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In a classic paper, Peleg and Yaari (1975) observe that the marginal rate of substitu-

tion for risk neutral decisionmakers between state-contingent income claims is given by the

relative probabilities. Thus, probabilities play the same role as prices in the traditional

producer and consumer choice problems. More generally, for risk-averse individuals, the

marginal rates of substitution between state-contingent incomes may be interpreted as rel-

ative 'risk-neutral' probabilities, a point developed further by Nau (2001). This analogy is

particularly important in the case where there are spanning portfolios. In that case, after

normalization, the induced Arrow-Debreu contingent claims prices can be interpreted as the

equilibrium risk-neutral probabilities for all individuals participating in the market.

These observations suggest that preferences under uncertainty can be informatively ex-

amined in much the same fashion that one analyzes consumer preferences under certainty,

that is, in terms of convex indifference sets and their supporting hyperplanes. This is not

a new observation (Milne, 1995). But, to our knowledge, it has yet to be systematically

exploited. This paper's goal, therefore, is to extend Peleg and Yaari's fundamental insight

by analyzing decisionmaker preferences under uncertainty in this manner. In this approach,

probabilities play a role analogous to those of prices in consumer and producer theory. A

key consequence of this observation is the recognition that the vast literature on functional

structure for consumer preferences and producer technologies can be imported, with proper

modification, into the analysis of preferences under uncertainty. Indeed, the results of Lewbel

and Perraudin (1995) linking the portfolio separation and demand rank literatures suggest

that the process has already begun.

While the analysis of convex sets and their associated dual functions has proved extremely

valuable in the analysis of consumer and producer theory and other areas, until recently lit-

tle use has been made of these methods in the analysis of problems involving uncertainty.

Given Arrow (1953) and Debreu's (1952) early demonstrations that problems involving un-

certainty are formally identical to those under certainty once the concept of state-contingent

commodities is invoked, this seems particularly surprising.

We speculate that there are a number of historical reasons. First, despite the early con-

tributions of Arrow (1953) and Debreu (1952) and the latter contributions of Hirshleifer

(1965), Yaari (1969), and Peleg and Yaari (1975), the state-contingent approach has been
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neglected in favor of what Hart and Holmstrom (1988) refer to as the 'parametrized distri-

bution approach'. That approach focuses attention on families of probability distributions

over an outcome space (usually infinite dimensional), indexed by one or more parameters.

By its nature, this characterization does not lend itself to a methodology which, as typically

applied, involves consideration of functions having as arguments finite-dimensional price and

quantity vectors. This is perhaps best illustrated by recalling that the formal similarities

between welfarist inequality measurement and the evaluation of stochastic outcomes have

long been appreciated (Atkinson, 1970). Moreover, methods from convex analysis were early

used to provide a formal derivation of welfarist inequality measures (Blackorby and Donald-

son, 1978, 1980). But these importance of these results for preferences under uncertainty do

not seem to have been fully appreciated.

Second, in a complete Arrow-Debreu equilibrium, with a finite state space, the relevant

prices would be the prices of state-contingent claims. More generally, state-claim prices

may be derived from the asset prices for a spanning set of securities. In many economic

problems involving uncertainty however, either there are no financial assets, or only a small

number exist relative to the dimension of the state space. Finally, in areas where the state-

contingent approach has been used extensively (for example, general equilibrium and finance

theory (Milne 1995)), the primary concern is often with questions of existence (such as the

determination of asset prices) and not with welfare evaluations or comparative-static analysis,

where the interplay between primal and dual measures can be exploited to great effect.

In this paper we start by representing preferences in terms of the benefit function, orig-

inally developed in the theories of inequality measurement and consumer preferences under

certainty (Blackorby and Donaldson, 1980; Luenberger, 1992), and its concave conjugate,

which we refer to as the expected-value function. Frequently, problems, which prove in-

tractable in the primal representation, admit simple solutions in the conjugate, dual repre-

sentation and vice versa. As we show below, a clear example of this is offered by the case of

generalized linear risk tolerance, which is easily represented in terms of the conjugate, but

for which no closed-form certainty equivalent exists. The second crucial tool in the analysis

is the use of superdifferentials that yield simple representations of probabilities as closed,

convex sets of relative prices in the spirit of Peleg and Yaari even when preferences are not
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smooth.

Next, we consider the notion of risk aversion, beginning with Yaari's (1969) concept

of risk aversion as a quasi-concavity property, then defining risk-aversion with respect to a

probability vector. This definition gives rise to dual versions of the Arrow-Pratt absolute and

relative risk premiums as functions of the probabilities. If the individual is risk-averse with

respect to a given probability vector, these dual risk premiums take the maximum values

(zero and one) at that vector, just as the corresponding primal measures are minimized at

certainty.

The power of these tools is illustrated by an analysis of the concepts of constant ab-

solute and relative risk aversion as homotheticity properties. Homotheticity conditions of

various kinds play a central role in consumer and producer theory and in their application.

In particular, aggregation of consumers and producers, the computation of exact index num-

bers (including inequality indexes), exact welfare comparisons, and the empirical modelling

of consumer demand are facilitated by the existence of appropriately homothetic prefer-

ences (Shephard, 1953; Malmquist, 1953; Gorman, 1953, 1981; Stone, 1954; Diewert, 1976a,

1976b; Muellbauer, 1976; Deaton and Muellbauer, 1980; Caves, Christensen, and Diewert,

1982a, 1982b; Diewert, 1992; Chambers, 2001). In this paper, we exploit the observation of

Chambers and Fare (1998) and Quiggin and Chambers (1998) that constant absolute risk

aversion corresponds to an appropriately-defined notion of translation-homotheticity, just

as constant relative risk aversion corresponds to homotheticity. Just as in expected-utility

theory, a notion of linear risk tolerance can then be specified which generalizes both of these

concepts. Linear risk tolerance, in fact, corresponds to quasi-homothetic preferences, which

are particularly tractable when formulated in conjugate terms.

The combination of constant absolute risk aversion and constant relative risk aversion

yields constant risk aversion (Saira and Segal 1998). Safra and Segal (1998) demonstrate the

theoretical and practical importance of constant risk aversion by showing that, in the pres-

ence of linear utility, constant risk aversion, combined with critical features of a number of

important generalizations of expected utility theory, is su cient to characterize that theory.

For example, betweenness (Chew) and constant risk aversion are sufficient to characterize

disappointment theory (Gul 1991) with linear utility. Important examples of preferences
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displaying constant risk aversion include the linear mean-standard deviation preferences,

completely risk-averse preferences, Yaari's (1987) dual theory, and Weymark's (1981) gener-

alized Gini model. We provide a complete dual characterization of constant risk aversion and

show that the 'plunging' property Yaari observes for the dual theory holds more generally

for preferences satisfying constant risk aversion.

In generalizing the Pratt-Arrow meaures of risk aversion to general preferences, Nau

(2001) has recently introduced the concepts of the buying price, the selling price, the marignal

price, and a generalized risk premium of a risky asset for differentiably smooth preferences.

We generalize and extend these results in several ways. We generalize and characterize his

measures for general preferences in terms of superdifferentials and directional derivatives.

Among other results we show that they buying and the selling price are only equal under

constant absolute risk aversion, and in that case we develop an exact and superlative index of

the value of a risky asset in the presence of background risk that extends the standard Pratt-

Arrow approximations. We also show that the an appropriate version of the generalized risk

premium of the risky asset is convex in the risky asset which extends a basic property of the

standard Pratt-Arrow risk premium.

1 Notation

We consider preferences over random variables represented as mappings from a state space

c2 to an outcome space Y C R. Our focus is on the case where Q is a finite set {1, ...S}, and

the space of random variables is Ys C Rs. The unit vector is denoted 1 . (1,1, ...1), and

P C R.1_+ denotes the probability simplex. Define ei as the ith row of the S x S identity

matrix

ei . (0, ..., 1,0,..., 0) .

