (i.e., did the firm use the inputs it had in 

the best possible way).  Technical efficiency measurement deals only with the physical process 

of converting inputs into outputs.   

 Allocative efficiency deals with the question of economical choices of input and output 

mix based on the prices faced by the firm.  Tests of allocative efficiency can focus on measuring 

cost minimization (input allocation efficiency), revenue maximization (output allocation 

efficiency), or profit maximization (a simultaneous test of input and output allocation efficiency).  

In the profit maximization case, allocative efficiency asks whether it is feasible to achieve higher 

profits given the input and output prices faced by the firm.  DEA can be used to measure both the 
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technical and allocative efficiency of a firm based on his observed actions and prices and the 

actions and prices of other firms in the sample.  For example, the profit maximization test for a 

firm is: 
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ii xxxyyy −−− is the netput vector for the ith observation, 0
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the output and input prices confronting the particular firm, yj and xk are technically feasible levels 

of outputs and inputs (assuming convexity of the input/output possibilities set, free disposal of 
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�����������	������i’s are weights defining 

a convex combination of the observed netput vectors.  If the firm’s maximum feasible profit 

level (as measured by the optimum value of the objective function) is higher than the firm’s 

observed profit level then the firm is deemed inefficient.  If the two profit levels are equal, then 

the firm is deemed efficient.  This is the standard model formulation used to measure profit 

maximization efficiency in the DEA literature today. 

 A significant weakness of this method of efficiency measurement is that it assumes that 

the costs and returns are deterministic.  If costs or returns are stochastic and producers are risk 

averse then this efficiency test will incorrectly attribute risk averse behavior on the part of firms 

to inefficiency.  Preckel, Ahmed, and Ehui have adapted the DEA model to reflect risk aversion 



 5 

by assuming that producers behave as mean-variance utility maximizers facing certain costs, but 

uncertain returns.  Thus the adapted model formulation in (1) would become: 
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where 0
jp denotes the mean payoff to the producer for output j, �0 is the individual producer’s 

level of risk aversion and � is the covariance matrix of returns faced by the producer.  One 

problem with this formulation is that it treats �0 as observable data.  In order to get around this 

problem, Preckel, Ahmed, and Ehui treat the variance portion of the objective function as a fixed 

input in a fashion similar to Färe, Grosskopf, and Lee (1990).  This dualization of the variance 

level allows the problem in (2) to be reformulated into the risk-adjusted DEA model (3) below: 
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where σhj is the covariance between returns to activities h and j and V denotes the level of 

portfolio variance observed for the firm.  This model formulation asks whether it is feasible to 

obtain greater profits than were obtained given the constraint that the observed level of variance 

of the portfolio cannot be exceeded.  Now the model is couched in terms of observable variables 

(assuming the mean and covariances of returns can be estimated) and may be solved using 

available software.  A byproduct of the model’s formulation is that the shadow price on the 

variance constraint allows estimation of the firm’s risk aversion.  Two times the shadow price on 

the variance constraint is equal to the estimate of the coefficient of absolute risk aversion for the 

firm.  This enables us to estimate the firms risk aversion coefficient without resorting to 

elicitation interviews or directly modeling firms’ production possibilities. 

 A key element of the formulation (3) is the assumption that the true mean and covariance 

of the returns distribution can be estimated and is equal for all firms.  (The assumption of 

uniformity of the moments of the returns distribution across firms could be relaxed, but is 

maintained here to simplify the exposition.)  The user of this approach should expend substantial 

effort to correctly characterize the distribution of returns, because inaccuracies in the 

characterization of these moments will translate to inaccuracies in the efficiency scores.  Note 

that firms operating under incorrect beliefs about the moments of the returns distribution are 

acting inefficiently.  Hence, a key assumption is that the researcher can characterize the 

distribution of returns at least as accurately as any firm. 

Monte Carlo Tests of the Model 

 A Monte Carlo study is used in this paper to aid in accurately determining the capabilities 

of the model.  There are two separate Monte Carlo sections in this paper.  In the first section, all 

firms will be perfectly efficient risk averse utility maximizers.  This will help to determine how 
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well the model does under ideal data conditions.  The second section will examine what happens 

when firms are both risk averse and inefficient.  This section is closer to what is observed in the 

real world.  The Monte Carlo study is similar in spirit to Preckel, Ahmed, and Ehui, but it goes 

beyond that work by using a more general data generation procedure.  The key difference 

between the data generation procedure used here and the earlier work is that the basis for 

behavior of firms is expected utility.  In the earlier work, firm behavior was based on a mean-

variance model.  Thus, this work examines the robustness of the measurement method to the 

nature of behavior.   

