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Since its introduction, the Sandmovian model of a risk-averse firm maximizing the ex-

pected utility of net returns has been the focus of most economic theorizing on production

decisions under price or production uncertainty (Sandmo, 1971). Because this model has

an inherently nonlinear objective function, relatively little attention has been devoted to

characterizing the indirect objective functions, and the associated economic implications,

for the various versions of the Sandmovian. model. Epstein (1978) and Pope (1980) used

dual methods to examine risk-averse firm behavior under price uncertainty under differing

assumptions about the timing of production decisons. But since that time, a folk wisdom

seems to have emerged that little, if any, economic information can be inferred from such

indirect objective functions.

Recently, however, Chambers and Quiggin (2000) have clarified the duality between cost

functions and their underlying stochastic technologies by showing that standard duality

arguments (Shephard, 1970; Fare, 1988) link state-contingent technologies to their dual

cost functions. This note shows that it is similarly straightforward to characterize producer

decisionmaking under uncertainty by using in rect objective functions. The characterization

is for the class of producers with continuous and nondecreasing preferences over stochastic

incomes who face both price and production uncertainty. Our general results are independent

of both risk preferences and any notion of probability. However, imposing such additional

structure on behavior allows us to refine our results in an informative fashion.

In what follows, we first introduce our notation and model. Then we specify the in-

direct objective function, which we term the indirect certainty '4" .,uivalent, and develop its

properties. We then consider the consequences of particular structural restrictions, such as

constant absolute, constant relative risk aversion, constant risk aversion, and sever er-

ent characterizations of risk aversion for the indirect certainty equivalent. The section

closes.

1 Model an Notation

We are interested in a multiple-output I m facing a stochastic technology. Uncertainty is

modelled by 'Nature' making a choice from a finite set of states 0 = {1,2, ..., S}. The state-
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contingent production technology, following Chambers and Quiggin (2000), is modelled by a

continuous input correspondence, X :1•14A:1's —4 which maps matrices of state-contingent

outputs, z, into inputs capable of producing them

X (z) . {x E RN+ : x can produce z} z E Rrs.

The vector z. E ni denotes the vector of ex post or realized outputs in state s. In addition

to continuity, the input correspondence satisfies:'

X.1 X(0m.$) = R!iv_, and ON E X(z) for z > Om.s and zOmxs.

X.2 z' > z X(z) C X(zi).

X.3 if I vec zk I —+ oo ask --+ oo, then nk_,,,,x(zic) = 0 .
X.4 AX(z°)+ (1 — A) X(z1) C X(Az°-1- (1 — A) z1) 0 < A < 1,

Individual producers face stochastic output prices, p E 5r+1.4!(85 , and non-stochastic input

prices, w E Ri_iv_+. Their preferences are defined over ex post income, y E Rs, which is the

sum of their holding of a financial asset2 with state-contingent returns q ERsand their flow

profit from production. Hence, their returns in state s are

Y8 = q9 ± psz, — wx.

Their evaluation of these ex post incomes are given by a continuous and nondecreasing

certainty equivalent function, e: Rs —> g? with the property that

e (j/1) = 11,11.

Following Quiggin and Chambers (1998), e is said to exhibit constant absolute risk aver-

sion if

_
e(y+61.).e(y)-1-5, 6E

'These properties are discussed in detail in Chambers and Quig (2000, Chapter 2). Note, in particular,

that they correspond to standard properties placed on input correspondences associated with nonstochastic

technologies (Fare, 1988).
2This financial asset can always be interpreted as the producer's portfolio of purely financial assets. Hence,

there is no loss of generality in restricting it to be a single financial asset and for the holding of that asset

to be norm med to one.
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Preferences exhibit constant relative risk aversion if

e (my) = pe (y) A > 0, y Elef,

and constant risk aversion (Safra and Segal, 1998) if they satisfy both constant relative risk

aversion and constant absolute risk aversion, i.e.,

e (II, (y + 61)) . fie (y) ± t.16 , /.L> 0,6 E R.