Preferences over state-contingent incomes are given by an ordinal mapping W : Rs

R. W is assumed everywhere continuous, nondecreasing, and quasi-concave in y. Quasi-

concavity ensures that the least-as-good sets of the preference mapping

V(w)={y :w (Y) to}
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are convex, and that the individual is averse to risk in 
the sense of Yaari (1969). The benefit

function, B : x Ys R, is defined for g E Re..1 by:

B(w, y; g) = B(V(w);y;g)

= max{0 E : y Og E V (w)}

if y —fig E V (w) for some fi and —oo otherwise (Black
orby and Donaldson, 1980; Luenberger,

1992).1 The properties of B(w, y; g) are well known 
(Luenberger, 1992; Chambers, Chung,

and Fare, 1996) and are summarized for later use in 
the following lemma:

Lemma 1 B(w,y;g) satisfies:

a) B(w,y;g) is nonincreasing in w and nondecreasin
g and concave in y;

b) B(w,y + ag; g) = B(w,y;g) + a, a E R (the tra
nslation property);

B(w, y; g) 0.4=>yEV(w), and B(w,y;g) = 0 <4=> W(y) = w
;

B(w,y;g) is jointly continuous in y and w in the int
erior of the region Rx ys where

B(w ,y; g) is finite.

The benefit function affords a general method for obt
aining alternative representations

of preferences. For example, the certainty equivalent is
 the particular case:

e(y) = inffc > 0 : W(c1) 147(y)}

= —B(W(y),I3,1)

The certainty equivalent trivially satisfies

e (pi) = E

The use of certainty equivalents (generalized mean val
ues) as representations of preferences

has been discussed by Chew (1982).

1 When g = 1 the benefit function corresponds to the transla
tion function introduced by Blackorby and

Donaldson (1980).

5



We refer to the concave conjugate of the translation function B (w, y; 1) as the expected-

value function E:PxR R. It is defined by

E (7r,w) = inf {7ry—B (w,y;1)} 7r EP

inf {7ry :B(w,y,1)> 0} 7r E P

where the second equality follows by the fact that y E arg min {7ry—B (w, y; 1)} if and only

if y + (51 E arg min {7ry—B (w, y; 1)} for 6 E 1R (Chambers, 2001).2

Because B (w, y; 1) is a continuous and nondecreasing proper concave function, E (7r,w)

is concave and nondecreasing on P and continuous on the interior of the region of P where

it is finite (Rockafellar, 1970). It is also continuous and nondecreasing in w. By conjugacy,

B(w,y;1) = 7a, {-try—E (7r,w)} .

1.1 Risk-neutral probabilities

An important advantage of our approach is that it does not, in general, rely on the assump-

tion of differentiability. Normally, the admission of nondifferentiability brings little with it

apart from extra theoretical rigour and generality. However recent work has shown that

nondifferentiability can be particularly important for generalized expected utility models.

In those models, a number of important results turn on the distinction between the con-

cepts of second-order risk aversion that characterizes expected utility theory and Frechet-

2The expected-value function, thus, can be thought of as an expenditure function for the certainty 
equiv-

alent W (y) in terms of normalized state-claim prices, which in turn can be interpreted in a 
complete

state-claim market as the individual's probabilities. By the definition of benefit function

y—B (wcy;1)1 E V (w) t>

Suppose the state-claim prices are given by q E R:si.±, then

inf {qy : y E V (w)} = inf fq (y—B(w'y; i)1)}

inf {qy—B (wc y; ql}

q1E (-5-1-cw) >
ql



differentiable preferences (Machina, 1982) and that of first-order risk aversion that character-

izes models such as rank-dependent expected utility (Epstein, Segal and Spivak). Recently,

Machina (2000) has shown that Frechet differentiable and expected-utility models cannot ex-

hibit payoff kinks that emerge as a characteristic of an individual's preferences over lotteries

while rank-dependent models cannot avoid exhibiting them. Hence, developing a represen-

tation of preferences that imposes differentiability necessarily excludes several important

classes of preferences from consideration.

Because the benefit function and the expected-value function form a conjugate pair, they

offer a natural method for defining and generating subjective notions of probability in terms

of their superdifferentials and one-sided directional derivatives that allows the analysis of

both first-order and second-order risk aversion. Moreover, because they are both cardinal

representations of an ordinal preference structure, they also allow us to avoid the need to

normalize the superdifferentials and the directional derivatives that representation in terms

of the preference structure requires.3

For a proper concave function f : R, its superdifferential at x is the closed, convex

set:

(1) 31(x) = {v ERs :1(x) + v(z— x) ( z) for all z} .

The elements of of (x) are referred to as supergradients. The one-sided directional derivative
of f in the direction of z is defined by

f (x + Az) 
(x; z) =sup 

— f (x)}

A>0

By basic results on proper concave functions for f concave (Rockafellar, 1970):

f' (x; z) = inf {vz} .
v Ea f (x)

Consequently, f' (x; z) is positively linearly homogeneous and concave in z. Moreover,

(x; z) f' (—x; z) .

3The normalization is accomplished by the choice of the reference asset. Although not explicitly stated,

the existing literature seems to routinely have taken the reference asset to be the traditionally safe asset, a

normalization which we adopt.



Where f' (x; z) = —f' (—x; z) for all z, we say that f is Gateaux differentiable at x.4 When

f is Gateaux differentiable at x, the directional derivative is linear in z. Moreover, if f is

Gateaux differentiable at x, a f (x) is a singleton and corresponds to the usual gradient. If

f (x) is a singleton, f is Gateaux differentiable at x (Rockafellar, 1970).

Because we concern ourselves with ordinal preferences over state-contingent incomes,

there is no loss of generality in operating entirely in terms of certainty equivalents. The

traditional way of defining probabilities is in terms of the superdifferential of the utility

function along the sure-thing vector (the bisector) (Yaari, 1969). Following Nau (2001),

we concern ourselves more generally with probabilities that can be defined away from the

bisector.

The translation property of the benefit function (Lemma lb) ensures that the superdif-

ferential of B is an element of the unit simplex. In particular:

Lemma 2 Let

Then

Proof Since

p (e, 3r) = aB (e,y, 1) .

>7, Ps (e,Y) = 1.
3E0

B (e,y+61.1) = B (e,y , 1) +(5

Hence if v EaB (e, y, 1)and z = z*= y-61, the definition of the superdifferential

implies

or

B (e, y,1) + v(z — y) B (e, z,1)

B (e, y ,1) v(z*—y) B (e, z, 1)

B(e,y,1) + 6v1 > B +6

B (e,y ,1) — 5v1 > B (e, y, 1) —

For concave functions, whose domain is Rs. Gateaux differentiability is equivalent to Frechet differe
n-

tiability (Rockafellar. 1970).



so that

E v, . 1.
..,/

In view of Lemma 2, the elements of the vector p (e, y) CRl are referred to as e -dependent

risk-neutral probabilities. If the benefit function is Gateaux differentiable, these probabilities

are unique and given by the usual gradient. The set of risk-neutral probabilities it (y) C R'.1

is defined by

7r (y) = aB (e(y) , y ; 1)

= P (e (Y) ,Y) •

When preferences are Gateaux differentiable it (y) is a singleton.

