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Multiple-risk crop insurance schemes have been introduced in a number of countries, in-

cluding the United States, but their performance has been uniformly disappointing (Gardner

and Kramer). Plagued by problems of adverse selection, moral hazard, and high administra-

tive costs, multiple-risk crop insurance schemes have normally required substantial subsidies.

These problems have led economists to suggest insurance schemes in which payouts are based

on exogenous and easily observable variables which are likely to be closely correlated with

yields for producers participating in the schemes. The two most popular suggestions have

been area-yield insurance schemes (Halcrow; Industries Assistance Commission; Miranda;

Smith, Chouinard, and Baguet; Skees, Black, and Barnett; Miranda and Glauber; Mahul)

and rainfall insurance (Bardsley, Abey and Davenport; Quiggin), but temperature and frost

insurance have also received attention (Lee). In recent years, this interest has culminated in

the United States introducing a pilot area-yield insurance program referred to as the Group

Risk Program (GRP) (Skees, Black, and Barnett).

This paper examines optimal producer behavior in the presence of area-yield insurance.

Beginning with Miranda, much analytic attention has been focussed on the choice of an

optimal coverage level by the individual participant (Miranda; Wang et al.) and on the op-

timal design of an area-yield insurance contract (Miranda; Smith, Chouinard, and Baguet;

Mahul). Virtually no attention, however, has been given to the nexus between the producer's

insurance choice and his farm-level production decisions. Rather, the tendency has been to

model individual yield as a stochastic variable not subject to producer control, but which is

decomposable into systemic and idiosyncratic risk. This decomposition has analytic advan-

tages. Most importantly, it reinforces the close connection between the insurance decision

and tools of modern portfolio analysis, such as the capital-asset pricing model and the ar-

bitrage pricing theorem. But it also ignores an important reality. The choices of farmers

affect their yield, and those choices are conditioned by the presence or absence of area-yield

insurance. Thus, a complete theory of area-yield insurance has as an essential component, a

complete theory of producer reaction to area-yield insurance, both in terms of her choice of

a coverage level and her production decisions. This paper attempts to initiate that study.

In what follows„kve first introduce our model. It is a variant of the Arrow-Debreu state-

contingent model as recently extended by Chambers and Quiggin (2000a). We, therefore,
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analyze producer behavior under very general assumptions about both the producer's prefer-

ences towards uncertainty as well his stochastic production technology. Special cases of the

model that follows include models based upon expected-utility preferences and the stochastic

production function, models based upon mean-variance preferences, as well as models based

upon generalized expected utility preferences. After introducing the model, we character-

ize the producer's optimal production cum insurance choices. Then we turn to an analysis

of the impact that the presence of area-yield insurance has on the producer's production

choices and on his input utilization. We isolate, among other results, several sets of suffi-

cient conditions for the introduction of area-yield insurance to lead the individual producer

to adopt a riskier production pattern. Our next focus of attention is the connection between

area-yield insurance and other tools of risk management, such as futures contracts, forward

contracts, and yield-based futures. We state sufficient conditions for area-yield insurance to

be redundant in the presence of such financial instruments. We also derive a 'separation'

result, which shows, under appropriate assumptions, that area-yield insurance can cause

a separation between production and insurance decisions in the sense that the production

choice is completely independent of the producer's attitudes toward risk.

1 The Model

1.1 Technology and preferences

Uncertainty is modelled by 'Nature' making a choice from a set of S alternatives referred to

as states of nature, Q = {1,2, ..., S}. The single-product stochastic technology is represented

by an input correspondence, X : Rs —p which maps a state-contingent output vector,

z EVF, into sets of inputs, x E R_11, that are capable of producing that state-contingent

output vector. It is defined (Chambers and Quiggin, 2000a):

X (z) = fx E RN+ : x can produce zl.