Although we have defined notions of constant absolute and constant relative risk aversion,

we have not yet defined a concept of risk aversion. For continuous certainty equivalents of

the type considered here a number of alternatives are available. For example, following

Yaari (1969), Quiggin and Chambers (1998) define preferences to be risk averse if there

exists a set of probabilities which leads the individual to uniformly prefer the sure thing to

non-degenerate lotteries using those probabilities. This definition of risk aversion essenti y

requires that indifference curves be suitably convex in the neighborhood of the certain income

vector, but does not impose any strong curvature properties upon preferences. A stronger

form of risk aversion is given by requiring e to be quasi-concave (Debreu, 1959; Malinvaud,

1970). An even stronger form of risk aversion requires e to be concave. We state the following

fact (Chambers and Quiggin, 2000) as a lemma for later use:

Lemma 1 If e is quasi-concave and satisfies constant absolute risk aversion

e (py) _> Ile (y) 0 < pt < 1.

Thus, the combination of constant absolute risk aversion and quasi-concavity r,-4uires

that the certainty equivalent be sub-homogeneous. Therefore, an immediate consequence of

Lemma 1 is that preferences cannot exhibit strict quasi-concavity and constant risk aversion

(Chambers and Quiggin, 2000).3

31f preferences are strictly quasi-concave and satisfy constant absolute risk aversion, then

e(1y) > tie (y) •
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By standard duality theorems (Fare, 1988), there is a cost function dual to X (z) and

defined

(w, z) = min {wx : x E X (z)}

if X (z) is nonempty and Do otherwise. The cost function satisfies:

C.1. c(w, z) is positively linearly homogeneous, non-decreasing, concave, and continuous

in w;

C.2. Shephard's Lemma;

C.3. c(w, z) 0, c(w,0m,$) = 0, and c(w, z) > 0 for z >0m.s,z Omxs;

C.4. Ilveczk ll co as k co = cw, ,zig) —÷ oo as k oo,

C.5. c(w, z) is convex and continuous in z.

Moreover, by standard duality theorems (Fare 1988):

X(z) = nw>. {x : wx > (w, z)} .

2 The Indirect Certainty Equivalent

Consider the following correspondence giving feasible net return levels,

B (w, p, q) {y : y, p8z, q. c (w z) , z , s E .

By the properties of the cost function B is continuous, and B (w, p, q) is a closed set. Where

needed we shall strengthen these properties to include boun.dedness from above to ensure

the existence of well-defined maxima for the producer's problem. Moreover,

B(/iwiip,pqt) = B (w, p, q) , 4a> O.

Our main interest is in the firm's input and output choices. Therefore, we examine these

choices conditional on its holding of its financial asset.4 The indirect certainty equivalent5 is

defined

4To determine the interaction between their optimal portfolio choice and their production decisions,

one can always use the indirect certainty equivalent derived below to characterize optimal portfolio choice.

Chambers and Quiggin (1997, 2000) examine these joint choices for the case of a single product firm facing,

respectively, expected-utility and generalized Schur concave preferences.

'Strictly speaking this is an indirect certainty equivalent conditioned on q.



/ (w, p, q) = max {e (y) : y E B (w, p, ci)}
r,c

= max fe (pz + q—c(w, z) 1)}z
(1)

if B (w, p, q) is nonempty and —oo otherwise, oth definitions of I (w, p, q) prove convenient

in what follows. We have (all proofs are in the appendix):

roposition 2 I (w, p, q) is continuous in (w, p, q), nondecreasing in p and q, and non

increasing and quasi-convex in w.

Denote

z (w, p, ci) E arg mei( fe (pz + ci—c (w, z) 1)} .

