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1 Introduction

Information plays a central role in a modern economy. In any problem involving decisions

under uncertainty, the choice of action and the expected benefits of alternative choices depend

on the information available to the decision-maker. Economic an• ysis of information began

with the classic work Illackwell (1951), who showed that the value of information is always

positive for expected utility preferences.

As with analysis of choice under uncertainty in general, most further discussion of the

value of information has focused either on choice from a finite set of alternatives or on cases

where the decision variable is a scalar such as effort. An especially important example of

the latter case is that of a firm facing either price uncertainty or technological uncertainty

represented by a stochastic production function technology. Scalar decision problems for pro-

ducers facing either price or production uncertainty have been analyzed by Sandmo (1971),

Newbery and Stiglitz (1981) and many subsequent writers. In particular, the value of in-

formation in problems of this kind, and the impact of information provision on the firm's

actions, has recently been analyzed by Lehmann (1988), Orrniston and Sc ee (1992, 1993),

Athey (forthcoming), Athey and Levin (2000) and Athey (2000). In common with most

analysis of production under uncertainty, these studies focus on the case of a scalar decision

variable, and approach matters analytically in terms of primal objective functions rather

than in terms of indirect objective functions.

Crhis paper examines the impact of information provision for producers facing price and
production uncertainty using an Arrow-Debreu state-contingent specification of technology

that admits each of the above models as a special case. The centr observation of t °s

paper is that decision m. LOng for individuals with linear-in-probabilities (that is, expected

utility) preferences can 'ways be viewed as equivalent to decisionm ng over dos , convex

sets. Hence, under the presumption of an Arrow-Debreu state-contingent technology defined

for a finite state space, standard tools from duality and revealed preference theory can

be used to study such decisions1 This permits examination of the value of information

and the im act of information provision in their most natural terms, w

of probability distributions, much in the same manner that the d al ap
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exhaustive examination of the theory of the price-taking firm in price space.

Viewed from this perspective, it is immediate that the value of information for individ-

uals with linear-in-probability preferences is determined by the curvature properties of the

convex hull of the individual's feasible state-contingent utilities. In particular, information

is valueless in the neighborhood of kinks in the convex hull's surface and most valuable in

the neighborhoods of the surface that approach linearity.

In what follows, we first introduce the model which includes specification of a state-

contingent production technology and producer preferences over stochastic outcomes. We

use those specifications to deduce the properties of a utility correspondence induced by the

composition of the two. We then show that it can be appropriately convexified and used as

the basis for the study of decisionnialdng.

Then we marshal standard arguments from convex analysis and the theory of monotone

comparative statics to provide a general framework for the study of the value of informa-

tion to producers facing a stochastic technology. Issues addressed include the investment

responses of firms to the provision of information, a general method for computing the value

of information which affords easy calculation of bounds on the value of information and an

easy method for determining when information is valueless, a comparison of the value of a

common information structure across agents with different preferences and stochastic tech-

nologies, and a general method using Gateaux differentials for assessing the value of d° erent

information structures to an individual agent.

2 Technolo and Information in a State- ontin e

arnework

2.1 The state space

The state space is given by a set 1 = S x N, which allows for S possible events relevant

to production and N possible si als. A sign n, typically, will be taken to to correspond

to a partition of c/ according to the events {1n, Sn}. More generally, one can think of

this partition into N si:ii ads as the 'finest' possible partition of the state space. Co rser



partitions of the state space can be considered by considering the remaining elements of the

power set of 11, 2, ..., NI. The entire set of partitions can be ordered by inclusion, and we

will denote the corresponding ordering --<cf, where A .-<G, B is read as A is coarser than B.

2.2 Event-contingent production

Following Chambers and Quiggin (2000), the stochastic technology, which is the same for

all signals,1 is represented by an event-contingent output correspondence. Let x E a14 be a

vector of inputs committed prior to the resolution of =certainty, i.e., prior to the realization

of s E S, and let z E J1 be a vector of event-contingent outputs also chosen prior to the

realization of s. Thus, if event s is realized, output z, is produced. We confine attention to

the case of a scalar output. The technology is characterized by the event-contingent output

correspondence, which gives the vectors of event-contingent outputs that can be produced

by a given vector of inputs. Formally, it is defined by:

Z(x) = {z E RS+ : x can produce z}.

The image of the output correspondence is referred to as the output set.

As discussed in Chambers and Quiggin (2000) we impose the following standard proper-

ties on the event-contingent output correspondence.

Properties of Z(x) (Z)

Z.1 Os E Z(x) for all x E 5/1_ss , z Z(ON) for z Os;

Z.2 z' > z E Z(x) E Z(x) (free disposability of outputs);

Z.3 Z(x) is bounded for all x E R14s/. (boundedness);

Z.4. Z(x) is convex for 1 x E RiAn

Z.5. Z is a continuous correspondence.