So, if state s E C2 is realized (picked by .Nature'), and the producer has chosen x E X (z),

then the realized or ex post output is z, corresponding to the sth element of z.1
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State-contingent incomes are denoted by y E Rs. We consider a producer with a strictly

increasing and strictly generalized Schur concave certainty-equivalent function over state-

contingent incomes, e(y), who is risk-averse for probabilities -rr (Quiggin and Chambers) and

faces state-contingent output (spot) prices p E Rs++. Thus, the producer faces both price

and production uncertainty. Typically, we shall presume that e (y) is smoothly differentiable

in all arguments, but at certain points it will prove advantageous to relax that assumption.

Examples of certainty-equivalent functions that provide useful intuition for what follows are

expected utility

e(y) = u-1 (L‘ rsu (Ys))

where u is a concave von Neumann-Morgenstern utility function and rs is the probability of

state s occ-uring, and the mean-variance class of certainty equivalents

e(Y) = 743,a2(Y))

where (72(y) is the variance of y given the probabilities 7r and is increasing in its first

argument and decreasing in its second.

Because preferences are risk-averse, the producer will be willing to trade increases in

mean income off against reductions in risk. Conversely, the producer's revealed preference

may be used to rank the riskiness of income vectors y, y' with the same mean More precisely,

for given preferences e and vectors y, y', such that Es rsys= 743 and e(y) > e(y') we

say that y -<ey' (stated as 'y is regarded as less risky than y' under e). The risk ordering

induced by the certainty equivalent is said to be translation invariant if for any .5 E

<=> (Y +61) e (y' +M)

where 1 is the vector with all entries equal to 1. Because we operate with a net returns model,

which always involves a nonstochastic cost level, we restrict attention to risk orderings which

are translation invariant.

Let r E $t_es denote the vector of corresponding state contingent revenues with typical

element

rs = psz,

3
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Input prices, which are non-stochastic, are denoted by w ERL.

1.2 Area yield insurance

Area yield insurance for the individual is modeled by a vector of state-contingent indemnities

of the form

{Is = max v — —
N

71=

Vsn 10}

where N is the number of farmers in the risk pool, vsn is yield by individual n in state of

nature .s, and v is the threshold level of yield which triggers actual payments. We consider

two cases. In the first, v is not the subject of farmer choice. In the second, the trigger level

depends upon the 'coverage level', denoted c, adopted by the farmer. We assume that the

risk pool is large enough that each individual farmer treats -,1,7 EnN vsn as exogenous. By
enrolling a acres in the area-yield insurance program, the individual, therefore, effectively

purchases a risky asset, which is equivalent to a put option, with state-contingent yields

al. The enrolment price per acre enrolled is denoted by q. When the farmer's indemnity

depends on c, the enrolment price is also taken to depend functionally on c.2

The farmer enrolling a acres in the area-yield insurance program, therefore, has net

returns in state s equalling

Ys = T., ± (psis — q) a — C (w, r,p) ,

where the revenue-cost function is defined

}{C (w, r, p) = min w • x : x EX (z) , 4 pmszm, > rs, s E c2 ,
M.

if there exists a feasible state-contingent output array capable of producing r and CO other-

wise. C (w, r, p) satisfies3

Properties of the Revenue-Cost Function (CR):

CR.1C (w, r, p) is positively linearly homogeneous, non-decreasing, concave, and contin-

uous in w E

CR.2 Shephard's Lemma.

CR.3 C(w, r, p) > 0 with equality if and only if r = 0.



CR.4 1.1> r = C(w,r1,p)>C(w,r,p).

CR.5 p'> p = C(w,r,p') C(w, r, p).

CR.6 C(w,r_3, Ors,,p_s,Ops)=C(w, r_s, Or,,,, p-3, 9p3), 0 > 0.

CR.7C(w,r,p) . C(w,r/k, p/k), k > 0.

CR.8 C(w,r,p) is convex in r.

We also assume that C (w, r, p) is smoothly differentiable in all state-contingent revenues

and input prices.