By the conjugacy of the benefit function and the expected-value function (Rockafellar,

1970)

(2) 7r E aB (e, y; 1) < > y E DE (n- ,e)

in the relative interior of their domains. Expression (2) is the generalization of Shepard's

Lemma to potentially nondifferentiable structures. Thus, the expected-value function can

be used as a dual means of obtaining virtual probabilities which correspond to

p (e, y) = arg inf {7ry—E (7r,e)} .
irEP

The risk-neutral probabilities have a natural price interpretation. If the individual can

purchase state-claims at relative prices given by it E it (y) , then y minimises the cost of ob-

taining the utility level e (y) . Thus it (y) is analogous to an inverse demand correspondence.

The risk-neutral probabilities derived here are dual to the shadow probabilities considered

by Peleg and Yaari who consider, for a given choice set C, the probabilities that would lead

a risk-neutral decision-maker to choose y as the optimal element of C.

The risk-neutral probabilities associated with outcomes along the bisector are of partic-

ular interest. ecause e (e1) = e, E (7r,e) <e. And because preferences are quasi-concave

it EaB (e, el; 1) < > E (7r,e) . e.
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We, thus, define the set of subjective probabilities 7r (1) c RI_ as

7r (1) = MOB (e,e1;1)}

and assume that this set is non-empty. Thus, the set of subjective probabilities satisfies

7r(1) = ne arg sup {E (7r,e) — el .
7r 0,

For an expected utility maximizer with subjective probabilities 7r,

{7r} = aB (e, el; 1) de

The elements of 7T ( 1 ) will share some, but not all, of the properties of subjective prob-

abilities in expected-utility theory, and more generally, of the probabilities associated with

probabilistically sophisticated beliefs in the sense of Machina and Schmeidler (1992). Savage

(1954) presents a set of axioms which imply both the existence of well-defined subjective

probabilities and an expected-utility representation. Machina and Schmeidler (1992) drop

Savage's sure-thing principle, and strengthen Savage's requirements for the consistency of

comparative probability judgements to derive conditions under which preferences will pre-

serve first-order stochastic dominance with respect to a unique probability distribution 7r.

Since the definition of W employed here does not require satisfaction of the sure-thing prin-

ciple, we will focus on the more general Machina-Schmeidler concept.

The features shared by the superdifferential (1) and the Savage-Machina-Schmeidler

concept of subjective probability relate to acceptable betting odds for a risk-averse decision-

maker. The definition of the superdifferential of a concave function implies that, beginning

with a non-stochastic income el, welfare will never be improved by acceptance of a bet

E E RS which is fair with respect to probabilities 7r E 7r(1) in the sense that ire = O. Con-

versely, if 7r (X 70), there exists some e and e with ire = 0 such that W(el + e) >W (el).

Moreover, for individuals who are risk-averse and probabilistically sophisticated with sub-

jective probabilities IT in the sense of Machina and Schmeidler (1992), it must be true that

E 7r(1). If, in addition, preferences are smooth, 7r(1) is a singleton containing the unique

probability vector 7r for which an individual with non-stochastic initial income el will reject

all fair and unfavorable bets (those with we < 0), but will accept all sufficiently small fa-

vorable bets. To state the latter condition more precisely, for any e and any e with ire > 0,

10



there exists k > 0 such that 1/17(e1+ke) >W (e1). Thus, in the case wh
en W is smooth in a

neighborhood of the vector {el :e E R}, the unique element 7r. E 7r
(1) defines the acceptable

betting odds.

The differences between the superdifferential, r (1) , and the Machina
-Schmeidler defin-

ition reflect the fact that the superdifferential is a local characterizatio
n of preferences for a

decision-maker who is assumed to be risk-averse. By contrast, the Ma
china-Schmeidler defin-

ition yields a global stochastic dominance ordering, and the decision-
maker is not necessarily

risk averse.

Taking the second point first, the Machina-Schmeidler definition of
 probabilistic sophisti-

cation implies that subjective probabilities are unique, but when pr
eferences are not smooth,

in a neighborhood of the vector {e1 :e E R}, 7r (1) will have more 
than one element. Con-

sider for example, the case when S = 2 and the individual has ris
k-averse rank-dependent

expected utility preferences which preserve first-order stochastic do
minance with respect to

the unique probability vector 7r- = (,D. The general form of prefere
nces is:

w(yi , Y2) ---
q (1) U(Y1) ± (1 (1)) 742) Yi Y2

U(Y2) + (1 ()) 140 Y2

where q is the probability weighting function and u is the utility func
tion as in Quiggin

(1993). Preferences are risk-averse if u is concave and q > (1 — q (-)) .5

Now consider bets (a, b) with payoff a > 0 received in one state and —
b < 0 received in

the other, and suppose that the individual is free to accept or reject th
e bet (ka, kb) for any

k> 0 at initial wealth el. For small k, the change in welfare associate
d with increasing the

level of the bet is

which is negative if

Hence

ow
u/(e) [b() + a (1 — (-2-1))]

Ok 2

a <  
b (1 — ())

7r(1) = {(7r, 1 — ir) : — q
5..

5These conditions are sufficient, but not necessary for the individu
al to reject all fair bets (Cohen,

Chateauneuf and Meilijson). Sufficiency is all that is required for this 
illustrative example.
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A second, and more fundamental distinction between the existence of a set of subject
ive

probabilities 7r (1) as defined here and probabilistic sophistication in the sense of Ma
china

and Schmeidler (1992) is that the characterization of 7r (1) depends solely on prefere
nces in

a neighborhood of the vector {el :e E R}. Consider an individual with smooth prefer
ences

facing an Ellsberg urn problem, with balls of three colours (say 30 red, and 60 either gr
een or

yellow). Such an individual might accept all sufficiently small favorable bets at probabil
ities

, but might display a preference for bets on the unambiguous outcome red when the

payoffs are large. In this case, 7r(1) = { (i, , , but the individual is not probabilistically

sophisticated.

Finally, it should be observed, following Grant and Karni, that if preferences are state-

dependent, it is not generally possible to identify subjective probabilities from 
behavioral

observations alone. The identification of Tr (1) with subjective probabilities rests 
implicitly

on an assumption that preferences in the neighborhood of el are state-independent.

In summary, our usage of the terms 'risk-neutral probabilities' and 'subjective probabil
-

ities' has been adopted to maximize consistency with the literature. However, we are

concerned solely with the formal properties of probability vectors as elements of the su
perdif-

ferential. Nothing in the analysis that follows depends on whether the elements of 7r (y
) are

'really' probabilities.

2 Risk aversion

Early writers on the expected-utility model, such as Friedman and Savage, noted that, in
 this

model, risk-aversion was equivalent to concavity of the utility function. The classic w
ork of

Arrow and Pratt introduced and integrated two approaches to the analysis of risk-aver
sion.

The first was a behavioral approach, based on the concept of the risk premium whi
ch, in

the simplest case, is the difference (or ratio) between the expected value of a risky prosp
ect

and the certainty equivalent of that prospect. The second was an index number appro
ach in

which risk-aversion was characterized by coefficients of absolute (and relative) risk-avers
ion

derived from the first and second derivatives of utility functions at a given value y. 
Arrow

and Pratt related the two approaches in a number of ways. First, they showed that an

12



individual would have non-negative risk premiums for all risky prospects if and only if the

coefficients of risk-aversion were positive for all y. These properties in turn were equivalent to

concavity of the utility function. Second, they used the coefficients of risk-aversion to derive

approximations to the risk premium for prospects in a neighborhood of y. Finally, they

characterized the property of constant absolute (relative) risk aversion both behaviorally, by

the requirement that a change in base wealth should not change the absolute (relative) risk

premium and, in index number terms, by the requirement that the coefficient of absolute

(relative) risk-aversion should be the same for all y.

The Arrow-Pratt index-number approach has been extended to generalized expected

utility models through consideration of local utility functions (Machina 1982), conditions on

probability transformations in rank-dependent models (Chew, Karni and Safra) and matrix

analogs of the Arrow-Pratt coefficients, applicable to state-dependent utility models (Nau,

2001). In these generalized models, the Arrow-Pratt results must be modified. As Machina

observes, the most natural notion of risk-aversion for models with smooth preferences, namely

that all local utility functions should be concave, is stronger than the requirement for a

positive risk premium.