1Hence, in t s paper we do not analyze the case where the realization of the technology is random, even

though actual production is.
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2.3 The utility correspondence and the utility set

Now suppose that the producer is concerned to maximize an objective function of the general

form h(u) where u E Rs and

us = u(z,,x)

for some utility function u: R± x Ri.:" -- 14, which is assumed to be continuous, concave,

and monotone increasing in zs. Define the utility correspondence by

U(x) = {u(z,x) E Rs+ : z EZ (x)}.

Lemma 1 Assume that Z satisfies Z.1-5. Then U satisfies

U.1 u( Os, x) E U(x) for all x E aVin

U.2 u' _>. u E U(x) le E U(x) ;

U.S U(x) is bounded for all x E Ri_iv_ ;

U.4 U(x) is convex for all x ER 14% . r_ ;

U.S U is a continuous correspondence.

The utility set, U c Rs+., is the range of the utility correspondence:

U = Ux U (x) .

Although each U (x) is closed and convex, LI generally is not. Denote the closure of the

convex hii of /A by

U* = cl (convti) .

Our discussion relies on some concepts from the theory of convex sets ( cicafellar, 1970).2

For a convex set A, F C A is an exposed face if there exists a supporting hyperplane to A,

P, such that

P n A . F.

An exposed face that consists of a single point, i.e., F = {a} is called an exposed point. a E A

is an exposed kink if it belongs to more than one exposed face in . For an exposed kink,

2We restrict attention to convex sets, A C
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the notation a {B} means that a belongs to the exposed faces for each of the hyperplanes in

the set B.

Two convex sets A and C are P—comparable if they have intersecting exposed faces F

and F', respectively, for a common supporting hyperplane P. That is, there is a P that

supports A and C and that satisfies

PnA=F,

P n C = F',

and

F n F' 0.

For two P—comparable sets, C is a contraction of A if C c A.

For any convex set, A, define its free disposal hull, D (A) , by the set of points dominated

by the elements of A

D(A).{b:b< a, a E A} .

A set C is said to be a cube if it is the free disposal hull of a single point a, i.e.,

C = D({a}).

3 Sign s and probabilities

Because the state space is of the form c2 = S x N, the probability distribution may be

represented by an S x N matrix P with entry Psn corresponding to the joint probability of

production event s and si al n. Let

= Y: Psn
n

be the unconditional probability of production event s,

7rn ,---- E Pan
s

be the =conditional probability of signal realization n,3 and

n Psn
w. s .

rn

3More properly, we should refer to this as the si lal realization from the finest partition.
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be the probability of event s conditional on the observation of signal realization n. Then ir°

denotes the vector of =conditional probabilities or prior probabilities and wn denotes the

vector of probabilities conditional on the observation of signal realization n, or the posterior
.

probabilities. We confine attention to the relative interior of the unit simplex, w ch we

denote by P c at_si.+. Thus, the signal is not perfectly informative regar ng any event, and

for all s and n, 0 < es < 1. We will refer to the set of joint, prior, and posterior probabilities

as an information structure and denote it by 0. We denote the set of prior and posterior

probabilities for the information structure 0 as IT (0) . 17r°, 7r1, ..., irN 1 .

Given a signal with multiple possible realizations {1.../V}, we can define probability

vectors for signal events, corresponding to coarser partitions of the state space, that is, for

sets of the form AT C {1...N}. We have

P:I EnEAr P Sn 
=

EnEivirn'
and the corresponding probability of the signal event Ar is E„EN rno

4 The expected-utility function

We assume that the producer's objective function is of the expected utility or 'linear-in-

probabilities' form s
Er su(z., x).
s=1

Define the restricted expected utility function, V : P x R_Isii_ —4 51+, by

V (7r, x) = Max t r8u, : u
8 =

and the expected utility function, W : P --+ 14, by

s
W(7r) = sup 

/ 
E r,u, : u EU
.--4

= sup {V (7r, x)} .
x

For convenience, we assume that solutions always exist and that V (m, x) and W (7r) are

finite.

......=.11M.,
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Both V (7r, x) and W (7r) are convex and continuous on P (Fare, 1988). Denote

s
ii (7r, x) = arg max{ E rsus : u EU (x) ,

s=1

u (7r) = arg sup I

and

9= 1 rsu, : u EU ,

x (ir) E arg sup {li (7r, x)}

a (7r, x) and u (7r) are exposed faces of U (x) and U*, respectively. y analogy with the

theory of profit maximization, in the case when they are singletons, one may think of il (7r, x)

and u (7r) as vectors of supplies of state-contingent utilities. Moreover, we have the following

analo es of Hotelling's Lemma:

ii (7r, x) C all (7r, x)

and

u(x) g aw (x)

where of (x) denotes the subdifferentiad of the function h (x) at x.4 Denote by W' (it'; 77)

the one sided directional derivative (Gateaux differential) in the direction of iri:

e>o 6

W' (it'; 77) is positively linearly homogeneous and convex in .7 7 , and W' (7r, gri) > —WI (7r, —Ire).