By the theorem of the maximum (Berge, p.116), the elements of z (w, p, q) are upper semi-

continuous. Moreover, upon applying Shephard's lemma (Fare, 1988) to c (w, z (w, p, q)) in

the case of a unique cost minimizing solution we obtain

x (w, p, ci) = Vwc (w, z (w, p,q))
,)

where x (w, p, q) is the vector of optimal input demands and V denotes the gradient with

respect to the subscripted vector or element of the vector as appropriate. Hence, we obtain

the following generalization of Hotelling's lemma for the generalized Sandmovian model as

a straightforward consequence of standard arguments in optimization theory.

Proposition 3 If c is differentiable in w at z (w, p, q) and I is differentiable with V qI (w, p, q) >

0. 9 , then

zs (w, P, ci) = VP8I (w' P' cl) 
s E Ci

Vq„/ (w, p, ci) '

x (w, p, ci) . _.VIvi (w,P,c1) ,
Vq/ (w, p, q) 1 .

Because

x (w, p, ) = Vwc (w, z (w, p, ,

a standard comparative-static decomposition of price effects exists for the optimal input

demands. Hence, in the smooth case, the compensated input demands are downward sloping
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and symmetric as a consequence of the concavity of c (w, z). This observation extends the

comparative-static results of Pope (1978) and generalizes them to the case of both price and

production uncertainty.

To this point, all of our results have been obtained independent of any probability mea-

sure. However, in many instances, researchers may not be as interested in the ex post supplies

as they are in an expected supply expression.6 Presuming the existence of such a probability

measure, which is known to the researcher and given by 7r3, s E Q, then it is a straightforward

consequence of Proposition 3 that

E,z (w, p, L 7r
.9Efi q8I (w, 13, cl)

Vp I (V77 p, (1) (2)

3 estrict ions on preferences and t e form of the in-

direct certainty equivalent

Proposition 4 If preferences satisfy constant absolute risk aversion

/ (w, p, q) = /A (w, p, ci)

where

/A (w, p, q) = max fe (pz q) — c (w, z)}

and IA is continuous in (w, p, q) , nondecreasing in p and q, nonincreasing and convex in

w, and

/A (w, p, q+61) = /A (w, p, q) ± 6,

It is immediate from Proposition 4 that optimal input deman , as well as optimal state-

contingent outputs, are independent of any non-stochastic changes in wealth if preferences

exhibit constant absolute risk aversion. This reiterates the classic fins ng from portfolio

analysis that the amount of a risky asset purchased is independent of the individual's wealth

under constant absolute risk aversion. Moreover, Proposition 4 also establishes that optimal

6For example, econometricians studying supply and input demand response under uncertainty may not

possess enough degrees of freedome to estimate the ex post supplies accurately.



input demands are always downward sloping in their own prices and for suitably smooth

cases that the sub-Hessian matrix of input demands is negative semi-definite in input prices.

We also have:

Corollary 5 If preferences satisfy constant absolute risk aversion and IA (w, p, q) is differ-

entiable in input prices

e (pz (w ,p,q) +q) = /A (w, p, ci) — wV,/A (w, p, q) .

Notice the similarity between Corollary 5 and Lau's (1978) early results on normalized

profit functions. Under CARA, the producer's problem reduces to one that is isomorphic

to normalized profit maximization. Hence, one intuitively expects to find results on optimal

input demand behavior that exactly parallel those results.

Proposition 6 If the certainty equivalent satisfies constant relative risk aversion

I (pw,pp,Aq) = III (w, p, q) .

An immediate consequence of Proposition 6 is that optimal state-contingent revenues and,

thus, optimal input demands are homogeneous of degree zero in prices and the producer's

portfolio. Combining Propositions 4 and 6, we obtain

Corollary 7 If preferences exhibit constant risk aversion

/ (w, p, q) = /A (w, p, q)

with IA continuous and positively linearly homogeneous in (w, p, q) , nondecreasing in p and

q, nonincmasing and convex in w, and

/A (w,p,q+.51) = /A (w,p,q) +6, 6 E R.