Data Generation 

In order to test for efficiency, the risk-adjusted DEA model requires firm level data on 

input usage (x), investment decisions (y), and the first two moments of the distribution of returns 

faced by the firm µ  and Σ .  In order to generate this data, a calibration procedure is used to 

generate a discrete sample of returns that exhibit a mean and covariance structure such that a 

utility maximizing agent will choose a diversified portfolio of investments.  Then a firm level 

expected utility maximizing model is confronted with technology, prices, and the discrete data 

on returns, and the optimal choices are calculated.  The input and investment choices of each 

agent in the sample are recorded.  These input and investment choices, along with the data on the 

distribution of returns, are used as input data in the Monte Carlo tests of the risk-adjusted DEA 

model.  The first step in this process is the generation of the returns data that agents face. 

Generation of Returns Data 

The specification of the net returns data follows Preckel, Ahmed, and Ehui closely.  This 

specification relies on the concept of fundamental driving variables.  These are underlying 

variables that drive a particular technology (e.g. rainfall or growing degree days in the case of 
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crop production).  The returns vector is specified as a linear function of the fundamental driving 

variables ( r~ = Dv where r~  denotes yield, v denotes the fundamental variables, and D is a 

matrix of fixed coefficients).  The returns vector is transformed into a random variable through 

the addition of a random disturbance term ( r~  = Dv + w where w is a disturbance vector).  In this 

Monte Carlo there are five investments ( r~ ’s) and three fundamental driving variables (v’s).  The 

transformation matrix D is defined as: 
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A sample of 50 observations of the fundamental driving variables is drawn from a uniform [1,3] 

distribution.  The D matrix is applied to each of the 50 vectors of fundamental variables, and the 

additive disturbance term is drawn from a uniform [0,1] distribution.  The resulting sample is 

used to compute a mean vector ( µ~ ) and correlation matrix ( Λ~ ) for the investments.   

Following Preckel, Ahmed, and Ehui and drawing on the model calibration framework of 

Howitt (1995), the outputs are rescaled via a two-step process.  First a calibration problem is 

solved without regard for variance: 
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where J is the number of investments (5 in this case), A and B are technology matrices, z is a 

transformation vector, e is a vector with every component equal to 1.0, and c is set equal to 0.5 

for each input.  Provided that investment returns exceed variable costs, the optimal solution to 

this problem allocates equal proportions in each investment due to the nature of the last set of 

constraints.  Denote the shadow prices on the last set of constraints as �.  A second calibration 

problem is solved to generate data that exhibit a mean and covariance structure that both ensures 

a diversified investment strategy and ensures that the vector of returns is non-negative in every 

state of nature.  This calibration problem is: 
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where σ  is a diagonal matrix whose diagonal elements are the standard deviations to be 

determined, σ~ is the diagonal standard deviation matrix of the original investments, iσ~  is the 

standard deviation for the ith output, iσ  is the standard deviation to be determined for the ith 

output, iµ~  is the mean return for the ith output, iµ  is the mean return to be determined for the ith 

output, ir ’s are the returns vectors to be solved for, Λ~ is the correlation matrix determined in the 

previous step, and ρ* is the coefficient of absolute risk aversion.  By choosing a risk aversion 

coefficient in the center of the range for which we will be generating agent behavior, we increase 

the likelihood that a diversified investment portfolio will be chosen.  A relative risk aversion 

coefficient (ρ) of 5 is a commonly chosen value to represent a high degree of risk aversion.  

Setting ρ* such that it corresponds to a relative risk aversion coefficient of 5 will result in a data 
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structure such that a risk averse utility maximizer will choose to invest in a proportion of each 

output.  Absolute risk aversion is calculated as ρ/wo where wo is the initial wealth level.  The 

initial wealth level is set equal to the level of profits the agent in problem 2 received (9.789 in 

this case).  This calibration procedure generates non-negative returns data ( ir ’s) that will usually 

result in a diversified set of input and investment decisions by expected utility maximizing 

agents. 