So long as W (7r) is finite, these Gateaux differentials always exist (Rockafellar, 1970). More-

over,

If W' (ir; n) =

W' (7r, ri) = sup {nu}.
uEu(ir)

(ir; -n) for 77, then W (7r) is Gateaux differentiable at 7r, and u (w) is

unique. Conversely, if u (7r) is unique, then W (7r) is Gateaux erentiable at 7r. Gateaux

differentiability implies that W' (7r; 77) is linear in 77 (Rockafellar, 1970).

4A vector 31 is a subgradient of a convex function, h (x), at x if

h(z) > h(x)+31(z—x)

for all z (Rockafellar, 1970). The subd' Ferenti i oh (x) is the set of all subgradients.

7



Because U (x) is convex and satisfies U.1-U.5, it may be recaptured from V by applying

the duality mapping (Fare, 1988)

s 
U (x) . nrcep { u : ? : rsus < V (r, x) .

3=1

Generally, it will not be possible to recapture LI by a similar duality mapping. However, it

does follow (Rockafellar, 1970) that

Us = n„, {u : r,u, < W()}.
3=1

U* is observationally equivalent to LI for individuals with linear in probability preferences.

Both the restricted expected-utility function and the expected-utility function define total

orderings of the probability simplex. In what follows, two particular orderings sh be use

We say that ir is (V, x) —dominated by denoted as ft- if V x) > V (it, x). If

V is a class of restricted utility functions, we say that is (V, x) —dominated by 7iJ, denoted

as * -<(v,x) 11017 if * -<(V,x)

of • V such that:

r' for all V E V. For example, consider the case where V consists

= u (f (x,$))

Then fr Iri is implied by requiring that the probability distribution for u induc by

r' first-order stochastically dominates the probability stribution for u induced by fr.

Under the supposition that u is strictly concave, then fr -<(v,x) it" is implied by requiring

that the probability distribution for f (x,$) induced by 7r' is less risky in the sense of th-

schild and Stiglitz than that for it-. In this case, the ordering -- (v,x) is particularly simple

because the rank ordering of the utilities and the realization of the production process is

independent of the producer's probabilities. More generally, the rank ordering of the event

contingent utilities will depend upon the probabilities that the producer faces. For example,

if the underlying event-contingent technology has strictly convex output sets, the ordering

will not apply to the entire probability simplex because the ordering of outputs and, thus, of

ex post utilities depends directly on the probabilities faced and on the level of input utilitza-

tion. (Chambers and Qui:: in, 2000). Consequently, whether fr -.<(v,„0-1 or not is a result of

a complex interplay of the producer's preferences and his event-contingent technolo
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By analogy, we say that fr is W —dominated by 7r1, denoted as it --<w 71-1, if W (7r1) >

W (it.). The following lemma links these two concepts of dominance.

Lemma 2 it --°<w 7r1 if fr--<(v,.)7r/ at x (Cr)

Proof Suppose *.-<(v,„)7e at x (*), then

V (ir', x (re)) ?._ V (ir', x (fr))

?. V (*, x (*)) .

Corollary 3 If fr-- (v,.)7T-' at x (fr), then 71- --<lv 71-' for all W E V.

Corollary 4 If *--<(v,„).7e for all x, then it --<w 7e.

In addition to the total orderings of the simplex induced by the two expected-utility

functions, we will also be interested in partial orderings of the probability simplex. An

example of an ordering of the probability simplex that is often of interest is

k k 

k = 1, 2, ..., S — 1.
s=1 8=1

If outcomes are ordered from worst to best in accordance with the indexing of states, i.e.,

n > n' == un > u,', ir' -- sir' is equivalent to stochastic dominance.

When fr .- le == it --<(v,x)7r1 and fr --‹ 7r1 * - wir',we say, respectively, that V and

W preserve the ordering --‹. When fr .-‹ ir'== W' (7e; 77) > ir (*; 77), we say that W is

convex in the ordering --‹ at ri. We have:

Corollary 5 If V preserves the ordering --‹ at x (*) then fr --‹ 7r' == ir --<wiri . If V pre

serves the ordering -.< for all x then * ..< iri = * --<w7r1 .

To discuss input comparative statics, we need a notion of monotonicity for sets. Consider

any A (t) CaV4v. where t is drawn from a partially ordered set ordered by --‹. A (t) is said to

be increasing in t, written t ---‹ t'  > A (t') > A (t), if for any a' E A (e), a E A (t)

inf {a, al E A (t) and sup fa, al E A (t) .

