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The Simple Analytics of Nonjoint Production Relations

A series of empirical tests for agricultural input nonjointness

(Weaver,. 1977; Ray; Lopez; Shumway; Weaver, 1983; Moschini; and Ball) have

been conducted: the bulk of the empirical evidence weighs against input

nonjointness. Shumway, Pope, and Nash (SPN) show, however, that some dual

tests for input nonjointness are invalid in the presence of allocatable-fixed

inputs. SPN also speculate that dual methods cannot recapture variable-input

allocations when allocatable-fixed inputs are present. This speculation has

proven particularly controversial spawning a series of studies demonstrating

approaches to resurrecting variable-input allocations.

Just, Zilberman, and Hochman (JZH) accept SPN's position and develop

an approach to recapture variable input allocations using the first-order

conditions for a set of input-nonjoint Cobb-Douglas production functions.

Paris rejects the SPN claim and demonstrates a "purified profit function"

approach to recapture the variable input allocations. (As Paris points out

he, SPN, and JZH have different interpretations of what constitutes a "dual"

and what constitutes a "primal" approach.) Chambers and Just (CJ) develop a

crop-specific profit function approach to recapturing the variable input

allocations.

This paper also studies nonjoint production relationships. Its first

contribution is a new nonjointness definition (q-nonjointness) which has

input-nonjoint and output-nonjoint as special cases. The new definition is

motivated by the recognition that traditional nonjointness definitions (both

input and output) are logically irrelevant to many agricultural industries.

Thus, the uncritical application of traditional nonjointness tests to

agriculture (characteristic of most empirical agricultural jointness studies)



has limited scientific interest because these tests ignore the basic

realities of agricultural production.

This paper's second contribution is a generalization and simplification

of the CJ multistage approach to input-nonjoint production relations. A

resulting pedagogical benefit is a simple graphical exposition of the

economics of nonjoint production. Visualization of netput allocation

decisions clarifies the essential issues involved in the SPN controversy. An

immediate by-product is an easy comparison and evaluation of the three

solutions offered to the SPN problem (Jai; Paris; and CJ). The CJ approach

alone is found to be capable of achieving full econometric efficiency and

functional flexibility. A new LeChatelier result is also deduced.

The Model

Agricultural netputs are divided into three categories: nonallocatable

(q E Rk), allocatable-fixed (z E Rm), and allocatable-variable (x e ERR).

Agricultural technology is represented by a nonempty, compact 1, convex set

T g Rk x Rm x Rn exhibiting free disposal of netputs called the production

possibilities set and defined by

T = (q,z,x): q,z, and x are producible }•

By convention, a netput is an input if it is negative and an output if it is

positive. Several points should be stressed here. First, this representa-

tion of the technology is more general than previous representations of

nonjoint, agricultural technologies. It avoids the strong differentiability

assumptions on the primal technology used by SPN, JZH, and Paris. This is

important because as Paris and Knapp have recently pointed out many well-

recognized agricultural technologies are not smoothly differentiable (e.g,

the von Liebig technology). And second it avoids the arbitrary
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classification of netputs into inputs and outputs characteristic of previous

discussions of nonjoint agricultural technologies (SPN, JZH, Paris, CJ,

Lynne). This permits a new notion on nonjointness (next section). which

recognizes the realities of agricultural production relations.

Dual to T is the long-run profit function

R(p,w,r) = Max { pq + rz + wx : (q,z,x) E T}.

Here peR
k 
, We Rn , and r e Rm denote vectors of netput prices. The

++ ++ ++

notation pq means the inner product of the vector p and the vector q. R is

positively linearly homogeneous, continuous, and convex in its arguments.

If a unique solution exists to the profit maximization problem, R(p,w,r) is

differentiable and

(1) V R(p,w,r) = q(p,w,r),

V R(p,w,r) = z(p,w,r), and

V R(p,w,r) = x(p,w,r).

Here the notation V R denotes the gradient of R(p,w,r) with respect to the

vector j and q(p,w,r), z(p,w,r), and x(p,w,r) are the long-run profit

maximizing levels of the nonallocatable, allocatable-fixed, and allocatable-

variable netputs, respectively. Differentiability of R(p,w,r) does not imply

differentiability for T. (As a simple example, Leontief technologies have

differentiable cost functions even though the primal functions defining T are

not differentiable.)