Behavioral Model of the Firm—Efficient Firms 

To increase the generality of behavior over Preckel, Ahmed, and Ehui, the observed 

behavioral data are generated by modeling risk averse expected utility maximizing agents who 

face a fixed technology.  The agent is modeled using both the expo-power, including its limiting 

cases (e.g., the power utility).  Saha introduced the expo-power utility form in 1993 as a flexible 

utility form capable of representing a wide variety of risk attitudes.  The utility maximization 

problem is written as follows: 
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where ri is a vector of returns from the ith state of nature, c is a vector of costs, e is a vector with 

all components equal to 1, w0 is the initial wealth of the agent, α and β are parameters of the 

utility function, G is total available capital, A and B are technology matrices, N is the number of 

states of nature, and z is a vector of alternative uses of the technologies.  The coefficient of  
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absolute risk aversion for this utility function is (1 - α + αβwo
α)/wo and the coefficient of relative 

risk aversion is (1 - α + αβwo
α).   

The expo-power utility function is capable of representing the following combinations of 

risk attitudes with the appropriate parametric restrictions.  These risk attitudes are enumerated in 

Table 1. 

Table 1.  Risk Attitudes Represented by the Expo-Power Utility Function 

 
Decreasing 

Relative Risk 

Constant 

Relative Risk 

Increasing 

Relative Risk 

Decreasing Absolute Risk Aversion α<0, β<0 Power Utility 0<α<1, β>0 

Constant Absolute Risk Aversion 

(CARA) 

N/A N/A α=1, β>0 

Increasing Absolute Risk Aversion 

(IARA) 

N/A N/A α>1, β>0 

 

The cells marked with N/A represent risk attitude combinations that are not feasible for any 

utility function representing a risk averse agent.  Note that the expo-power representation of the 

DARA/CRRA risk attitude combination is a limiting case that is equivalent to the power utility 

function.  It is also interesting to note that for the CARA/IARA risk attitude combination, the 

expo-power utility function collapses into the exponential utility function.  In addition to the 

expo-power, the quadratic utility function is capable of representing the IARA/IRRA risk 

attitude combination.   

In order to represent all feasible risk attitude combinations, the DARA/CRRA risk 

attitude combination will be modeled using the power utility function.  The power utility 

maximization problem can be written as follows: 
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where ρ is the utility function parameter corresponding to the coefficient of relative risk aversion 

and all other notation remains the same as in (7).   

The risk attitude parameters for both the expo-power and power utility function are 

calculated in the following manner.  For each agent, a coefficient of relative risk aversion (r*) is 

drawn from a uniform [1,5] distribution.  In the case of the power utility function 

(DARA/CRRA) the risk aversion parameter ρ is set to equal to r*.  For all other risk attitude 

combinations the relative risk aversion level (1- α + αβwo
α) is set equal to r*.  The α coefficient 

is then drawn from a pre specified distribution, and the β coefficient is solved for as β = (r*- 1 + 

α) / αwo
α.  As before, wo is the initial wealth level, which is set to 9.789.  The distribution α is 

drawn from varies based upon the specific risk attitude represented by the utility function.  For 

the DARA/DRRA risk attitude α is distributed uniform [1- r*,0].  For the DARA/IRRA risk 

attitude α is distributed uniform [0,1], and if the resulting β coefficient is less than 0, α is 

redrawn from a uniform [1- r*,0] distribution.  For the CARA/IRRA risk attitude α is set equal to 

1, and for the IARA/IRRA risk attitude α is distributed uniform [1,1.5].   

In each case the values of the limits of the α parameter were derived by observing the 

parametric restriction that α and β must be of the same sign.  In addition, α and β must be 

“small” in absolute value for the problem to be well scaled.  For this particular problem, the 

magnitude of α and β must less than approximately 20 in absolute value for the problem to be 
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well behaved.  Additionally, in some cases the optimal solutions were sensitive to the scaling of 

the objective function.  To improve the scaling of the gradient near the solution, the objective 

function was rescaled by dividing the objective function by the first derivative of utility 

evaluated at the initial wealth plus the risk neutral profit level.  

Generating the Observed Behavioral Data 

The producers behave as expected utility maximizers subject to the technology available 

and capital constraints.  Both the input and investment vectors (x and y) are considered to be 

observable by the researcher.  The technology matrices and utility function parameters are 

constructed to generate the data but are considered unobservable for the purposes of efficiency 

testing. 