Given this characterization, our comparative static results on the response of input utilization

to different sources of information are a direct consequence of basic res ts (Mil:1°m and

Shannon, 1994; Topkis, 1998) in the theory of monotone comparative statics.
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Theorem 6 (Milgrom and Shannon) If V (7r, x) is quasi-supermodular in x for all 7r, and

for all fr -< 7r' and Cc

V (fr, 5i)  (<)V (It, x') == V (7e, 5) .. (<)if (ir' ,x1) ,

then * ---< irf x (71 ?._ x (*) .

5 The value of information

We distinguish two notions of the value of information. The value of the nth signal and the

value of the information structure O. We will also distinguish between the case where the

input bundle is fixed and the case where the input bundle is freely variable in response to

the reception of different signals. The value of the nth signal for the fixed input bun e, x,

is

A. (7rn, 7rO ,x) = V (7rn , x) — supt rn, u, } ?_ 0,
uEil(70,x) 3

where the inequality follows by the definition of V. In words, -A (rn, 7r0, x) is the difference

between the optimal expected utility as calculated for the posterior probabilities and the

producer's best alternative, using the posterior probabilities, of the production choice made

for the prior probabilities.

The value of the information structure 0 for the fixed input bundle x is the derence

between the producer's ex ante expected utility when he has access to the entire information

structure and his expected utility when he only knows the prior probabilities

,
I (0,x) = rnv (7r', x) — v (i'°, x) > 0,

n

by the convexity of V because w° = En rn7rn.5 Notice that

/ (0, x) =E7rnA (irn, iro,x) a
n

Similarly, the value of the nth signal is defined

A (rn, 70) = W or') _ sup
uEu(fro)

- S
5Actually, convexity is not needed to establish that the v ue of information is positive. It follows

immediately from the fact that in the presence of a signal, the producer could always choose u (go, x) .
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and the value of the information structure 0 is

I (0) = Ernw (e) _ 147 (7r°)
n

._- ErnA (7rn, r°) > O.
n

Our next result bounds the value of signals and the value of the information structure

for a given technology and preferences.

Theorem 7

irn

V (Tr° , x) ( 1max {z-1-711, ..., 10 1 — 1) > iS, (7rn, 70, x) > 0
rs

v (ir°, x) : max —Tr , ..., • rosPSn} 
— 1) > 1 (0,X) > 0,(Pin1 

(n

n
7 1 ria4 _1

(max / 771-—ros 1)
{Pni Pns 1

71.0 , --, 0
1 7rs

...?... A (7,rn, 7ro) > 0,

—1 > / (0) > 0

Proof The proof is for A (r', 7r0, x). An exactly parallel proof applies to the remaining

expressions. By the definition of V,

U (x) c I U:
a

Thus, V (7r, x) must be bound m above by

ft (7r, x) fax >-: rsus: › 7ru9 < V (7r°, x)
s s

= V (70, x) max {----:1 0 , ..., iros 1 .
1 rs

1
Rom the proof of Theorem 7, one observes that signals and information generally are the

most valuable when the expected utility function takes the form W (7r°) max , tn4 141
,,,7 ° - irs °

Ties corresponds to the case where Us has a single exposed face. In this case, where the

frontier of Us is linear, even the sm est changes in probability distributions will le." to

large changes in choice of state-contingent utilities and hence in state-contingent outputs.

..-
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In other words, the producer engages in plunging behavior. On the other hand, signals

and information are least valuable when the expected utility function is linear over a range

of probability distributions. By standard results from duality theory (McFadden, 1978),

linearity in the expected utility function maps directly into kinks in the frontier of U*. We

pursue this point formally in the following series of theorems and corollaries.

Theorem 8 A (70, __‘x) = 0 if and only if u (7r° , x) contains an exposed kink in U (x) for

ern,ro‘) (0, x) = 0 if and only if U (x) is a contraction of

Proof: Suppose

rsu, < sup rsus (70, x) .

V (70,x) — sup 7,(.7128 o x) =

Hence, ii(ir° ,x) must contain at least one element that belongs to faces of U (x) for

both ir° and 7rn . Conversely, if ii (7r° x) contains an exposed kink in U (x) for (7r' r°),

(.fl, x) cannot be strictly positive. For the second part, suppose to the contrary

that there exists a feasible u such that

>7 iru3 > sup

for any n. Then I (0,x) > 0.

rnsiis (iro, x)}

Corollary 9 Suppose u (7r° ,x) is unique, then (0,x) = 0 if and only if a (70, x) is an

exposed kink for II (9) .

Corollary 10 1(0, x) = 0 for all information structures 0 if and only if U (x) is cube.

Exactly parallel arguments reveal:

Theorem 11 L (7rn ,,NO) = 0 if and only if u (70) co tains an exposs kink in U for

(wn 7,0) I (0) = 0 if and only if U* is a contraction of

nyr Eri(9) rsus < sup X: 78u3 (ir°) 1 1 .

12



Corollary 12 Suppose W is Gateaux differentiable at 7r0, then I (0) = 0 if and only if

u (7r°) is an exposed kink for 11 (9).