Visually, therefore, one can interpret the area-yield insurance program as giving the

farmer the opportunity of choosing between two risky assets and a safe asset in an attempt

to optimally smooth his net returns distribution. As discussed by Chambers and Quiggin

(2000a), the producer, in choosing to produce, creates a risky asset that itself is a linear

combination of a risky asset with state-contingent returns equalling r and a safe asset with

state-invariant return equalling —C (w, r, p). We illustrate this constructed asset in Figure

1 by the vector (r1 — C (w, r, p) , r2 — C (w, r, p)), which we have labelled as point A. As

drawn this vector is nonnegative. It need not be. Under the presumption that /2 = 0 and

Ii > 0, for fixed c the net returns for the risky asset associated with area-yield insurance

program are illustrated by the ray through the point (piii — q, —q) in Figure 1. By choosing

the magnitude of a, the producer invests in a risky asset. His holding of that risky asset can

be visualized as a point on the ray through A in the direction of (piii — q, —q). Because

we do not allow short sales of area-yield insurance, i.e., the farmer effectively cannot sell

area-yield insurance, we restrict ourselves to move in the direction of the arrow emanating

from point A. The presence of area-yield insurance, thus, allows a producer producing at A

to expand his state-contingent consumption set from point A in the direction of the arrow

as far as he or she wo d like.'

The area-yield insurance contract is said to be commercially viable if

and arbitrage-free if

ErsIsp, .5_ q,
sen

T,71-3Isps =q.
sEn
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Any commercially offered area-yield insurance contract must be commercially viable. In

the absence of transactions costs, area-yield insurance must be arbitrage free in equilibrium

if there is free entry and insurers are risk-neutral or if short-selling is permitted and risk-

neutral speculators are present. Because area-yield insurance is usually seen as a commercial

risk-management tool and not as an implicit means of income support, we restrict ourselves

to the case where it is commercially viable. Moreover, because of the absence of adverse

selection and moral hazard problems, it seems reasonable to assume that transactions costs

will be small and therefore to consider the properties of arbitrage-free insurance contracts.

The low level of transactions costs is often cited as one of the primary strengths of area-yield

insurance contracts (Skees, Black, and Barnett).

A very similar analysis is applicable to rainfall insurance. Supposing that 0 is some

measure of rainfall, consider an insurance contract that offers a positive payment p whenever

0 falls short of some drought level 0* . Then, setting

Is = max {Or — 0) , 0}

and letting a be the number of units of insurance purchased, the analysis above applies, and

may be extended to allow for variable trigger levels, more complex climate indexes and so

on.

2 Fixed Trigger Levels

We first consider producer behaviour under the assumption that v and q are independent of

the coverage level chosen.

2.1 Characterizing Producer Equilibrium

The farmer's problem in the presence of area-yield insurance with a fixed trigger level is to

choose an enrolment level and a production level to

Max,,,, {e (r+ (pI—q1) a — C (w, r, p))} .
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Letting subscripts on functions denote partial derivatives, her first-order conditions are given

by

(y) — Cs (w, r, p) >  et (y) < 0, rs > 0,
tEn

(1) E es (y) (73 — q) < 0, a > 0,
sec?

E

in the notation of complementary slackness.

The first S conditions in (1) require that the producer's marginal rate of substitution

between state-contingent incomes equal his marginal rate of transformation between state-

contingent revenues. Dividing both sides of these S conditions by EtE0 et (y) yields

es (Y)  < 
s 
C 
(w" s 

r p) E
EtEci et(y) 

Obviously' E (Y) es(Y)  > 0, and Es  es(Y) _ 1. Thus, these normalized marginal utilitiestEn et EtEn et(Y)

of state-contingent income, as evaluated at the optimal solution to (1), are interpretable as

the 'virtual' or 'shadow' probabilities that will lead a risk-neutral individual facing these

subjective probabilities and the same technology as the risk-averse individual to make the

same production choice as the risk averter (Chambers and Quiggin 2000a). In what follows,

we shall denote these virtual probabilities by 7r* E s+i.
The final condition in (1) can now be rewritten

E 7,:p8i3 q,
sEn

a > 0.