The short-run, variable profit function is defined

R(p,w,z) = Max { pq + wx :(q,z,x) E T}.

R(p,w,z) is positively linearly homogeneous, convex, and continuous in p and

w. Moreover, the convexity of T implies that R(p,w,z) is concave and

continuous in z (Diewert). If a unique solution to the short-run, variable
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profit maximization problem exists, R(p,w,z) is differentiable in p and w

(we shall typically presume it is also differentiable in z as well) with

(2) V R(p,w,z) = q(p,w,z), and

V 11(p,w,z) = x(p,w,z).

Here q(p,w,z) and x(p,w,z) represent the short-run, variable profit maximizing

nonallocatable and allocatable-variable netput vectors.

The dual relationship between R(p,w,r) and R(p,w,z) is reflected by the

conjugate relations

(3) R(p,w,r) = Max R(p,w,z) + rz

R(p,w,z) = Min R(p,w,r) - rz.

Presuming that z e R (i.e., z is a scalar input) the choice of profit-_

maximizing z is represented pictorially in Figure 1. The left panel of that

figure portrays both parts of the maximand as well as the maximand itself.

The right panel presents the first-order condition for that maximization

problem of equating the shadow-price of the allocatable-fixed netput to its

market price.

The conjugate, minimization problem is represented pictorially in Figure

2. The left panel there presents a graphical depiction of both parts of the

minimand and the minimand itself. The right panel illustrates the first-order

condition for the minimization problem requiring that the derivative of

R(p,w,r) with respect to r be equated to the profit maximizing z level. (This

captures pictorially part of Shephard's lemma (equations (2)).)

The conjugate optimization problems in (3) represent different ways of

looking at the same reality: Figure 1 takes r as given and seeks which z

maximizes profits; Figure 2 takes z as given and seeks the r for which z would

be profit maximizing. Both potentially yield the same information. (For
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technologies meeting the differentiability requirements of Paris and JZH,

Figure 2 is obtained by applying the inverse-function theorem to Figure 1.)

q-Nonjointness Defined

The technology is q-nonjoint if

T = {(q,x,z) : 
1
, x

i
) E T (i = 1,...,k), x = Exi, z = Ez

where the T1 gRxRm xe are nonempty, compact, and convex production

possibilities sets defined by

1 1
T = { (q x

i
,z

i
) : (q ,x ,z are producible }

The technology is q-nonjoint if there exist separate production possibilities

sets for each nonallocatable netput. To see that input nonjointness is a

special case of q-nonjointness let q E x E Rn, z e R_. That is q is a

vector of outputs, and both z and x are input vectors. As will be shown,

q-nonjointness then implies the existence of separate production functions

for each of the outputs (the usual notion of input nonjointness). Output

nonjointness is the special case where the technology is q-nonjoint and q is

a vector of inputs while both z and x are output vectors.2 q-nonjointness

then implies the existence of separate input-requirement functions for each

input.

Input and output nonjointness, although apparently distinct notions,

share one common aspect: both clearly dichotomize between inputs and

outputs. The realities of agricultural production do not obey such neat

dichotomies. As an example, coarse grains are typically outputs for grains

farmers but inputs for livestock producers. The concept of netputs has no

trouble accommodating this reality but the usual input-output dichotomy

cannot. Suppose that a researcher has data on farmers producing livestock

and wheat as outputs while some of these farmers are also coarse-grain
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producers and others use coarse grains solely as feed.3 Is there a way to

use observations on these farmers' operations to test for nonjointness in the

production of wheat and livestock? Using the traditional notion of input

nonjointness, which requires that grains be categorized as either an input

or an output, the answer is no. However, q-nonjointness is both testable and

meaningful.

Other examples from the farming sector and outside farming abound, but

perhaps the most telling evidence on the shortcomings of the traditional

notions of jointness for agriculture comes from common empirical practices

in the agricultural economics literature which ignore the realities of

agricultural production. A series of studies (Ray; Lopez; Ball; Shumway,

Saez, and Gothret; Moschini) test for input nonjointness between livestock

and grains sectors even though common observation reveals that outputs from

the grain sector are used as inputs by the livestock sector. Some tests

have even found support for the hypothesis that livestock and grains are

input nonjoint (Lopez). So although these tests perhaps are legitimate for

a very highly aggregated technology they give only scanty information about

production relations within agriculture. Indeed, given the obvious

realities of agricultural production one should be surprised, a priori, if

such tests offer support for nonjointness.