Corollary 13 I (0) = 0 for all possible information structures if and only if U* is a cube.

When W is not Gateaux differentiable at 7r0, there is not an unique optimal solution

for the prior probabilities. Hence, in that case the exposed face of U* must be at least

locally linear. If either a signal or an information structure is to be valueless, however, the

hyperplanes defined by the associated posterior distributions must pass through at least one

exposed kink in the exposed face. When this happens, varying the posterior probabilities

brings no adjustment on the part of the producer. However, when W is Gateaux differentiable

at 7r0, information can only be valueless if the optimal solution for the prior distribution

corresponds to an exposed kink for the entire range of posterior probabilities.

We conclude this discussion on the general value of information with

Corollary 14 For an information structure 0, the following are equivalent

(i) 1(9) =0;

(ii) W is linear on 11(0),

NO For all 7rn E 11(0), A(irn, 70) = O.

Conversely, the upper bound in Theorem 7 is attained when

3s

1.0s us < w (7r0) } .

5.1 Comparing Different V uations of the Same Informatiltn Struc-

ture

We now turn our attention to making comparisons of the value of the same inform tion

structure across two different utility correspondences, U1, U2 with associated U1*, U2*. To

conserve space, we only state results in terms of U1*, U2*. Exactly parallel res ts apply for

the utility correspondences, and we leave the restatement of those results to the reader. We

begin with an invariance result.

13
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Lemma 15 Suppose

U2* = CI ± AU1*

for fixed ii . EK and A > 0, then

L2 (70,70) = AL1

By this lemma, it follows immediately that we can assume, without true loss of generality,

that u1 (r°) n u2 (7r°) 0, since, given u E u1 (70) ,ü E u2 (7r°) , we can 'attach' the two

sets by adding il = u — ii to the original U2*. Consequently,

Theorem 16 Suppose that for U1*, U2*, ul (7r0) n u2 (70) 0, then

iL1 (J&, O) > ,L2 (7r', 7ro)

if and only U2* is a contraction of

{u :   le.:u, <W' (nil)} n {u:
3 .9

< vvl (7r0)} .

Proof y hypothesis 1471 (71-°) = W2 (7r°) and W1 (7r') ?: W2 (70).

Corollary 17 Suppose that for U1*, 0* , ui (r°) n u2 (70) 0, then Ll (70,7ro) >

A2 (irn ,....O\
-f, ) for all n if and only if U2* is a contraction of Rren(o) ill : Es rsus < Wl (7r)}.

Corollary 18 Suppose that for Ul* , U2*, ul (7r0) n u2 (7r0) 0, then

.11 (0) _?..12(9) 

for all information structures 9 sharing the common prior probability distribution w° if and

only if U2* is a contraction of U1*.

Corollary 19 Suppose that for U1* , u2s , u1 (KO) n u2 (n°) /0 with .11 (0) > 12 (0) for all

information structures 9 sharing the common prior probability distribution 7r0, then

  rn (1471 (rn) — wp (rn)) ..?._ Il (0) — 12 (9) )
n

where WD (7r) = sup {E., rsus : u E (TO) fl u2 (70))). .

14



5.1.1 Global comparisons and the marginal value of information

By lemma 15, the assumption that

u1 (70) n u2 (70) 0

involves no loss of generality, since given u°E u1(70) , ao 
Eu2 (70\ ,) we can 'attach' the two

sets by adding ii = u — ii to the original U2*. This attachment can be done for any 7r. This

motivates: U2* is a global contraction of U1* if for any 7r, there exist u E ill (7r) , a E u2 (7r)

such that U2* + (u — a) is a contraction of U1*. We have

Corollary 20 P (0) > 12 (0) for all information structures 0, regardless of the prior 7r, if

and only if U2* is a global contraction of U' .

More significantly, the global contraction relationship ows us to order utility corre-

spondences with the respect to the marginal value of information. Suppose 0 --c, 0'. Then,

as discussed above, the information structure 0' can be considered as the observation of one

or more signals in addition to that associated with the information structure 0. If U2* is a

global contraction of U1* then, conditional on any particular signal realization 7rn for 0, the

value of the additional signal is greater under U1* than under U2*, and hence the marginal

value of information is greater for U1* than for U2*.