Hence, the area-yield insurance contract must be commercially viable at the virtual prob-

abilities. And for an interior solution, the area-yield insurance contract must be arbitrage

free at the virtual probabilities. Perhaps, more intuitively, an interior solution requires that

the enrolment price of the insurance contract be a subjectively discounted martingale of the

state-contingent returns from the area-yield insurance contract.

Hence, the conditions necessary for a producer equilibrium are that a risk-neutral in-

dividual facing the virtual probabilities would choose the same production equilibrium as

the risk-averter and have no strong disincentive to take a positive position in the insurance

market. These are standard arbitrage results familiar from portfolio analysis. Notice, in
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particular that if the area-yield insurance contract is not commercially viable at the vir-

tual probabilities, risk-neutral individuals with these probabilities would be willing to take

arbitrarily large positions in the insurance contract. This is inconsistent with equilibrium.

An interior equilibrium for r and a in (1) is illustrated in Figure 2a presuming the same

indemnity structure as in Figure 1. The producer produces at point A in that figure and

then chooses the optimal enrolment level in the area-yield insurance program so that moving

from A in the direction of the net-indemnity vector, as illustrated by the dotted line segment,

brings him to point B where the slope of his indifference curve is the same as his isocost

curve at A. As drawn, this movement moves the producer in the direction of the equal-

income vector (the bisector) in Figure 2a. This happens, of course, because the high revenue

state in Figure 2a corresponds to the zero indemnity state while the low revenue state there

corresponds to the positive indemnity state. Hence, the producer's preference and technology

lead him to choose a state-contingent revenue vector that positively covaries with the value

of the risk pool's production. In terms of the capital-asset pricing model, the individual's 0

is positive.

Figure 2b illustrates the case of an interior solution for state-contingent revenues, but a

corner solution in the area-yield insurance enrolment. It is drawn for a producer possessing

the same technology as in Figure 2a but with different state-contingent preferences. This

producer's preferences, heavily tilted towards state-1 income, lead him to choose state 1 as

the high-revenue state and state-2 as the low-revenue state. Thus, he produces at point A

in that figure where the marginal rate of substitution between state-contingent incomes is

equalized to his marginal rate of transformation between state-contingent revenues. Now by

the restriction that the producer cannot short the area-yield insurance market, the feasible

insurance contracts for this producer move him the direction of the dotted arrow illustrated

there which always leads to a lower welfare level. Hence, he sets the enrolment level to zero.

It is an obvious consequence of this discussion that the producer always weakly gains from

being allowed the flexibility to 'short' the insurance market.

Figures 2a and 2b illustrate another important fact that has not been emphasized in

previous studies: The producer facing an area-yield insurance contract chooses whether his

0 is positive or negative. From these figures, it is clear that even if all producers face an
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identical stochastic technology, differences in preferences can lead them to choose revenue

vectors that covary either negatively or positively with the value of the risk pool's production.

A direct corollary is that the producer optimally chooses the amount of idiosyncratic risk

that he will face.

What do the different preference structures in Figures 2a and 2b reflect, and what is the

economic rationale underlying the different positions that these two producers take? Fol-

lowing Savage, Yaari, and Quiggin and Chambers, we first note that the farmer's subjective

probabilities are given by

e, (c1)
7, =   s E C2, c E R.

Et et (c1)

(Performing the indicated differentiation upon the expected utility certainty equivalent pro-

vides an illustration.) Geometrically, these probabilities are depicted in Figures 2a and 2b

by the slope of the individual's indifference curve at the point where it intersects the equal.-

incomes line (the bisector). Visually, therefore, it is apparent that the individual depicted in

Figure 2b has a near zero subjective probability of state 2 occuring. Therefore, even though

his production structure is the same as that in Figure 2a, he devotes more of his effort to

preparing for state 1 than for state 2 and accordingly his revenue in state 2 is lower than in

state 1.