Dual methods for testing for q-nonjointness are obvious: T is

q-nonjoint if and only if the long-run profit function takes the form

R(p,w,r) = E Ri(pi,w,r)

where R (pi,w,r) is the long-run profit function dual to Ti. (A proof is in

the Appendix). If the technology is q-nonjoint its long-run profit

function's Hessian matrix in p is diagonal.



For the remainder of the paper, assume that the technology is q-nonjoint.

Allocating Fixed and Variable Netputs: A Graphical Presentation

We now derive a representation of a q-nonjoint technology amenable to

graphical illustration. Define the q1-aggregator function hi(x,z) by

h (x,z) = Max {q.: (q 
I
,x,z) E T1}.

If qi is an output and both x and z are input vectors in T1, h (x,z) is a

production function. If qi is an input and both z and x are output vectors

in T1, hi(x,z) is an input-requirement function. Other interpretations of

the q1-aggregator function are also possible: suppose qi e R+, x e Rn, and

z e Rm in T
' 

then h (x,z) is an asymmetric transformation function in the
t 

sense of Diewert.

Each h (x,z) is concave and continuous (see Appendix). For graphical

convenience I depict the hi(x,z) as though they are differentiable. Dual to

each hi(x,z) (and to T1) is the q1-specific profit function

(4) R1(p w, z = Max { p hi(x,z1) + wx }.

Each R (p w,z ) is convex, continuous, and positively linearly homogeneous in

p and w. R (p
t' 
w,z ) is also concave in the fixed netput allocation z

(Diewert). If a unique solution to (4) exists, R (p ,w,z ) is differentiable

in pi and w with

8111(p ,w,z )
  - q.(p ,w,z , and

api

V R1 (p w, z = x1 (p w, zi).
w

Here q (p
' 
w,z ) and x (p w,z

1 
) are the q -specific profit maximizing q and

i 1 1

variable netput allocation.
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If qi E R. and x E R , Figure 3 pictorially represents (4). (Notice the

similarity with Figure 1.) The left panel presents graphical illustrations of

both components of the maximand and the maximand itself; the right panel

presents the first-order condition of equating marginal-value product of x to

its price.

(5)

The conjugate to (4) is

i
h (x,z ) = Min { RI(1,w/p zi) - (w/p)x}.

w/p

Figure 4 pictorially represents (5) for x E R_. The left panel portrays

both parts of the minimand and the minimand itself. The right panel depicts

the first-order condition for the minimization problem in (5): the derivative

of R (1,w/p z ) with respect to w/p equals the profit maximizing allocation

of x to the qi production process. (Again this panel represents part of

Shephard's lemma (4') and generalizes to the n-dimensional case).

A special case of (5) is the input-nonjoint production technology. The

allocation of variable inputs to the ith output has been the focus of the

recent controversy on input-nonjoint production relations (SPN; JZH; Paris;

and CJ). Figures 4 and 5 imply that these allocations can be recaptured

either by inverting the first-order conditions for (4) or more directly from

the first-order conditions for (5) (equations (4')).

When T is q-nonjoint, R(p,w,z) can be derived in either of two ways: the

first is to allocate the fixed and variable netputs to solve

(6) R(p,w,z) = Max { pq + wx : q
1 
= h

I
(x,Z) (i = 1,...,k), x = Ex , z = Ez 1

The second is to solve

(6') R(p,w,z) = Max f E RI(pi,w,zi) : z1 = z}.



Presuming that z is a scalar input and that q e R2, Figure 5 graphically

represents the first-order conditions for (6') in terms of the "beaker"

diagram familiar from trade theory (Dixit and Norman). The horizontal

dimension of the beaker is given by the total amount of the allocatable-fixed
netput (input) to be allocated across production activities, the right

vertical axis measures the shadow price of the allocatable-fixed netput in the
1st production process, and the left vertical axis measures the shadow price
of the allocatable-fixed netput in the 2d production process. The allocation
of the allocatable fixed netput is determined by the equalization of these two
shadow prices. So, for example, Oz is allocated to activity 1 while z'z is
allocated to activity 2.