In order to construct a sample of firm level observations, the vector of costs (c), risk 

aversion level (r*), and the total available funds (G) are varied 50 times to generate a sample 

corresponding to 50 firms.  The cost vector is drawn from a uniform [0.45,0.55], the risk 

aversion level is drawn from a uniform [1,5], and the total available funds are drawn from a 

uniform [0.5,1.5] distribution.  The limits on the distribution of the cost vector were chosen by 

allowing the costs for any given input to vary by 10 percent in either direction from the cost level 

chosen in the calibration problem (0.5 for all inputs).  This simulates firms that face costs that are 

at a fixed level, but may vary from firm to firm (perhaps based on locale).  The coefficient of 

relative risk aversion is drawn such that it ranges from 1 for a slightly risk averse agent to 5, 

which is generally considered to be reasonable upper bound on relative risk aversion.  The total 

available funds parameter was drawn such that the available funds would lie within plus or 

minus 50 percent of the funds available to level chosen for the calibration problem (1.0).   

The producer optimization model in (4) and (5) is solved once for each combination of 
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costs, initial wealth, utility function parameterization, and total available funds.  The particular 

draw of costs, risk aversion, and available funds for any given firm is identical for each of the 

five utility function parameterizations.  Thus, the results from each utility function 

parameterization are directly comparable.  The input and investment choices are recorded for 

each firm and are treated as data for the subsequent efficiency testing.  The sample mean vector 

and covariance matrix of returns are also treated as observable and used as data in the efficiency 

test.  Each firm in this sample is efficient.  Behavioral Model of the Firm—Inefficient Firms 

To generate a sample of data in which agents exhibit inefficiency, the optimization 

problems in (4) and (5) are treated as though they do not have full information.  The utility 

maximization setup is as before, except that agents make their choices based on only a subset of 

the states of nature.  In this case, the number of states of nature that the agent “sees” is a random 

sample of 40 of the original 50 states of nature.  Thus, the agent can be viewed as having only 80 

percent of the total available information on the distribution of net returns on which to base 

decisions.  The 40 states of nature available to the firm are drawn as a random sample without 

replacement from the original 50 states of nature.  The firm level optimization models in (4) and 

(5) are solved and the agent’s input and investment choices are recorded.  A new sample of 

returns is drawn for each firm along with the costs, risk aversion levels, and returns.  The 

researcher is assumed to possess knowledge of all 50 observations of the distribution of net 

returns on which he bases the sample mean vector and covariance matrix of returns.  Thus, the 

researcher has better information on the true nature of returns than do the firms.  This lack of 

knowledge of all states of nature induces the firm to act in an inefficient manner in the selection 

of inputs and outputs. 
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Efficiency Tests 

 For each set of data, the set where all firms are efficient and the set where firms exhibit 

inefficiency, two separate efficiency tests are run.  First, a traditional DEA efficiency test similar 

to (1) (with µ  being substituted for 0
jp ) is run.  The formulation of this test is: 

i

Gy

Kkxx

Jjyy

cxy

i

l

i
i

k
i
k

l

i
i

j
i
j

l

i
i

k

K

k
kj

J

j
j

∀≥

≤

=≤

=≥

−

∑

∑

∑

∑∑

=

=

=

==

   0

,...,1   

,...,1   

:subject to

 maximize

1

0

1

1

0

11i

λ

λ

λ

µ
λ

      (9) 

where a superscript 0 indicates that the values are for the firm for which the testing is being 

done.  The data required to run this efficiency test are the mean returns vector, cost vectors, total 

available capital, and observed input and output vectors.  If the actual expected returns less 

variable costs are less than the optimal (potential) expected returns less variable costs, then the 

firm is deemed inefficient, otherwise the firm is efficient.  The efficiency measure is calculated 

as the optimal profit level minus the actual profit level, all divided by the optimal profit level. 

 The second efficiency test applied to the data is a risk-adjusted test similar to (3).  It is 

formulated as: 
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This problem is a more constrained version of (9) and the optimal objective value found for any 

particular firm in (10) is less than or equal to the optimal objective value found for that firm in 

problem (9).  Thus, we can compare the levels of efficiency predicted by each model to the 

known level of inefficiency.   