In this paper, we focus on the most basic concept of risk-aversion. Following Yaari (1969),

risk aversion may simply be regarded as the property that preferences are convex over the

state-contingent outcome space Ys or equivalently, that W satisfies the quasi-concavity

assumption imposed above. This concept does not require any specification of objective

probabilities. Even if objective probabilities are known, quasi-concavity need not imply a

preference for outcomes of the form kl among the set of state-contingent income vectors

with a given expectation at the known objective probabilities. As Nau (2001) observes,

risk-averse preferences may be characterized by state-dependent utility or by the existence

of undiversifiable background risk, such that, if objective probabilities are given by 7r, it

need not be true that 7r E w (1) .

In this paper, however, we will maximize comparability with the literature on primal

measures of risk aversion by considering the existence of a probability vector 7r0 such that

for all e,y with e(y) = e, -ey > e with a corresponding risk premium

w°y—e(y) >0.
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Dually, we can define:

Definition 1 An individual is ri
sk-averse with respect to proba

bilities r° if 7r° E 'Tr (1).

The definition implies that an i
ndividual is risk-averse with 

respect to 7r° if, from an

initial position of certainty repres
ented by some el, the individ

ual will reject all bets z that

are fair in the sense that 7r0z = 0
 and, a fortiori, all 'bets that 

are unfavorable in the sense

that 7r0z < 0. In the case where 7
r (1) is empty, there exists no 

probability vector with this

property for all e. However, it m
ay still be possible to interpre

t preferences as risk-averse

with respect to some set of state-d
ependent preferences (Grant a

nd Karni, 2000).

The preceding discussion implies:

Lemma 3 An individual is risk-a
verse with respect to probabilit

ies 7° if and only if:

E (7r°,e) = e Ve.

Consider the two polar cases of no
ndecreasing, quasi-concave pr

eferences risk-averse with

respect to a given set of probabilit
ies, 7r0 . They are risk-neutral

 preferences,

eIr° N (y) 

/    

703,

I

sEn

and maximin preferences (corresp
onding to complete aversion to

 risk)

eAf (y) = min {yi, Y2) •••7 YS} •

For any other members of the clas
s of nondecreasing, quasi-conc

ave preferences risk averse

with respect to 7r0, with correspo
nding at-least-as-good sets Ve

, it is true that

Vm (e) c 1/1r° (e) c

Our general definition of an increa
se in risk aversio between individuals reflects th

is basic

property that an increase in risk av
ersion is reflected by a shrinki

ng of the at-least-as-good

sets.

Definition 2 A is more risk-aver
se than B if for all e

V A (e) V13 (e)
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There are several immediate consequences of these definitions. We summarize them in

the following theorem and corollary:

Theorem 4 The following are equivalent (a) A is more risk averse than B; (b) BA (e,y;1) <

BB (e,y;1) for all y and e; (c) EA (7r,e) > EB (7r,e) for all it and e;(d) for all y, eA(y) <

eB (y). Moreover, if A is more risk-averse than B, and B is risk-averse with respect to

probabilities 7r0, so is A.

Proof (a) (c) is immediate. (c) (b) follows by applying EA (v- ,e) EB (7r,e) for all it

and e in the conjugacy mapping. (b) (d) follows because e (y) is determined by

max {e : B (e, y; 1) > O}.

(d) (a) is immediate from the definition of V. The second part of the theorem is

trivial.

Corollary 5 If both A and B are expected utility maximizers then A is more risk-

averse than B if and only if uA is a concave transformation of uB

Corollary 5 follows from Arrow and Pratt, who show that A will have lower certainty

equivalents than B it and only if uA is a concave transformation of uB. As part (d) of

Theorem 4 shows, this is equivalent to our definition of more risk averse.

2.1 Dual Measures of risk aversion

We consider an absolute and a relative measure of risk aversion. The dual absolute risk

premium is defined

a (7r,e) = E r,e) — e,

and the dual relative risk premium (defined only for e > 0) by

E(ir ,e)
r(ir, e) =  

Notice that a (x,e) <0 and r (7r, e) < 1. Moreover, because E is concave in it, so are a and.

r. These two measures are directly related in the case e> 0 by

a (w,e) = e (7r,e) — 1) .
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We observe

Lemma 6 The following conditions are equivalent: (1) A is more risk-averse than B; (2)

aA (7r,e) > a/3 en,,e\) V7r, e; and (3) for all e > 0 TA (7r,e) > TB (7r,e) V7r.

Lemma 7 An individual is risk-averse with respect to probabilities r° if and only if a (7r° ,e) =

0 and 1' (r°,e) = 1.

The polar cases of risk neutrality and complete aversion to risk illustrate the properties

of these two measures. If preferences are risk-neutral with respect to 70:

E ( r,e)

Thus,

and

It follows immediately that

if {7ry— >--- 7r°sys ± e}
Y 

s 
4

. e + inf
Y

=

S

{ —oo 7r iro

a (7r,e) =

r (7r,e) =

{
{

e 7r = 7r°

—oo 7r 7r°

0 7r = 7ro

7r wo
—00

1 7r = 7ro

Lemma 8 An individual is risk-averse with respect to probabilities 7r0 if and only if he is

more risk-averse than an individual with preferences that are risk-neutral with respect to 7r0

For completely risk averse preferences preferences

whence

e (Y) = min {Yi, Y2, --, Ys} ,

E (- x ,e) = inf {-ny— min {yi, Y2) w l YS}} ± e
y

= e
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because 7ry— min {yi, y2, ..., Ys} > 0. Hence,

a(re) = 0,

r (7r, e) = 1.

Preferences exhibit constant absolute risk aversion if for all 71

a (7r,e) = a (7r,e') all e, e'.

Preferences exhibit constant relative risk aversion if for all 7r

r (7r,e) = r (7r,e) all e, e' > 0.

Our next result shows that these notions of constant absolute risk aversion and con
stant

relative risk aversion are equivalent to the more familiar notions. It also characterizes th
e

risk-neutral probabilities for both classes of preferences.

Theorem 9 Preferences exhibit constant absolute risk aversion if and only if

E (r,e) =

where et (r) < 0 a nondecreasing proper concave function that is continuous on the inter
ior

of the region of P where it is finite,

B (e, y; 1) = B (0, y; 1) — e,

and

71(y+/31) = ir (y) , 0 E R.

Preferences exhibit constant relative risk aversion if and only if

E (7r ,e) = I. (r) e

where f (ir) < 1 is proper concave function that is continuous on the region of P where
 it is

finite,

and

B (e,y;1) . 613 (1, 1-e;1) ,

r (AY) = 71. (3') , ii > 0.
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Proof The proof is for the case of CARA. The proof for CRRA is exactly parallel. By

constant absolute risk aversion

a (-rr,e) = a (7r) ,

with& (7r) < 0 a nondecreasing proper concave function that is continuous on the region

of P where it is finite by the properties of the expected-value function. Hence,

By conjugacy,

E (7r,e) = a (7r) + e.

B (e, y; 1) = inf {ry—a (70} — e
it

= B (0,y; 1) — e,

where B (0, y; 1) is the concave conjugate of ez, (7r) satisfying the properties in Lemma

1. Because

it follows that

B (e,y; 1) . B (0, y;1) — e,

P (e, y) = P (0, 3f)

for all y. By the translation property

p (0, y+,31) = aB (0, y+01; 1) = aB (0, y; 1) = p (0, y) .