A graphical depiction of the allocation decision across qi is now

available. From Figure 1 the total, allocatable-fixed netput utilization can
be obtained as z' when its price is r'. The amount z' determines the

horizontal dimension of the beaker in Figure 5. From Figure 5, one determines
the allocations of the allocatable-fixed netput to the various production
activities. Once these allocations are determined, either Figure 3 or Figure
4 can be used to determine the allocation of the allocatable-variable netput
to the ith production process.

A simple example illustrates the use of Figures 1, 3, 4, and 5. Suppose
r rises. From Figure 1 (this is true for an arbitrary number of allocatable-
fixed netputs) total utilization of z falls. The horizontal dimension of
Figure 5 shrinks. As a result, less (or more precisely no more than before)
of the allocatable-fixed input is allocated to both activities. Two polar

cases delimit the possibilities consistent with concavity of R (w,z ): one
where the shadow-price is constant (constant returns to scale) and the other
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where the shadow-price function is perfectly vertical. In the former, all the

decrease in the allocatable-fixed netput is absorbed by the constant-returns

industry. In the latter, all the netput decrease is absorbed by the industry

whose shadow price curve is not perfectly vertical. In between these polar

cases, netput utilization falls in both industries. The decrease in zi

(remember the graphical illustration is for an input) decreases (increases)

the value-marginal product of the allocatable-variable input in producing q

if the allocatable-fixed and allocatable-variable netputs are cooperative

(competitive). The allocation of the allocatable-variable netput to the ith

production process falls (rises), accordingly.

A LeChatelier Result

Expression (6') suggests a LeChatelier relationship exists between the

short-run allocations and the q1-specific allocations. For any feasible but

otherwise arbitrary allocation of the allocatable-fixed netputs

R(p,w,z) E (Pi, zi)•

This inequality becomes an equality at the optimal allocation. The two

functions are, therefore, tangent in (p,w) space implying that q i(p,w,z) is

q 
i
(p ,w,z ) evaluated at the optimal z1. Because both R(p,w,z) and

E R 
'

(p w,z ) are convex and tangent at the optimal allocation the inequality1 

suggests that R(p,w,z) must be more convex than E Ri(pi,w,zi) (Figure 6

illustrates the case where q E R..) implying the LeChatelier result

aqi(p,w,z) aq.(pcw,z (p,w,z))  >  
api api

(A proof is in the Appendix.) Thus, long-run netput allocations are more

own-price elastic than short-run allocations [the usual LeChatelier
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relationship (Sakai)1, and short-run netput allocations in turn are more

own-price elastic than q1-specific allocations.

The SPN Problem

The pictorial representation of the first-order conditions for (6')

(Figure 5) contrasts markedly with the pictorial representations of the other

first-order conditions. Figure 5 depicts the intersection of two upward

sloping qi-specific, shadow prices to determine the allocatable-fixed netput

allocation. Figures 1 and 3 portray the intersection of an upward sloping

shadow price or value marginal productivity with a constant price. For

Figures 1 and 3 one can change the axes of the maximization problem to obtain

a conjugate minimization problem in the prices that is the mirror image of the

original problem. Thus, knowledge of R(p,w,z) and r lets one infer R(p,w,r)

by optimizing over z. Conversely, the conjugate relation lets one obtain

R(p,w,z) from R(p,w,r) and z by optimizing over r.

For Figure 5, two shadow prices are equated to get R(p,w,z). Solving for

R(p,w,z), therefore, requires knowledge of both Ri(pi,w,

(in general,

1) and R2 (p2, w, z2z  )

f all the Ri(p ,w,z )). Knowing R(p,w,z) alone, therefore, is

not sufficient to recapture both R (pi,w,z1) and R
2
(p2,w,Z

2
). Knowledge of

R(p,w,z) along with knowledge of either R1(pi,w,z1) or R2(p2,w,z2) is

sufficient to recapture the other, but both cannot be inferred from R(p,w,z)

alone. Put another way, no natural conjugate to (6') exists which can be used

to infer the RI (p w, z ) from R(p,w,z).