Under expected utility preferences, it is well-known that constant risk aversion is ol 1 y

possible if the individual is risk neutral. In that case, /A (w, p, q) would correspond to

the expected profit function plus the expected value of the prod cer's portfolio. However,
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it is also well-known that other risk-averse preference functionals can exhibit constant risk

aversion. For example, both maximin preferences

e (y) = min {yi , ..., yes}

and linear mean-standard deviation preferences satisfy constant risk aversion. Corollary 7

establishes that in these cases the optimal input demands for a risk averter would behave

very similarly to the derived demands for a risk-neutral individual. In fact, in our framework,

the only thing that distinguishes these input demands from their risk-neutral counterparts

is their dependence upon the producer's asset portfolio.

Proposition 8 If e is quasi-concave, I (w, p, q) is quasi-concave in q.

Proposition 8 establishes that the indirect certainty equivalentinherits the producer's

basic risk aversion. Because the set

fq :/- (w, p, q) >i}

is convex, under quasi-concavity there will always exist a supporting hyperplane7 to

{ q :/- (w, p, q) ..?. i (w, p,p,1)}

such that

4 E fq 1 (w, p, q) > / (w, p,p1)} = >-:733449 .?._ pEps.
3 3

Thus,
Ps 

*. = -, ., s E S2
Lk Pk

can be interpreted as a set of probabilities for which the producer exhibits aversion to risk

in the financial asset in the sense of Qui::in and Chambers (1998). For these probabilities,

the producer always weakly prefers the non-stochastic portfolio, 111, to any portolio with

the same expected value. When I (w, p, q) is smoothly erentiable, these probabilities are

unique and :.'ven by

- 
7There can be more than one.

irs Vqj (w' Mill) = s E a
vq/ (w, p,A1) 1 '
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Proposition 9 If e exhibits strong risk aversion, I is concave in q.

Hence, strong risk aversion implies that the indirect certainty equivalent is increasing at

a decreasing rate in and the state-contingent returns from the asset portfolio, and exhibits

strong aversion to risk in the financial asset. Moreover, by Proposition 4 and Lemma 1

Corollary 10 If e is quasi-concave and satisfies constant absolute risk aversion

/ (w, p, ci) = /A (w, p, q) ,

where

/A (w, p, q) = max {e (pz + q) — e (w, z)} ,

where IA is continuous in (w, p, q) , nondecreasing in p,nondecmasing and quasi-concave in

q, nonincrrasing and convex in w, with

IA (w, p, q+61) = /A (w, p, q) ± 6,

and

S E R,

/A (w, p,pq) > idA (w, p, q) 0 < p < 1.

4 Expected Utility

The most common restriction on preferences is that they be consistent with risk-averse

expected utility preferences. All of our general results apply without change. We leave that

to the reader. owever, we note that the ear-in-probabilities nature of the expected utility

model makes it trivial to deduce further consequences from standard results in duality theory.

reviously, we worked in terms of certainty equivalents, but here it is more convenient to

work directly in terms of the preference function.8

In the expected utility framework, the producer seeks to maximize

8To convert certainty equivalent results into this format simply apply the inverse mapping of u to the

indirect certainty equivalent.
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where

us = u(psz, q, — e (w, z))

for some utility function u : —+ R.*, which is assumed to be continuous, concave, and

monotone increasing, with u(0) = O. lefine the state-contingent utility correspondence by

U(z) = {u E : us u (psz, q, (w z)) s E ,

and the utility set, LI c as the range of the state-contingent utility correspondence

= UzU (z) .

The expected utility function W (7r) is defined by

W(r) = sup { rsus u EU}
s=1

By standard arguments W (r) is convex and continuous on any open subset of the probability

simplex. The convexity properties of W (7r) are the dual reflection of ;:lackwell's (1951)

famous result that individuals with expected utilit preferences always place a positive value

on information.

Moreover, by standard duality theorems (Fare, 1988)

where

3=

,sus < w (w)}

U* = cl (cony (U))

i.e., the closure of the convex hi of U.

enote

u(n) = arg sup rsus u
3=1

Any members of u (r) lie on an exposed face of U* for the supporting hyperplane with

normal 7r. Moreover

u(7r) c OW (7r)

9More generally, the range of u co d be extended to the negative reaLs with few changes in the arguments.