Corollary 10 If preferences exhibit constant absolute risk aversion

n E ne{aB (e, el; 1)} 4.> air) = 0.

If preferences exhibit constant relative risk aversion

7r E ne{3/3 (e, el; 1)} < > f. (7r) = 1.

Remark 1 A direct consequence of Lemma 1c and Theorem 9 is that

e (y) = B (0, y; 1)
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in the case of constant absolute risk aversion, whence by the translation property

e (y+ 01) = e (y) +13,

which is the more traditional definition of constant absolute risk aversion (Quiggin and

Chambers. 1998). Hence, W (y) is translation homothetic (Blackorby and Donaldson, 1980;

Chambers and Fare, 1998). Similarly, in the case of constant relative risk aversion e (y) is

the implicit solution to

B ( Y1, —
e
;1) = 0,

whence

e (py) = pe (y) p, > 0,

and W (y) is homothetic.

Because CRRA corresponds to homotheticity of the welfare functional and CARA corre-

sponds to translation homotheticity of the welfare functional, it is natural to speculate that

quasi-homothetic preferences, which contain both CRRA and CARA as special cases will

prove useful. Quasi-homothetic preferences are characterized by the fact that their income-

expansion paths are straight lines which do not necessarily emanate from the origin. In the

expected-utility literature, this characteristic of linear expansion paths has come to be asso-

ciated with preferences that exhibit linear risk tolerance (Brennan and Kraus, 1976; Milne,

1979). We, therefore, say that preferences exhibit linear risk tolerance if

E (7r,e) = E° (7r) + El (7r) e

where E° (7r) and E' (70 are expected-value functions for least-as-good sets that are inde-

pendent of the certainty equivalent. CARA is the special case of linear risk tolerance where

E' (71-) = n1=1 for all ir, while Clib RA is the special case of linear risk tolerance where

E° (7r) = 71-0 =0 for all 7r.

The associated risk premiums are given by:

a (7-r,e) =

E° (rr) 
r (7r,e) = e

19
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Because e can take all positive values, for two individuals with linear risk tolerance, i is more

risk-averse than j if and only if

E? (-Tr) _? E° (7r)

Eil (r) ? E. (r)

Both CRRA and CARA preferences are particularly tractable analytically in either their

dual or their primal formulation. Preferences exhibiting linear risk tolerance are much simpler

when expressed in terms of the expected-value function. As is well known, quasi-homothetic

preferences generally do not have a closed form certainty equivalent. The manifest
ation

of this in terms of the benefit function is derived directly from composition rules due to

Chambers, Chung, and Fare(1996):

Lemma 11 Preferences exhibit linear risk tolerance if and only ij

B (e , y; 1) . sup {min {B°
vi 

(yo; 1) , eBi (Je ; i) 1 : y 0 + y1_ 31 ,

where B° is the benefit function conjugate to E° and B°1 is the benefit function conjugate to

E'.

Because preferences with linear risk tolerance generally do not have closed form welfare

functionals, they have received only limited attention in the literature on primal representa-

tion of preferences over stochastic incomes. Indeed, even using the more general concep
t of

a superdifferential, it will generally be difficult, and intuitively uninformative to attemp
t a

primal evaluation of the risk-neutral and subjective probabilities. However, one special case

that has received attention because of its convenient ability to represent market outcomes 
in

terms of a representative consumer are affinely homothetic preferences (Milne, 1979), whic
h

are the special case of linear risk tolerance given by

E° (r) . 7rv v E Rs+ •

Perhaps the best known member of the affinely homothetic class of preferences is the Stone-

Geary utility structure which underlies the linear-expenditure system.
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Another special case of the quasi-homothetic family, which does not appear to have

received much attention in the portfolio-selection or uncertainty literature, is the class of

preferences translation homothetic in a direction other than that given by the certainty

vector. This class, which has played a role in the empirical modelling of labor demand and

consumer preferences (Blackorby, Boyce, Russell, 1978; Dickinson, 1980) is defined by

E' (n-) = 7ru,

where u E Rs. Intuitively, this is the class of preferences for which real income effects are

independent of the economic environment. CARA corresponds to the special case where real

income effects are constant and the same for all states of nature.

Preferences satisfying constant relative risk aversion, constant absolute risk aversion, and

linear risk-tolerance can all be characterized in terms of the notion of demand rank, which

corresponds to the dimension of the function spaced spanned by the individual's Engel curves

(Lewbel, 1991). By our results and Theorem 1 of Lewbel (1991), constant relative risk

aversion corresponds to a rank-one demand system, while constant absolute risk aversion,

and linear risk-tolerance each correspond to rank-two demand systems. Further, using the

general results of Lewbel and Perraudin (1995), this establishes that each of these preference

structures satisfy the conditions for complete-market portfolio separation associated with

the theory of mutual funds. Constant relative risk aversion implies that preferences can be

represented indirectly in terms of a single mutual fund, and the corresponding holdings of the

respective state-claims per unit of real income are given by the gradient of 1. (7r) . Constant

absolute risk aversion is associated with preferences that can be represented indirectly in

terms of two mutual funds, one of which is degenerate and corresponds to the traditionally

safe asset. Only the holding of the degenerate mutual fund is affected by the level of real

wealth, and it is this characteristic of constant absolute risk aversion which yields the well-

known result that changes in real wealth do not affect the individual's holding of the risky

asset. Linear risk tolerance is the generalization of two-mutual fund preferences which makes

neither mutual fund degenerate.

In the literature on expected utility preferences, it is well known that only risk-neutral

preferences can jointly exhibit constant absolute risk aversion and constant relative risk
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aversion. Safra and Segal (1998) have recently investigated these type of preferences, which

they refer to as constant risk aversion, in the case of an infinite dimensional state space.

Preferences with constant risk aversion are interesting not only because they encompass both

the important polar cases of risk neutrality and maximal risk aversion, but also because a

number of widely-used representations of risk preferences display this property, including

Yaari's (1987) dual model, and preferences linear in the mean and standard deviation. Safra

and Segal characterize the requirements for constant risk aversion in a number of models of

choice under uncertainty.

Quiggin and Chambers (1998) provide necessary and sufficient conditions for general

preferences defined over a finite state space to exhibit constant risk aversion, and Quiggin and

Chambers (2000) have shown that strictly quasi-concave preferences cannot exhibit constant

risk aversion. Here we extend their results to obtain explicit functional representations of

constant risk averse preferences defined over a finite state space.

Theorem 12 Preferences exhibit constant risk aversion if and only if either

OT

E (7r,e) = e V7r EP

E (7 r,e) =
e 7r El3 C

—oo 7r 073 •

Proof Preferences exhibit constant absolute risk aversion if and only if

E (7r,e) = (7r) +e

where a (IT) < 0 is a proper concave benefit function. To satisfy constant relative risk

aversion, it, therefore, follows that

itia (7r) = (7r)p,> 0. 

There are two possibilities either a (7r) = 0 or ei (7r) = —oo. /c/ a, (7r) = —oo for all 7r,

preferences are not well defined, and we therefore rule that case out. This establishes

necessity. Sufficiency follows trivially.
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To proceed, let cr C Q be the subset of the state indexes satisfying

= min {Yi, Y2, --, Ys}

then applying the conjugacy mapping establishes:

Corollary 13 Preferences exhibit constant risk aversion if and only if either

B (e, y;1)

with

ij y =el and if y

or

with

= min {Yi, Y2, Ys} — e,

7r (y) = cony {e, : $ E Cr} .

B (e, y ; 1) = inf {7ry : 7r E73} —e

7r (y) = arg inf {7ry : 7r EP}.