More formally, we have

Theorem 21 P (0') — P (0°) > 12 (0') — 12 (V) whenever 0° -a<G, 0' if and only if U2* is a

global contraction of W*

5.2 Evaluating Different I ormation Structur s

In preceding sections, we have examin the impact that the technology and preferences play

in determining an ins vidual producer's NT uation of information. Iecause decisionmakers

routinely are faced with alternative sources of information (for example, competing forecast-

ing services), it is natural to ask what makes one i ormation source more v.Huable to the

risk-averse m than another. The answer lies in both the structure of technology and the

structure of preferences as manifestei by the utility correspondence.
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Since the work of Blackwell, this problem has been well understood when two information

structures can be ordered by --<c. In our set-up, the basic result due to Blackwell (1951) is a

trivial consequence of the convexity properties of W. Consider, for example, the information

structure given by 0 and then compare it with the next coarsest partition of the state space,

i.e., one where two signals are compressed into a signal event. Let the signals that constitute

the signal event be defined by AT = {k, k'}. Then the ci.. erence between the value of

information for 0 and this coarser partition of the state space is

irkw (irk) ± Trk,W (irk') — (irk ± rk,) W (pp')

'el has the same sign as

rkirkw (irk) ±   , . w (irk') _ W (pA 1 ) ?: 0,

ric —I— rk, rk ± Irk,

where the inequality follows by convexity of W and the fact that

A= 
Irk
 irr

k ir. ±  
r k'  k'

P I .
rk ± rk, Irk ± Irk,

By induction, therefore, finer partitions of the state space are w ys prefen-,- ,s to coarser., .,

ones. In what follows, therefore, we restrict attention to structures that cannot be ranked

by

In general, I (91) > I (02) if and only if

T7,rni. iL( 1n, irio) > E,,,n2, (n.2.,,,,20) ,
n n

where win denotes the probability distribution conditional on the observation of Si:al re-

alization n under i ormation structure i, and rni denotes the probability of the si

zation n under information structure i. It is iname ate that s !II"cient con11

41 1 i 41 i re-

tion for

I (01) > I (02) is that the random variable L is stochastically larger under 01 than under

02.

F° (6,9) = {7T-k : L (wk, 7r°) <6,
k

with corresponding density

f° (6,9) ={y,  (wk, iro) = 6,

k

1 (rk, 71,,k, rro) E 0 ,

1 (77.k., irk, wo) E 0 .

16



It then follows immediately that F° (6,02) > F6 (6,01) for all 6 implies that I (01) > I (02).

By basic results on stochastic majorization (Marshall and Olkin, 1979),6 it is also true that

f° (6, 02) > fin' (6, 01) 

F° (6,02) 

for all 6 > 0 implies I (01) > I (02), where 1-4(6,0) is the hazard rate. The hazard rate

condition has the standard interpretation that bad news, regarding the realizations of A, is

more likely under 02 than under 01.

In what follows, we will focus on the the case of a common prior where the probability

distribution for the signal realizations is also common (irni = rn2 for all n) to both information

structures. In that case,I (91) > I (02), if and only if

w (7r1n) w 
(

ir2n) 0. (1)

There are at least two approaches that can be taken here. The first, which parallels the

literature on majorization and convexity, is to determine cone tions under which (1) holds

for all W convex. The second approach is restrict attention to narrower classes of W and

then to determine conditions under which (1) holds for all members of that class.

We first pursue the former and deduce some straightforward consequences of the convexity

properties of W. These results apply to the entire class of convex expected utility functions,

and thus to the entire class of linear-in-probabilities spec cations. Consequently, they can

be recognized as specific manifestations of the classic res ts of Blackwell.

Theorem 22 Suppose 01 and 02 share a common prior and probability distributions for the

signal realizations. If 7,r2n A7r0 ± (1 A) win, n = 1,2, ..., N, 0 < A < 1,

I (02) 5. (1 — A) I (0').

Each member of 02 lies between the correspon ng posterior in 01 and the prior ii tri-

bution. Hence, 01, by analogy with the literature on risk orderings one might say that,

02 is7 a multiplicative compression of 01.1 ecause the expected utility function is convex in

probabilities, there is always a loss associated with compressing the distribution of posteriors.

6Here the restriction that U E RI. is crucial.

7Even more accur tely, it is a multiplicative compression towards the common prior.

17



Multiplicative compressions require all posteriors from the compressed distribution to

bear the same relation to the prior and the posterior from the original distribution. However,

by analogy with the literatures on majorization and risk orderings, it is now apparent how

one can start from a particular information structure and proceed through a finite series of

steps to construct another information structure that dominates the original. In partic I ar,

suppose we consider two information structures that are identical apart from the posteriors

for two signal realizations. For convenience let those two signal realizations be indexed by 1

and 2, respectively. Now suppose that

7r2i = Awn +(1 A)

and

_22 A7r12 + (1 A) ir°, < < 1.

By convexity of the expected utility function, it follows immediately that

A 047 
(

1.11) w (7(0)) > (7r22) (70)

and

whence

A 047 
(

1.12) W (ir°)) W (71'21) 147 (7rO)

I (0 ) I (92) .