Expression (6') also clarifies why information on either the long or the

short-run profit functions is not sufficient to allow the researcher to

capture exact information on q i-specific allocatable-variable netput alloca-

tions. If Shephard's lemma applies, a unique solution to (6') 9xists and the
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gradient of the short-run profit function in w equals the profit maximizing

allocatable-variable netput level. But presuming each R (13 ,w,z ) is also

differentiable and that a strictly interior solution to (6') exists, applying

the envelope theorem gives

(7) V R(p,w,z) = E vwRi (pi, w, zi = E (p w,z1).

Shephard's lemma only gives the total allocation of the allocatable-variable

netputs and not the specific allocations of the allocatable variable netputs.

Reconciling Approaches to Recapturing Allocatable-Variable Netput

Allocations--The Flexibility-Efficiency Tradeoff

Three separate methods have been developed to recapture the xi(pi,w,zi)

given information on q, z1, z, x, p, and w. The first, suggested by JZH, is

to specify the q1-aggregator functions parametrically and use the first-order

conditions for problem (6) as estimating equations. Once the hi(x,z)

functions are estimated, the first-order conditions associated with (4) can be

inverted to obtain estimates of the x (p ,w,z ). (This requires that the

inverse function theorem applies which, in turn, requires strong differen-

tiability assumptions on the hi(x,z).) If the technology is captured by the

chosen hi(x,z), this approach can achieve full econometric efficiency

(presuming an efficient estimation procedure is utilized).

The main difficulty with the JZH approach is that obtaining closed-form

solutions for the first-order conditions in (4), in terms of the x1 , for

anything but the simplest specifications is always difficult and often

impossible. For example, JZH use a single-output, Cobb-Douglas production

function. The approach, thus, has extremely limited flexibility in

representing agricultural technologies (because of the required differen-

tiability assumptions it cannot handle well documented agricultural



technologies like the von Liebig) and even in classes where it applies it

cannot be implemented using most flexible functional forms.

Although Paris' contribution predates Chambers and Just, our purposes are

best served by discussing the CJ approach next. CJ take a similar path to JZH

but they use representation (6') and not (6). (CJ also develop and estimate a

model capable of testing for input-nonjointness in the presence of allocatable

fixed netputs.) Their approach is to specify flexible parametric repre-

sentaions of the q1-specific profit functions and use the first-order

conditions for (6') along with equations (4') to estimate the technology.

Because all information available from optimization is used, the CJ approach

also can achieve full econometric efficiency. However, allocatable-variable

input allocations are now obtained via Shephard's lemma. Unlike the JZH

approach, allocatable-variable netput allocations can be obtained without

inverting first-order conditions. Instead the first-order conditions for the

dual problem are estimated. Weaker differentiability and invertibility

assumptions are involved so the approach also covers a broader class of

technologies. Moreover, flexible functional forms can be used to represent

the technology and the CJ approach dominates the JZH approach in terms of

flexibility. CJ demonstrate this dominance by statistically rejecting the JZH

specification in favor of a more general specification.

In principle, however, the CJ and JZH approaches are equivalent if

the same differentiability assumptions are employed. One just uses the mirror

image representations of the optimal allocatable-variable netput allocations

of the other. In terms of this paper, one (JZH) uses Figure 3 the other (CJ)

uses Figure 4.
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The Paris approach,
4
 however, is decidedly different from either the JZH

approach or the CJ approach. Rather than relying on the stage-wise

optimization approach outlined above which emphasises the distinct economic

allocation decisions being made, the Paris approach is more algorithmic. It

involves solving not the original optimization problem in (6) or (6') but on

solving another optimization problem which has the same solution as (6) and

(6'). Paris recognizes that an optimization problem exists which has a

natural conjugate relationship and which has the same solution as SPN, JZH,

and CJ.

The approach is first to estimate a flexible functional specification of

the short-run profit function R(p,w,z). If this function is differentiable in

z, V R(p,w,z) is the vector of shadow prices for allocatable-fixed inputs.