Remark 2 A direct observation from Corollary 13 is that the only quasi-concave certainty

equivalents consistent with constant risk aversion are the concave certainty equivalents

and

e(y) = min {Yi, Y2, Ys}

e (y) = inf {-Try : ir E15}

We conclude, therefore, that the only types of quasi-concave preferences that are consis-

tent with constant risk aversion are ones that are piecewise linear or ones that are completely

averse to risk. Because true piecewise linearity (i.e., 73 is not a singleton) is not consistent

with the additively separable expected-utility form, the well-known result that the only ex-

pect s utility preferences which are consistent with constant risk aversion are the ones that

are linear (that is, risk neutral) follows as a trivial corollary of these results.

We also have
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Corollary 14 Preferences exhibit constant risk aversion if and only if either aE (7r, e) . el

or aE (7r, e) is undefined.

This corollary is a generalization of Yaari's (1987) observation that preferences in the dual

model display 'plunging' behavior. Either the individual will reject a given risk entirely, or

they will accept an amount of the risk that is either unbounded or fixed by the constraints

of the choice problem. This is a general characteristic of constant risk aversion.

Definition 3 Preferences display decreasing absolute risk aversion if for all r, a (7r,e) is

decreasing in e.

Definition 4 Preferences display decreasing relative risk aversion if for all 7r, r (7 r ,e) is

decreasing in e > 0.

The following corollary is a trivial consequence of the definitions and Theorem 9:

Corollary 15 If preferences exhibit constant absolute risk aversion, they exhibit nondecreas-

ing relative risk aversion. If preferences exhibit constant relative risk aversion, they exhibit

nonincreasing absolute risk aversion.

E ex , e) also offers a convenient method to characterize many existing concepts. For

example, for the class of state-dependent, linear in probability preferences, Karni (1986) has

defined the reference set as "...the optimal distribution of wealth across states of nature that

is chosen by a risk-averse decision maker facing fair insurance" at the probabilities 7r. For

given 7r, using (2), the reference set is completely characterized by E (7r, e) as

RS (7r) . Ue {y E aE (ir, e)} ,

and has the equivalent interpretation in our framework as the optimal distribution of "real

wealth" across states of nature as chosen by a risk-averse decisionmaker. Karni (1986)

also defines a generalization of the Arrow-Pratt risk premium for a given outcome y as the

"...maximum reduction in actuarial value that the decision maker is willing to accept to

attain a point on the reference set rather than bear actuarially neutral risk" for 71" . In our

terms, this is computed simply using E (7-r, e) as

ry— E (ir, e (y)) .
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From this observation and results in Karni (1986), it thus follows immediately that if A and

B have the same reference set, then A is more risk averse than B in Karni's (1986) sense if

and only if

EA (7r, eA (y + x)) 5... EB (7r, eB (y ± x))

for all y ERS (7r) , 7r EP, and x such that Es rsx, = O.

3 Comparative Statics and E (ir,e)

E (7r,e) is a particularly convenient representation of preferences in cases where the risk-

neutral probabilities are exogenous to the individual. Such a case obviously pertains when

the individual is a small participant in a complete contingent claims markets. In that case, the

risk-neutral probabilities can be treated as the normalized Arrow-Debreu contingent-claim

prices. In the case of complete contingent claims, the importance of linear risk tolerance

in obtaining several standard results in finance theory including results on the existence

of aggregate consumers and the two-fund separation theorem has already been recognized

(Milne, 1995; DeTemple and Gottardi). In this section, we show how standard results in

consumer theory can be coupled with our results on dual measures of aversion to risk to

obtain results for general preferences.

In what follows, for simplicity, we assume that E (7r,e) is smoothly differentiable,6 and

we restrict attention to y E Rs+. As a convenient reference point, we also consider the special

case of expected utility, where the certainty equivalent satisfies

u (e (y)) =
2

Here fr is the vector of subjective probabilities and u is a smooth increasing concave function.

For this case,

E (Tr ,e) . Es (r,u (0) ,

where Es (7 r ,u) is the expected-value function for the expected-utility functional.
6As pointed out above, there are many instances (CARA and linear risk tolerance) where the expected-

value function will be smooth even though the primal representation is not.
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Consider the case of a pure-exchange economy where the individual's endowment of t
he

contingent claims is given by the vector y*. Her equilibrium welfare level, e* (7ry*, 7r), 
is

determined as the implicit solution to her budget constraint:7

(3) E (7r ,e) = 7ry*.

Using (2), her corresponding equilibrium holding of the contingent claims is given
 by

(4) y (7ry*, 7r) = V,E(w,e* (7ry*,7r)) ,

where V represents the usual gradient with respect to the subscripted vector.

Expressions (3) and (4) offer a platform from which to conduct a variety of comparat
ive-

static experiments. Suppose, for example, that one is interested in calculating the indivi
dual's

response to a change in her endowment vector by the small amount Ay*. The effect on
 her

equilibrium certainty equivalent is

7rLy*

Ee (7r,e* (7ry*, 70) '

while the associated change in her holding of the contingent claims is given by

71-,Ly*
V„E (1r,e* (ry*, ir))

Ee (7r,e* (Try*, 7r))

This change in the contingent claims corresponds to movements along Karni's (1986) 
ref-

erence set for the probabilities 7r and to movements along Nau's (2001) wealth expansio
n

path.

If the market's evaluation of her wealth change, 7rLV*, is positive, then several ob
ser-

vations follow immediately. Ee (7 i - ,e* (7ry*, 70) is the reciprocal of the marginal utility of

income, and for small enough changes in the certainty equivalent it can be interpreted as the

compensating variation of the change in e* (7ry*, ir) induced by the wealth change. Hen
ce,

it is positive (this also follows from the properties of the expected-value function). For
 the

expected-utility model,

Ee (7r,e) . it.,., (7r,u (e)) u' (e) .

7In more familiar terms, e ery*,r) is the individual's indirect utility function.

26



The magnitude of the change in her certainty equivalent, therefore, depends on whether

her preferences exhibit increasing aversion to risk or not. If preferences exhibit decreasing

relative risk aversion, it must be locally true that

(w,e) < r (7,e) < 1,

while if they exhibit decreasing absolute risk aversion, it must be locally true that

Ee (7r,e) < 1.

Hence, decreasing relative risk aversion implies decreasing absolute risk aversion, but not the

contrary. From these observations we conclude the following for a positive wealth change:

If preferences exhibit decreasing absolute risk aversion, the certainty equivalent increases

by more than the associated increase in wealth; if preferences exhibit decreasing relative

risk aversion, the percentage change in the certainty equivalent is no less than the percent-

age change in wealth If preferences exhibit increasing relative risk aversion but decreasing

absolute risk aversion, the certainty equivalent increases more than the change in wealth,

but the percentage change in the certainty equivalent is less than the percentage change in

wealth. If preferences exhibit increasing absolute risk aversion, they must also exhibit in-

creasing relative risk aversion. Hence, if preferences exhibit increasing absolute risk aversion

both the absolute and the percentage change in the certainty equivalent must be less than

the corresponding wealth change.

For the expected-utility model, the notions of decreasing risk aversion have particularly

simple interpretations. Notice that by standard results in consumer theory, tu (7r,u) is

the reciprocal of the marginal utility of income. Hence, under expected utility, decreasing

absolute risk aversion requires that the marginal utility of the certainty equivalent be less

than the marginal utility of income to the individual. Decreasing relative risk aversion, on

the other hand, requires that8

(7r,u (6) u (e)
1,

so that the elasticity of utility at the certainty equivalent is less ( '
t(7r,u(e))

dard results from producer theory, this latter expression is the elasticity of

8Here for the sake of simplicity, we have taken u> 0 .
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expected utility functional at the solution to the expected-value minimization problem. We

leave it to the reader to rephrase the general consequences of decreasing risk aversion for the

certainty equivalent in these terms for the expected-utility model.