Calculating efficiency based only on the profits of the firm (as is done in test (9)) would 

ignore the fact that firms are risk averse.  Thus the efficiency measures (for the true level of 

efficiency and the level predicted by the risk-adjusted DEA model) are calculated by converting 

the firm portfolios into certainty equivalents (CE’s).  Certainty equivalents are a method of 

placing a certain value on an uncertain gamble (in this case the input and output decisions of the 

firm) while taking the level of risk aversion into account.  The certainty equivalents are 

calculated as follows.  The true CE is the difference between the firm’s expected profits for the 

full sample problem minus one half the true absolute risk aversion coefficient times the level of 

variance for the full sample problem.  Likewise, the observed CE is the difference between the 

firm’s expected profits for the limited sample problem minus one half the true absolute risk 

aversion coefficient times the level of variance for the limited sample problem.  The true level of 
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efficiency is defined as the true CE minus the observed CE all divided by the true CE.  This 

efficiency level is only observable in a Monte Carlo framework.   

The predicted efficiency level is the observable analog of the true efficiency level.  Two 

times the shadow price on the variance constraint in (10) times the initial wealth level provides 

an estimate of the firm’s coefficient of relative risk aversion.  Thus, the optimal CE is the 

difference between the objective value from the efficiency test (10) minus the shadow price on 

the variance constraint times the level of variance for the firm in the limited sample problem.  

Likewise, the realized CE is the difference between the firm’s expected profits for the limited 

sample problem minus the shadow price on the variance constraint times the level of variance for 

the limited sample problem.  The estimated level of efficiency is defined as the optimal CE 

minus the realized CE all divided by the optimal CE.  This efficiency level is observable based 

on the data required to run the risk-adjusted DEA model and is compared to the true efficiency 

level.  In addition, the estimated risk aversion coefficients are compared with the actual risk 

aversion coefficients to determine the method’s accuracy in estimating individual risk aversion 

levels. 

Results and Analysis 

Model Performance When Agent Behavior is Efficient 

 In the first Monte Carlo test all firms exhibit efficient behavior, thus their true levels of 

efficiency are zero.  Table 2 shows the results of the efficiency testing using both standard DEA 

and the risk-adjusted methods. 
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Table 2.  Efficiency Test Results for Efficient Data (Percent Inefficiency) 

    Standard DEA Risk-Adjusted DEA 
Utility Function Efficiency Test Average Maximum Average Maximum 
DARA/CRRA (Power) Standard DEA 12.2% 76.4% 0.0% 0.0% 
DARA/DRRA Standard DEA 12.2% 76.4% 0.0% 0.0% 
DARA/IRRA Standard DEA 12.3% 76.5% 0.0% 0.0% 
CARA/IRRA (Exponential) Standard DEA 12.3% 76.5% 0.0% 0.0% 
IARA/IRRA Standard DEA 12.3% 76.5% 0.0% 0.0% 
 
 
Without accounting for risk, the standard DEA model indicates that agents are approximately 12 

percent inefficient on average.  Estimated inefficiencies range from 77 percent to 0 percent.  If 

we correct for risk aversion by using the risk-adjusted DEA model, all estimated inefficiency 

vanishes.  Both the risk-adjusted and standard DEA models seem to represent the various utility 

forms equally well (or poorly for standard DEA).  The results of this portion of the Monte Carlo 

experiment indicate that the standard DEA model categorizes risk averse behavior as inefficient.  

The magnitude of inefficiency that the standard model estimates suggests that any attempt to 

apply standard DEA to risk averse agents will potentially result in gross overestimation of the 

level of inefficiency present in the sample.  In contrast, the risk-adjusted DEA model performed 

extremely well in this set of experiments, correctly characterizing the efficiency level of every 

agent. 