1°Both the state-contingent utility correspondence and the utility set depend upon , q, and w. We

suppress that dependence for notational convenience in this section.
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where Of (x) denotes the subdifferential of the function f (x) at x. Because u (7r) c OW (70,

it follows immediately that

(7r/ — 7r°) (u (7e) u (70)) 0,

for all members of the probability simplex. If we define the conjugate of W )11 by

W* (u) = sup {7ru—W ('7r)},
IF

then by standard results ockafellar, 1970)

u E aw (yr) .<==› 7r Eaw. (u) .

Finally, also by standard results (Rockafellar, 1970), if W (7r) is Frechet differentiable

then u (w) is a singleton, and conversely if u (7r) is a singleton, then W (7r) is Rechet

differentiable.

Conclu ing Remarks

We have developed the general properties of the indirect certainty equivalent and demon-

strated a generalized version of Hotelling's lemma for producers facing both price and pro-

duction uncertainty independent of any assumptions about the producer's attitudes toward

risk and independent of any notion of probabilities. We have also examined the structural

consequences for the indirect certainty equivalent of various restrictions on producer prefer-

ences inclu ing the expected utility formulation.

In the expected-utility form lation, we showed that the expected-utility function is du

to the closure of the convex hull of the utility set. For the more general specification, how-

ever, we have not deduced any such duality correspondence. Glob duality theorems seem

difficult to obtain in this setting. However, local duality correspondences can be obtained

straightforwardly by applying the general theorems of Epstein (1981) and Diewert (1982) to

this spec lc case after imposing some additional structure on B (w, p, q).
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6 Appendix: Proofs

Proof Proposition 2: Continuity follows by the theorem of the maximum (Berge, 1963,

p.116) and the properties of B. The monotonicity properties are trivial. Let

2 = z (Aw° ± (1 — A) wl, p, q) .

Quasi-convexity in w is established by

1 (w, p,Awo +(1 _ A) w') = e (p2 + ci—c (Aw° + (1. — A) w1, 2))

< e (p2 ± q—Ac (w°, 2) — (1 — A) c (NO, 2))

< e (p2 ± q— min {c (w°, 2) , c (wl, 2)1) ,

for 0 < A < 1. The first inequality follows by C.1 (concavity in w).

Proof of Proposition 4: By constant absolute risk aversion

e (pz + q—c1) = e (pz ± q) — c.

Continuity follows from the theorem of the maximum, and the monotonicity properties

are obvious. By the concavity of e (w, z) in w (C.1), e (pz ± q) — c (w, z) is convex in

w. Hence, I (w, p, q) is the pointwise supremum of a series of convex functions and

thus convex in w by Theorem 5.5 of ockafellar (1970).

Proof of Proposition 6:

I (p,w , pp ,pci) = max {e (Apz- 1- - ttqi— c (w, z) 31.)}

. max fe (ppz- i - Act— pc (w, z) 1)1

. Amex {e (pz ± q—c(w,z)1)} .

under constant relative risk aversion.

Proof of Proposition 8Let

z° = z (w, p, ce) , z1 = z (w, p, qi)

12



i = Az° + (1 — A)zi,

yo . pzo + qo _ c (w, zo) 1,

1y = pzi ± ql _ 

C (NV, Zi) 1

Then for 0 < A < 1,

/ (w, p, Ace +(1 — X) q') > e (pi-i-Ace+ (1 — A) q'—c (w, I) 1)

> e (Ay° ± (1 — A) yl)

> min {e (y°) , e (y1) 1 .

The second inequality follows by C.5 (convexity), and the third by quasi-concavity of

e.

Proof of Proposition 9: Replace last line of the proof of Proposition 8 by

Ae (y°) + (1— A) e (y1)

which follows by concavity of e.
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