The induced change in the sth contingent claim is positive if and only if the sth element

of the vector, V,,E (7,e* (7y, 7)), is positive. This vector, in turn, measures the change in

the compensated demands induced by a change in real income, as measured by the certainty

we equivalent. Hence, on the basis of well-known results in consumer theory, we conclude

that demand for the contingent claim rises as a result of the wealth change if and only if it

is a normal good. For general preferences, the existence of inferior goods is well recognized,

and hence general preferences over stochastic incomes can exhibit instances where contingent

claims can fall as a result of an increase in income. Compare this general result with what

emerges under expected utility. There for an interior solution to the expected-value problem,

Irs — E, (7r,u (e)) fr sui (Ys), 3 E ci.

Differentiating with respect to e and rearranging gives

V„E ,e* (7TY*, 70) vn-uku (ir,u (e)) = (Euu (7,u (e))) lu' (Ys)  1

Ee (7,e* (Try*, 7r)) (7,u (6) ku (7,u (e))2

Because the expected-utility function is strictly concave in y, its conjugate expected-value

function is convex in u. Hence, it follows immediately that the induced change in the sth

contingent claim is of the same sign as the wealth change and just proportional to the

individual's risk tolerance at that contingent claim. Put another way, under expected-utility

all contingent claims are normal goods, and the relative adjustments in contingent claims

are determined by their relative risk tolerances.

If preferences exhibit linear risk tolerance, the change in the holding of her contingent

claims is given by
IT Ay* 

V El (n.),
El (7)

which is positive in all its components. Hence, when the individual preferences are charac-

terized by linear risk tolerance, all contingent claim demands rise. In the special case where

preferences exhibit constant absolute risk aversion then all contingent claims holdings rise by

the same small amount TrAy*. This is the analogue of the well-known result that a wealth
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change does not change an individual with CARA preference purchases of the risky asset in

the portfolio problem. More generally, in the case where preferences are translation homo-

thetic but do not exhibit CARA, the relative impacts of an income change on contingent

claims, measured by for all i and j, are independent of real income and relative prices.

The welfare effect of a price change, AZ', on the individual can be computed as

(y* VirE (r,e))
Air,

Ee (7r,e)

and its sign hinges upon whether the price change turns the terms-of-trade in favor of the

individual or against the individual. Similarly, it also straightforward to show that the

response of the individual's holdings of the contingent claims to a price change can be

decomposed into a compensated demand effect and a real-income effect. The compensated

demand effect is given by the Hessian matrix of E in the probabilities. It follows immediately

that in the case of linear risk tolerance, and its special cases of CARA and CRRA, that each

demand responds negatively to a change in its own price.

It is particularly easy in this framework to assess how an individual's welfare is affected by

an increase or decrease in the riskiness of the contingent claims prices. For example, suppose

that 71-°E ne { aB (e, e1; 1)}, and that for those subjective probabilities the contingent claims

prices undergo the simple mean preserving change

71-3 ,
dr = --arr2.

7r7

If R-2 > 7r1 and dr2, this corresponds to a simple mean preserving spread. Welfare, therefore,

only rises if9
(Y2 — E2) (Yi E1) >0

7i1 .77 —

9A sufficient condition for this inequality to always be satisfied is that

Try' —E (ire),

which is referred to as the balance-of-trade function in the literature on international trade, be generalized

Schur convex for 7r° in the sense of Chambers and Quiggin (1997).
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4 rimal characterization of asset demands

The problem of primal characterizations the demand for risky assets is of considerable in-

terest. Moreover, since all economic decisions under uncertainty share with portfolio choices

the property that they may regarded as choices of state-contingent income or consumption

vectors, general results on asset demands may be extended to apply to a wide range of

problems such as consumption-savings choices (Sandmo 1970), output decisions for owner-

operated firms (Sandal° 1971), and labor supply decisions (Block and Heineke 1973).

Various measures of willingness to pay for risky assets will be useful in what follows.

Following Luenberger (1996), we define the compensating and equivalent benefits (in units

of g) by

CB(y°, yi) = B(e°,y1;g) — B (e°,y°;g)

EB(y°,y1) = B(e1,y1; g) — B(el,y°;g).

The compensating and equivalent benefits can be recognized as generalizations of Allais's

measure of disposable surplus (Luenberger, 1996; Chambers, 2001). In words, they are,

respectively, the units of the reference risky asset, g, that can be subtracted from yl to

leave the individual just indifferent to y°, and the units of the reference bundle that must

be added to y° to make him indifferent to y'. When preferences are strictly increasing in all

state-contingent incomes, these measures reduce to

CB(y°,y1) = B(e°, yl; g)

EB(y°,y1) = —B(el,y°;g).

because B(ei, yi, g) = 0. Chambers and Fare (1998) establish

Lemma 16 CB = EB globally if and only if preferences are translation homothetic (in the

direction of g).

Special cases of the compensating benefit and equivalent benefit which have received

attention in the literature on preferences over stochastic outcomes (Nau, 2001) are the buying

price of the asset z (at y)

Pb(z,y) = B (e(y) ,y + z,l) ,
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and the selling price of the asset

Ps (z, y) = —B (e (y + z) , y, 1) .

In words, the buying price and the selling price of the asset are just the number of units of

the traditionally safe asset (that is the one identified by the 45° line) that the producer is

willing to give or accept for the asset.10 By the properties of the benefit function, it follows

immediately that the buying price of an asset is positive if and only if the selling price of the

asset is positive and if and only if e (y + z) > e (y). By the definition of the superdifferential

and

rz > Pb (z , y) Vir E (y)

> Ps (z, y) V7r. E (y + z) .

Because the buying price and selling price of the asset are expressed in units of the

certainty vector, it is not surprising that their relationship to one another is closely related

to other measures of risk which are normalized in the same fashion. However, because of the

presence of real-wealth effects, the buying and the selling price generally diverge from one

another, although as Nau (2001) shows for small enough asset vectors they are approximately

equal. More precisely, we have as a direct consequence of Lemma 16 and results in Quiggin

and Chambers (1998) that the buying price and the selling price of the asset always equal

one another only when these real wealth effects are completely neutral. More formally:11

Theorem 17 The buying price and the selling price of an asset are always equal if and only

if preferences are characterized by constant absolute risk aversion.

Proof If preferences satisfy constant absolute risk aversion, by Theorem 9

B (e, y; = B (0 y —e

10It is straightforward to define a buying price and a selling price denominated in terms of a risky asset

rather than the traditionally safe asset. However, since such measures do not appear to have been recognized

in the literature, we leave their consideration to a future paper.

"For the sake of completeness. we provide a direct proof.
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whence

Pb(z,y) = B(0,y+z,1)—e(y)

e (y + z) — B (0,y, 1)

—B(e(y+z),y;1)

= P.9 (z,Y) •

Conversely, if for all y and z

—B(e(y+z),y;1)=B(e(y),y+z;1)

setting y = 0 to obtain

—B (e (z) ,0;1) = B(0; z; 1) .

Nau (2001) defines the marginal price of a financial asset in the smooth case as the two-

sided directional derivative of the preference structure, r (y) z (in the smooth case r (y) is a

singleton). Because we allow for nondifferentiable preferences, we thus define two marginal

prices of a financial asset using the more general notion of one-sided directional derivatives.

We have

We have

whence

(5)

Pr+, (z,y) = B' (e(y),y, 1;z)

P; (z,y) B' (e (y) y , 1; —z).

Pr(z,Y) =

PrTi, (z,Y) =

inf {71-z}
7rem(y)

sup frzl ,
7rEw(y)

Pr-r;(z ) (z ,y) Pb(z,y) •

Expression (5) generalizes Nau's Proposition 1 to the nondifferentiable case. As Nau notes,

the fact that the marginal price of the asset always exceeds the selling price of the asset is a
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straightforward consequence of the convexity of the individual's at-least-as-good sets reflected

here by the concavity of the benefit function and the properties of the superdifferential.