Again borrowing terminology from the literature on risk orderi gs and majorization, we

co d say that (win, ir22.) is a pairurise compression of (Snli, w12). gecause we can repeat this

process to induce another information structure, 03, which is a pair' wise compression away

from 02, it follows by induction that

Theorem 23 If Ok can be arrived at by a chain o

(91) ?_ j(0k) .

irwise compressions from 1, then

Theorems 22 and 23 demonstrate that one can ways define gener, orderings of the

simplex, ch always correspond to an increase in the value of information. We now

pursue a general procedure for generating such orderings using Gateaux I iierentials. To

18



proceed notice that the assumption that 01 and 02 have common priors implies that one can

think of the differences between the two sets of posterior distributions being expressible as

subject to the restrictions En rnen= Os and E. Ens = O. A direct consequence of u (r) C

aw (7r) applied to (1) is

Lemma 24 Suppose 01 and 02 share probability distributions for the signal realizations. If

7,1 9
---- - S.11, , = 6.1.1, •••, N

with En rnEn = Os and E. = 0 then

ir inf fenul / (91)
uEu(7r in)

_ I (02) > y-
d 
rn sup {u}.

n uEu(sr2n)

The inequality in the lemma can rewritten in terms of Ii ectional derivatives as

E 7r1w, (70n; _,n) I (91) I (pi E 7rnw, (r2n; en)

Th

Thus, a necessary condition for information structure 01 to dominate 02 is that given the

productive response to 01 its replacement by 02 cannot, on average, constitute 'good news',

while a sufficient condition is that, given the productive response to information structure

02, its replacemement by 01 constitutes, on average,`good news'. The reasoning behind the

sufficient condition is transparent. If replacing 02 by 01 is, on average, good news given

the productive response to 02, then it must be even better news when the producer adjusts

optimally to 01.

In general, any two information structures with common prior and probability distri-

butions may be linked by a sequence of °rs ormation structures having all the posterior

distributions in common except for two. Lemma 24 is perhaps most transe arent in this

case. Let those two, for the sake of convenience be n = 1,2. Then Lemma 24, ii "plies that

1(01) I(02) if

(7r22; e2) > (21; _62)

When C2 is suitably small, this condition is necessary and s1i cient. If Tr21 N-22, then

convexity of W in the order in the direction of e2 guarantees I (01) > I (02).

More generally, however, we conclude
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Theorem 25 Consider the partial ordering of the probability simplex 7r22 -<(7r21)7r12 defined

by

7r12E {7r :vvt (702; r _ 71.22) + vv, (701; ir22 _ ir,) > 
o}.

For a (small) mean preserving change of the posterior distribution of the form

ei . (701 _ n21) . L2 (702_702)
ri

I (01) > I (02) if and only if 71.22 ::<,(fr21)7r12.

Theorem 25 offers a general method for generating more informative information struc-

tures. It follows trivially that any two information structures which can be related via these

type of mean preserving changes can also be ranked directly in terms of informativeness.

We now turn our attention to alternative orderings of the probability simplex, and the

role that they can play in ranking the informativeness of information structures. Suppose

that

7rn ...< 7rni,

for an arbitrary ordering of the simplex. Then choose 6 so that E, 6, = O. We will refer to

Ern — i 5 , 70' ± 7 - a - (5) as a mean preserving spread of the ordered pair ern , 7r'') if

' , r7rn _.< irn ± . n  5,
'Kr!

Lemma 26 If W (7r) is convex in the ordering --‹ at 6, the ex ante value of the poste-

rior distribution increases as a result of a (small) mean preserving spread of the ordered

pairorn

Proof Create the mean preserving spread of the ordered pair win -.< ii-n' given by a > 0 but

arbitrarily small:
7rern _ ao, wn, 4_ a rn  65)

The variation in the v ue of information is

rn IV (irn; —(5) ± rn, W' ern' ; 7-=r- - (5)
rn,

w ch by the positive linear homogeneity of W' reduces to

rn(w, (irn; _6) ± vv, (7rni; 6)) .
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Convexity in the order at 6 and the basic properties of W' imply

147, (le'; (5) vv, (le; 6) 
(irn; _6)

It follows immediately from the proof of Lemma 26 that

Corollary 27 If W is Gateaux differentiable at irrn , the ex ante value of the posterior distrib-

ution increases as a result of a (small) mean preserving spread of the ordered pairern 7rni)

if and only if W is convex in the ordering at 6.

By analogy with the arguments made concerning multiplicative compressions, we now

have

Theorem 28 Suppose that 01 can be arrived at by a chain of (small) mean preserving spreads

from 02 , then if W is convex in the order -‹ at the mean preserving spreads, I (0') > I (0).

Lemma 26 starts from the presumption that 7r' irni, chooses a direction of movement

that is associated with mean preserving spread around that pair, and then shows that con-

vexity in the ordering is sufficient for the producer to prefer the more dispersed distribution

(in terms of the ordering) to the original distribution. An alternative approach, largely due

to Athey and Levin (2000), is to use an ordered pair to define the direction of movement,

and then to identify posterior distributions from which movement in the direction of the

ordered pair enhances the informativeness of the information structure.