 The risk-adjusted DEA model also performed exceptionally well with regards to the 

estimation of firm specific risk aversion coefficients (RAC).  Table 3a shows the average, 

minimum, and maximum absolute differences between the true and estimated risk aversion 

coefficients for the efficient data. 
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Table 3a.  Risk Aversion Estimates for Efficient Data 

  Absolute Difference Between True and Estimated RAC 
Utility Function Average Minimum Maximum 
DARA/CRRA (Power) 0.1530 0.0005 2.0423 
DARA/DRRA 0.1572 0.0005 2.0423 
DARA/IRRA 0.1473 0.0005 2.0423 
CARA/IRRA (Exponential) 0.1381 0.0010 2.0423 
IARA/IRRA 0.1334 0.0018 2.0423 
 
As Table 3a indicates, the average absolute deviation in estimating the firm specific risk aversion 

coefficient is about 0.146.  The minimum deviation is around 0.0005 while the maximum is 

around 2.04.  Again, varying utility forms did not appear to substantially alter the method’s 

ability to predict RAC’s.  It is important to note that the true risk aversion levels ranged between 

1 and 5.  Thus these deviations should be viewed with that scaling in mind.   

Perhaps a better measure of the risk aversion measurement capabilities of the model is the 

correlation coefficient.  The correlation coefficient measures the strength of the linear 

relationship between two variables, thus indicating how well the estimated risk aversion levels 

track the true values.  The correlation coefficient is bounded between negative one and one, with 

a value of one indicating a perfect correlation.  Table 3b shows the correlation coefficient 

between the true and predicted risk aversion levels. 

Table 3b.  Correlation Coefficients Between True and Estimated Risk Aversion Levels 
 
Utility Function Correlation Coefficient 
DARA/CRRA (Power) 0.9528 
DARA/DRRA 0.9518 
DARA/IRRA 0.9535 
CARA/IRRA (Exponential) 0.9555 
IARA/IRRA 0.9569 
 
This table illustrates the strong relationship between the true and estimated risk aversion levels.  

This indicates that the risk-adjusted DEA model performs exceptionally well with regard to the 

ability of the model to estimate firm level risk aversion coefficients. 
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Model Performance When Agent Behavior is Inefficient 

 In the second Monte Carlo test, firms exhibit inefficient behavior.  This is induced by 

allowing firms to optimize over only a subset of the distribution of net returns rather than the full 

distribution as in the first Monte Carlo.  Table 4a illustrates the efficiency results from both the 

standard and risk-adjusted DEA models. 

Table 4a.  Efficiency Test Results for Inefficient Data, Percent Inefficiency 

  Standard DEA Risk-Adjusted DEA True Inefficiency 
Utility Function Average Maximum Average Maximum Average Maximum 
DARA/CRRA (Power) 26.1% 91.5% 21.0% 126.9% 29.0% 109.9% 
DARA/DRRA 23.4% 91.5% 16.8% 95.1% 26.1% 100.0% 
DARA/IRRA 21.8% 91.6% 17.4% 126.9% 39.1% 109.8% 
CARA/IRRA (Exponential) 23.6% 91.6% 16.9% 95.1% 25.9% 100.0% 
IARA/IRRA 23.6% 91.6% 16.9% 95.1% 25.8% 100.0% 
 
 

As Table 4a indicates, the true level of inefficiency for all utility forms hovers between 

26 to 39 percent.  The standard DEA model appears to be closer to predicting the true level of 

inefficiency on average.  This is somewhat misleading since the error in the parings between 

estimated and true inefficiency levels is the error that we are truly concerned with.  A better 

measure of performance would be the absolute difference between the true and estimated 

efficiency levels, as shown in Table 4b. 

Table 4b.  Efficiency Test Results for Inefficient Data, Absolute Difference Between 
True and Predicted Inefficiency Levels 
 
  Standard DEA Risk-Adjusted DEA 

Utility Function Average Average 
DARA/CRRA (Power) 15.4% 11.6% 
DARA/DRRA 15.4% 11.8% 
DARA/IRRA 27.1% 24.6% 
CARA/IRRA (Exponential) 15.3% 11.5% 
IARA/IRRA 15.2% 11.4% 
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As is shown in Table 4b, the average absolute difference between the true and estimated 

inefficiencies for the standard DEA models hover at about 15 percent while they are just under 

12 percent for the risk-adjusted DEA model.  This indicates that the risk-adjusted DEA model 

comes closer to the true efficiency value on average than the standard DEA model does.  For all 

utility forms, the risk-adjusted DEA method is closer to the true level of inefficiency than the 

standard DEA model.  Both models seem to have a harder time with the DARA/IRRA utility 

function.  As before, the correlation coefficient between the true and estimated levels of 

efficiency, shown in Table 4c, is a good measure of model performance.  