Following Nau (2001), an asset z is neutral if P (z, y) = 0. By (5), (1), and Lemma

1, an asset is neutral if and only if its buying and selling prices are negative from which

one concludes that e (y) > e (y + z). More generally, we can completely characterize the

marginal price of the asset in both the nondifferentiable and differentiable cases by exploiting

the basic properties of one-sided directional derivatives for concave functions.

Lemma 18 PZ (z, y) is a nondecreasing, concave, and positively linearly homogeneous func-

tion of z. (z, y) is a nondecreasing, convex, and positively linearly homogeneous function

of z. If preferences are Gateaux differentiable at y

(z , y) = (z, y) = (z , y)

is a nondecreasing, linear function of z.

The case where the buying and the selling price of an asset are always equal, constant

absolute risk aversion, is particularly interesting not only because of its centrality to much

of the literature on primal measures of risk aversion, but also because it allows us to glean

some further insight into the nature of the connection between state-claim prices and the risk-

neutral probabilities. We have the following extension of a result originally due to Chambers

(2001):

Theorem 19 If the buying and selling price of an asset are always equal, and B is gener-

alized quadratic then

1
Pb (Z1 3r) = Ps (z, 3r) = (7r (y) + -Tr (y + z)) z.

Proof By Theorem 17 if the buying and selling price of the asset are always equal then

B (e,y; = B (0,y;1)-c.  Because B (e (y) ,y; 1) = 0, in this case

Pb (Z y) = B (e (y) ,y + z; 1) — B(e(y) , y ;1)

= B(0, y + z; 1) — B(0, y ; 1) .
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Diewert's (1976) quadratic lemma applied here then yields

1
B (0, y + z; 1) — B (0, y; 1) = —

2 
(VyB (0, y + z; 1) + VyB (0, y; 1)) z,

which gives the result.

Perhaps the easiest way to interpret Theorem 19 is to recall the interpretation of the risk-

neutral probabilities as the individual's internal state-claim prices. Theorem 19 shows that in

the case where wealth effects are neutral (CARA preferences make them neutral everywhere),

then the individual's internal price of the asset is approximately equal to Hicks' (1945-46)

many-market consumer surplus measure for the asset in terms of those state-claims prices.

Moreover, in the presence of complete state-claims markets (or nearly complete state-claims

markets), the individual's internal price of the asset for small enough changes will be well

approximated by the market value of the asset. In a complete state-claims markets, all

individuals will equate their relative internal state-claim prices to the market's, and hence

the market's evaluation can be used to evaluate the value of the asset.

Moreover, because the quadratic provides a second-order flexible approximation to any

smooth preference structure, an immediate consequence of Theorem 19 is that (7r (y) + 7r (y + z)) z

represents a superlative indicator, in the sense of Diewert (1976), for the buying price of the

asset under CARA preferences.Theorem 19 provides exact results for the buying price of

the asset under specific restrictions on preferences. If these conditions do not hold, a more

standard approach can be taken to approximating the buying price of the asset using stan-

dard second-order Taylor's series approximations for the case of differentiable preferences.

Because B (e (y) , y; 1) = 0,

Pb (Z7 3r) = B(e(y),y+z;1)—B(e(y),y;1)

VyB(e(y) ,y; 1) z+---1 z'VyyB (e (y) y; 1) z

= 7r (y) z+-1 z'Vyp(e (y) , z

1
(z, y) +—z'V

Y 
p (y), z.

Similarly, presuming the existence of a set of subjective probabilities and letting 1./ = ii (1) y,

one can use similar methods to arrive at the standard approximation for the risk premium

in terms of the benefit function.
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When preferences exhibit either constant absolute risk aversion, constant relative risk

aversion, or constant risk aversion, we can use Theorems 9 and 12 to strengthen these

results.

Corollary 20 If preferences exhibit constant absolute risk aversion,

Pb (Z+ 01) Y) = Pb (Z 1 Y) + 0 1

Pb (Z, Y ± 01) = Pb (Z 1 Y) )

P7-1-T, (z, y+01) = Prt, (z, y) ,

P;i (z, y+01) = 1317; (z, y) ,

If preferences exhibit constant relative risk aversion

Pb (AZ 1 AY) = Pb (Z 1 Y) )

Ps (Az, PY) = Ps (z , Y) ,

Pr+n (z 'AY) = Pr+n ( z , 3') ,

Pi; (z,113') = Pi; (z,Y) , 1-1 > 0.

If preferences exhibit constant risk aversion, then either

Or

where

Pb (z, y) = min {Yi + zi., --, Ys + zs} — min {Yit, Y2, - -.7 YS} 1

Pr+n (z, Y) = inf fez},
sEn•

P; (z, 3') = sup feszl ,
sell*

Pb (z, y) = inf {7r (y +z) : 7r E13} — inf try : 7r EP}

PT-4-7, (z, y) = inf {7r (y) z} ,

P77-7, (z, y) = sup {7r (y) z} ,

7r. (y) = argil-71,f {7ry — inf {7ry : 7r
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Proof The first two parts are trivial. By theorem 12, if preferences exhibit constant risk

aversion then either

Or

e (y) = min {yi, Y27 --•, ys} 7

e (y) = inf {ry : Tr EP}.

Consider first the case of maximin preferences. Then

Pb (z, y) = B (0,y + z;1) — B (0, y; 1)

= min {yi + zi, ..., Ys + zs} — min {yi, y2, ..., Ys},

and

ij y =e1. ij y 4e3.,

Ir (Y) = P-

71. (y) = cony {e, :sEQ*}.

Thus, for either y =e1 or y e1

Pr+n (z, y) --=

PT; (z , y) =

inf {esz} ,
sEn.

sup {esz} .
sEn.

For e (y) = inf {Airy : .n. E75}, the result follows by conjugacy.

Associated with the marginal price of the asset and the buying price of the asset, to

account for the possibility of nondifferentiable preferences, there are now two relevant notions

of a buying risk premium

r-b- (z, 3') = Pi; (z ,Y) — Pb (z, y) > 0

ri; (z , y) . P,m+ (z , y) — Pb (z, y) > 0,

with rb- (z, y) > ri:" (z, y). We have:

Theorem 21 rb- (z, y) is convex in z. If preferences are Gateaux differentiable at y,

rb- (z,y) = rt, (z,y) = rb(z,y) Vz,
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and rb— (z, y) = rt (z, y) is convex in z, and

1
--
2 
z'Vyp (e (y) , y) z.

Theorem 22 If preferences satisfy constant absolute risk aversion

ri;" (z, y + 01) = r+ (z,Y) E

(z, y + 01) = r-(Z7 3r) 3ER.

Corollary 23 If preferences satisfy constant absolute risk aversion and B is generalized

quadratic then

(z, y) = rb- (z, y) = -21 ex (y) (y + z)) z.

Theorem 24 A is more risk-averse than B if and only if for any z, e,

(z,e1) <P (z,e1)

P;c1(-z, z+el) > P (-z, z+el)

5 Concluding comments

The observation that probabilities may be regarded as shadow prices is not new, but the im-

plied potential for the application of convex analysis and duality theory is only just beginning

to be exploited. In this paper, some of the basic building blocks of such an approach have

been developed, including primal and dual measures of risk aversion and the characterization

of homotheticity and quasi-homotheticity properties such as linear risk tolerance.

The methods of convex analysis and duality theory have yielded powerful tools for the

analysis of producer and consumer behavior under certainty. Using a state-contingent rep-

resentation, similar tools can be developed and applied for problems involving uncertainty.
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