Applying the envelope theorem (assuming an interior solution) to (6') reveals

that -V R(p,w,z) equals the optimal Lagrangian multipliers to which shadow

prices are equated to solve that problem (see Appendix). (In Figure 5,

V 11(p,w,z) is the common value of Ri(p ,w,z1) and R2(p 
2
,w,z2) at their

z z 

intersection.) Hence, the following optimization problem involves the same

interior solutions as (6').

k

(8) Max { E Ri(pi,w,z1) - V R(p,w,z) E zi = E R (pi,w,-V R(p,w,z))
i=1

where Ri(p,w,-V R(p,w,z)) is the long-run profit function dual to T . The

equality follows because the left-hand side of (8) is a separable programming

problem. The last step in Paris' procedure is to recognize that Shephard's

lemma, if applicable, implies,

q.(p,w,-V R(p,w,z))
1

aRi (p w,-‘7 R(p,w,z))

api i =

14



k

x(p,w,-V R(p,w,z)) = v R Cp. , w, --V R (p, w, z )
z i=1 w 1 z

zi(p,w,-V R(p,w,z)) = V Ri(p ,w,-V R(p,w,z)).
r I

After the R (p,w,r) dual to T
i 
have been specified parametrically these last

three sets of equations can then be used to estimate the Ri(p,w,r) functions.

Allocatable-variable input allocations can then be recaptured from the

calculated expressions for V R (p ,w,-V R(p,w,z)). While Paris frequently

alludes to a "purified profit function," the purified profit function itself

plays no direct role in estimation or in the resurrection of the allocatable-

variable netput allocations. All this is accomplished via estimating the

long-run profit functions for each Ti.

The intuition behind Paris' approach can best be seen by returning to

(8). The recognition that -V R(p,w,z) equals the optimal Lagrangian

multipliers for (6') lets Paris "crack" that optimization problem into

k-distinct suboptimization problems each of which only involves the

R (p ,w,z ) functions. Pictorially Figure 5 is split into two separate

subproblems which mirror Figure 1. If z E R-, V R(p,w,z) on each side of

Figure 5 plays the same role as -r' in Figure 1. Just as Figure 1 has a

conjugate representation in terms of the long-run profit function in Figure

2, so do each of these "cracked" suboptimization problems in terms of the

q1-specific long-run profit functions, the R (p,w,-V R(p,w,z)). Once these

R (p,w,—V 11(p,w,z)) are estimated they can be used to recapture the

allocatable-variable input allocations via Shephard's lemma.

Because a duality exists both between T and Ri(p,w,zi) and T and

R (p,w,r), the Paris, JZH, and CJ approaches are, in principle, equivalent

(apart from the different differentiability assumptions and the computational

15
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differences that arise from the 
different estimation procedures implie

d).

The Paris approach, however, does 
not appear to achieve both full estimati

on

efficiency and flexibility simultan
eously. Recall that

R(p,w,-VzR(p,w,z)) =E Ri(pi,w,-VzR(p,w,z)).
i=1

Hence, expressions (3) imply

(9) R (p, w, z) = Min R(p,w,-V R(p,w,z)) + V R(p,w,z) • z.

V R(p,w,z)

= Min E Ri(pi,w,-V R(p,w,z)) + V R(p,w,z) •E z .
V R(p,w,z) 1=1

Expressions (9) imply that choosing a f
unctional form for R (p w,r) has

structural implications for R(p,w,z). (The reader can see this explicitly
 by

solving (9) for a Cobb-Douglas RI(p,w,r). R(p,w,z) inherits the Cobb-Douglas

parameters.) To achieve full econometric efficiency 
these restrictions

(amounting to cross-equation restriction
s) must be recognized and incorporate

d

prior to estimating R(p,w,z). The first stage of the Paris approach
 must

capture these restrictions for full esti
mation efficiency to be achieved:

arbitrary flexible specifications for R(
p,w,z) and the R i(pi,w,r) will not

satisfy (9). Efficiency requires the prior solution
 of (13) having specified

the R (p w,r) functions. (One cannot start by specifying R(p,w,
z) and then

using (9)'s conjugate relation to reca
pture the W(pi,w,-V R(p,w,z)). The SPN

problem reappears in a different form.)
 As with the JZH approach, achieving

closed form solutions for (9) is very 
difficult or impossible for all but the

simplest specifications of the Ri(p,w,r).5 Full efficiency is available with

Paris' approach but as with JZH it is 
purchased at the price of flexibility.
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Conclusion

This paper generalizes the usual notions of nonjointness in a fashion

consistent with the realities of agricultural production and amenable to

graphical portrayal. This representation is then used to evaluate the three

existing approaches (JZH, Paris, and CJ) to recapture allocatable-variable

input allocations for nonjoint technologies. The CJ approach alone is shown

to be capable of achieving full econometric efficiency and flexibility.