Table 4c.  Correlation Coefficient Between True and Estimated Efficiency 

  Correlation Coefficient 
Utility Function Standard DEA Risk Adjusted DEA 
DARA/CRRA (Power) 0.5795 0.7294 
DARA/DRRA 0.4830 0.6308 
DARA/IRRA 0.1245 0.3154 
CARA/IRRA (Exponential) 0.4875 0.6356 
IARA/IRRA 0.4881 0.6359 
 
As Table 4c indicates, the risk-adjusted DEA method substantially outperforms the standard 

DEA method with regard to the correlation of estimated and actual inefficiency.  Again, for a 

reason unknown at the present time, both methods have difficulty with the DARA/IRRA risk 

attitude. 

The risk aversion estimates from by the risk-adjusted DEA method are shown in Table 5. 

Table 5.  Risk Aversion Estimates for Inefficient Data (Absolute Difference Between True 
and Estimated RAC) 
 

Utility Function Average Minimum Maximum 
DARA/CRRA (Power) 1.5164 0.1586 7.3663 
DARA/DRRA 1.4312 0.0240 4.4334 
DARA/IRRA 1.5782 0.1619 7.3839 
CARA/IRRA (Exponential) 1.4226 0.1563 4.5333 
IARA/IRRA 1.4199 0.1515 4.5830 
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Clearly the risk-adjusted DEA model had a harder time estimating risk aversion levels when the 

agents in the sample were behaving in a risk averse manner than it did when all agents were 

efficient.  It is important to note that the risk-adjusted DEA model does not provide a reliable 

estimate of the risk aversion level for a firm that chooses not to produce.  For all utility function 

except DARA/IRRA, one of the fifty firms in the sample chose to produce zero output.  For the 

DARA/IRRA utility form there were eight firms that chose to produce zero output.  These firms 

have been excluded from the calculation of the results in Table 5.  Although the results are not as 

good as the results for the model using efficient data, they are still relatively close to the true 

values of the risk aversion levels.   

Table 6 shows the correlation coefficients between the true and estimated risk aversion 

coefficients. 

Table 6.  Correlation Between True and Estimated Risk Aversion Coefficients 

Utility Function Correlation Coefficient 
DARA/CRRA (Power) 0.5096 
DARA/DRRA 0.4251 
DARA/IRRA 0.4295 
CARA/IRRA (Exponential) 0.4317 
IARA/IRRA 0.4332 
 
The results show that the correlation coefficient lies between 42 and 51 percent.  This is fairly 

good performance in light of the small absolute differences in prediction error.  Overall, the 

results indicate that the risk-adjusted DEA model shows real potential as an alternative method 

of risk aversion evaluation. 

Conclusions 

 This paper developed a Monte Carlo framework to test a method of risk adjusted 

efficiency testing and risk aversion measurement pioneered by Preckel, Ahmed, and Ehui.  The 

results of the paper indicate that the model is a viable solution to the problem of efficiency 



 23 

measurement for risk averse producers.  The method also appears to be a promising alternative to 

the methods of utility elicitation that have previously been used to estimate the risk aversion 

levels of agents.   

There remains much work to be done in the way of model validation.  Future work will 

extend the Monte Carlo to cover more diverse data generation processes.  This will include the 

introduction of skewness into the returns structure that firms face.  In addition, several new 

methods of inducing inefficient behavior on the part of the firm will be examined.  The current 

study restricts the agents in any given sample to behave according to only one utility function.  

This restriction will be relaxed to allow for varying utility forms and inefficiency generation 

methods in the same sample of agents.  This will test the ability of the risk-adjusted DEA model 

to perform in an environment where agents behave much more heterogeneously than they 

currently do.   

 Potential applications of the model are numerous.  It could be used to model the 

efficiency structure of a set of firms or industry in a more accurate manner.  It could also be used 

to examine the risk preference structure of an industry or group of firms.  With panel data, 

applications could include the study of efficiency and risk aversion change over time or life cycle 

of an individual or firm.  Finally, the model can be used to provide more accurate information to 

decision makers and to help guide decision makers to make appropriate input and investment 

choices.  

 In addition to the Monte Carlo study, a number of empirical applications are planned in 

order to determine the real world viability of this method.  Applications to agricultural banking 

and mutual fund investment are two such applications that are currently underway.  More 

applications will help shed light on the true capabilities and usefulness of this unique method. 
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