Suppose we have a general ordering on the probability simplex, and that we pick two

distributions ordered so that 7r° 7r*. Now consider the mean preserving change of two

posteriors 7rn and 'gni in the direction of (7r* 7r()), i.e.,

a (r. 7r0)

en („
27rirre.

for a > 0, but arbitrarily small. In the limit, the associated variation in I (0) is proportion

to:
git (7r

''
; _ye iro) yr (70; 7ro

y analogy with Theorem 25 and Lemma 26, it is, therefore, imm

21
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Theorem 29 Define the partial ordering of the probability simplex irn irn' by

(70', 7rn) E n,„. {(fr, ) W' (71-, 7r* - 7r°) ± (fr; 7r° - 7r*) 01

Then a small mean preserving change

eTI' = a (7r* - 7r°) ,

en = 7rni a (no _ Tr.)
ir

with 7r° 7r* increases the informativeness of I (9) if

irn 701.

An immediate consequence of Theorem 29 is that any two information sets which can be

related by a series of such mean preserving changes can be ranked according to informative-

ness. However, following Athey and Levin (2000), one can deduce even more. Suppose that

for both 01 and 02, the signal realizations are ordered so that

The information structures can then be ranked if the following Monotone Information Or-

dering (MI0), defined by Athey and Levin (2000) is satisfied

ln 2n
P p ,n =1...N -1

where pin is the probability vector associated with the signal event n = {1...n} correspon

to the observation of one of the worst n signals, so that

That is, the sign el

i=1 Psn,

Eliz-1

re zations of the more informative information structure are 'more

Si

(2)

ng

10191

spread out' with respect to -=<, exactly as in the Monotone I ormation Ordering of A they

and Levin (2000).

Theorem 30 Suppose 01 and 02 share a common prior and probability distributions for the

signal realizations. Then, if 91 and 02 satisfy the Monotone Information Ordering condition

(2) for _I "(02).
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To relate the general approaches in Theorems 28 and 30, it is perhaps most instructive to

restrict attention to the case (implicitly considered by most authors) where W is everywhere

Gateaux differentiable. Convexity in the order at 6 then requires for 7rn

w, (rn, ; (5) vv, (w'; 5) 68(u, (7rni) u3(7rn)) >0.

Convexity in thus, requires that the move from rn to 71'n be better news given the

productive response to the dominating posterior (in terms of the order), 7rni, than given the

productive response for the dominated posterior, rn. Therefore, the rank ordering of the

vector

u (701) u (rn) ,

is crucial to determining what type of S's lead to more informative structures. An example

illustrates. Suppose that s' > s (70') — (70) > u. (irni) u. (#.n), Then,

E6, 5_0, k = 1,2,..,S — 1
a=1

ensures convexity in at 6 (recall Ess bs = 0). More gener. y, W is convex in the

order at 6's that have their largest elements correspon ng to the largest elements of

u(71.') — u (wn).

When W is everywhere Gateaux • erentiable then for an arbitrary order and ordered

pair 7r0 n..:

(7r; _ 71.0) (7r'; 71,* _

Hence, one will be able to rank posterior

•

(es r) (us (wn1) — Us (le)) ?: O.
8

tributions according to 70 7rn' if produc-

tive responses are, in essence, always positively correlat with the erence between any

two distributions ordered by Thus, r-siuires either placing some type of curvature

restrictions upon U* or restricting attention to those portions of U* where those con tions

apply. An example illustrates. Suppose we consider the ordering then irn irni will

be satisfied if the rank ordering of s' > s (rn') us, 
(
rn) us 

(
rn')- us (prn).
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oncluding comments

The state-contingent production framework yields a natural characterization of the value

of information in terms of convex sets. In particular, it is straightforward to derive upper

and lower bounds for the value of information and rankings of the valuation for alternative

problem settings and information structures.

The analysis presented above relies on the assumption of expected-ut ty maximization

which implies that preferences are linear in probabilities. Decision-makers who do not satisfy

the expected utility axioms have intrinsic preferences with respect to information (Grant,

Polak, and Kajii 1988) and may therefore have negative ex ante willin. • ess-to-pay for in-

formative signals. The analysis could be extended to more general preferences in two ways.

First, in some cases, quasi-concavity of preferences is sufficient to guarantee a positive value

of information. Second, it may be possible to decompose the value of information into an

intrinsic component, which may be positive or negative, and an instrumental component

which measures the difference between the welfare associated with an optimal response to

information and the welfare associated with a passive response. The latter component is

necessarily positive.

Analysis of the value of information could also be applied to problems of contracting with

asymmetric information. Quit tn and Chambers (1998) show how principal-agent problems

involving moral hazard can be represent is a state-contingent framework. This framework

could be extended to ow for the possibility that either the principal or the agent could

acquire additional inform tion.
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