Moreover, the CJ approach involves weaker differentiability and invertibility

assumptions than either JZH or Paris so that it is applicable to a wider

variety of technologies than either JZH or Paris.

•
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Footnotes

1. Compactness is overly strong and could be replaced by closedness and

semi-boundedness. Its purposes is to guarantee the existence of maxima

for the maximization problems that follow. Note for example that

compactness rules out T exhibiting constant returns to scale. In the case

of constant returns compactness could be replaced by an appropriate

modification such as closedness and boundedness for every z.

2. SPN have claimed that output-nonjoint technologies do not characterize

agricultural technologies. This view seems to have been accepted by the

profession (Lynne). Putting aside the fact that this is an issue which

can only be resolved empirically, one should note that traditional

examples of output-nonjoint industries are often drawn from the

agricultural sector (e.g. cattle into meat, offal, and hide) (Lau).

3. A related example for time-series data would be: researchers have data

on a sector (like agriculture) which produces more coarse grains than

it uses in some periods (at the aggregate level coarse grains are an

output) but which uses more coarse grains in some other periods than it

produces (at the aggregate coarse grains are an input).

4. Paris sketches a procedure in his paper but does not present an empirical

example. Thus, what follows involves some deduction on my part in

arriving at an estimable procedure.

5. For both the JZH approach and the Paris approach if no closed-form

solutions exist to the first-order condition's numerical procedures can

be used to invert these equations locally. The extra computational burden

than required for the JZH and Paris approaches to approximate functional

flexibility emphasize the advantages of using representation (6').
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Appendix

Result: T is q-nonjoint if and only if

R(p, w,r) = E Ri(pi,w,r).

If T is q-nonjoint then

ER(p,w,r) = Max { pq + wx + rz :(q x
1
,z

1
) E T (i=1,...,k), x = E x1, z = z

= Max{Zp
i
q

1 
+ wx + rz

1 
: (q x,z)ET(i=1,...,k)}

i=1

E Max { p
1=1

= Ri (p w, r)
1=1

1
+ wx + rz : (q x

1
,z

1
) E T }

The converse follows by duality.

Result: h (x,z) is concave.

Let q i= h (x, z) and qi= hi(x,z). Concavity requires that for A E (0,1)

h (Xx + (1 - A)x, Az + (1 - A)z) Ah (x,z) + (1 -

^ ^
By convexity of Ti (Aq + (1 - A)  A; + (1 - A)x, Az + (1 - A)Z) E T so

the right-hand side is feasible. But the left-hand side is by definition the

largest feasible element which completes the demonstration.

Result: The LeChatelier Result

The Lagrangian for (6') is

L = E Ri p ,w, z + AE z
1
 - Az

where A E Ten is a vector of Lagrangian multipliers. For notational

convenience the result is demonstrated for the first nonallocatable netput.
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By the envelope theorem (presuming Shephard's lemma and an interior solution)

"1
aR(p,w,z) _ 

aR
i
(p ,w,z

api ap1

where (^) denotes optimal. Hence,

a2Ri(„, m a2
82R(p,w,z) 

R1 w, 
;1) .3;1

E  
ap
2 2 1 ap1

8p
1 

i=1 ap az

Differentiating the first-order conditions for the Lagrangian expression (not

presented) gives the following expression

-1az a2R1 (p w, z1)
= _ E hjtap 1 

az apt=1 
1
t 1

where h is the (j,t) element of the inverted Hessian matrix of the
it

Lagrangian. Thus

a2R(p,w,z) _
2

api

2
R

2 E E
t=i ap az

a2R1

1 hjt 
ap az

1
1 1 a2R1

1 j 1 t
ap

The Lagrangian is concave in the z and, therefore, the inverted Hessian must

be negative definite. The second term on the right of this last expression is

thus minus a quadratic from in a principal submatrix of a negative definite

matrix. It must be positive which establishes the derived result.
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