Perhaps, a simple example illustrates. Suppose that the main source of production un-

certainty is the level of moisture, and that natural moisture is much higher in state 2 than

in state 1. Figure 2a might, therefore, be associated with an individual who remains fairly

optimistic about the possibility of rainfall during the growing season. And, on this basis,

he takes relatively few precautions in preparing for drought. Figure 2b, on the other hand,

might be an individual who is excessively pessimistic about the possibility of rainfall, and

who thus devotes the bulk of his effort to providing for irrigation and other opportunities to

replace rainfall. If enough effort is devoted to this kind of activity, his output in the case

where it rains will be adversely affected. The underlying point, however, is that ultimately

whether a state is 'good' or a 'bad' state depends upon how the farmer prepares for it. As

these examples illustrate, his preparation will depend critically upon his subjective evalua-

tion of the world as embedded in his preferences. If his subjective evaluation differs enough

9



from the other members of the risk pool. one might expect his 0 to be negative.

From (1) and our definition of commercial viability, we obtain:

Proposition 1 If the producer enrolls in a commercially viable area-yield insurance contract

>-:(78 — 7:)Psis <0.
sEil

If the producer enrolls in an arbitrage-free area-yield insurance contract

E(7r8 — 7: ) psis = 0.
sEn

If the area-yield insurance contract is profitable to the insurer, Proposition I. requires that

the states with highly valued indemnities roughly match up with the states where the virtual

probability is greater than the actual probability. States with low valued indemnities will

tend to correspond to states where the virtual probability is less than the actual probability.

When the contract is arbitrage-free, the divergences of the actual probabilities from the

virtual probabilities must be orthogonal to the value of the indemnities.

Manipulating conditions (1) for an interior equilibrium yields.

Proposition 2 Any interior solution to (1) satisfies

Ecgs (w, r, p) . 1,
so/

Ecis (w, r, p) psI, = q.
sEn

We conclude from the first condition in Proposition 2, which we refer to as the arbitrage

condition, that the optimal state-contingent revenue vector must belong to what Chambers

and Quiggin (2000a) have referred to as the efficient frontier, i.e., those state-contingent

revenue vectors potentially capable of being profit maximizing for a risk-neutral individu.d.

This also requires that the cost of risklessly increasing revenue by one unit also match the cost

of doing so. If this condition failed to hold, then all individuals, be they risk-averse or not

would have the incentive to risklessly increase state-contingent revenue. The second condition

in Proposition 2, upon observing from (1) that in equilibrium Cs ( w, r, p) . 7, just requires

10



that for there to an exist an interior solution for the area-yield insurance coverage, the cost

of an acre enrolled must equal its expected return as evaluated at the virtual probabilities.

Chambers and Quiggin (2000a, 2000b) show that a fundamental property of differentiable

Schur-concave preferences is that

(Ws(Y) 147,(Y))
7r,, 'Tr

(Ys — Yr) 0,

for all s and r, with strict inequality if preferences are strictly generalized Schur-concave

and Ys yr. Consequently, if preferences are differentiable and strictly generalized Schur

concave, then for y stochastic

(2) sY s

sEC2 sEC1 

< 0.
1

Substituting componentwise allows us to rewrite this expression as

EW3 (y) 
sE 

(rs
tEci

By complementary slackness and (1),

and

E Ws (y) rs =
sEn

rtrt +a (Psis — 71-tpt It <0.

Cs (w, r, p

tEC2

aq Ws (y) =E Ws (y)
sEn sEn

tECI

Substituting these results into (2) and rewriting establishes

(3) E rsr, >7, Cs (w, r, p) r, + a
sEci sEn

4

SEO

7r,psis q)>0.

The left-hand side of expression (3) is the response of the producer's expected profit at

the optimum to a radial expansion of the state-contingent revenue vector and the enrolment

in the area-yield contract. By (3), it follows immediately that the producer must realize

a gain in expected profit from radially expanding state-contingent revenues and enrolment.

An immediate conclusion is:

11



Proposition 3 If the area-yield insurance contract is commercially viable, the producer al-

ways realizes a gain in expected profit from radially expanding his optimal state-contingent

revenue vector.

To understand the economic intuition behind Proposition 3, notice that (3) implies that

an individual with generalized Schur concave preferences always foregos some expected profit.

Of course, this is the essence of risk aversion, the producer foregos expected profit in return for

a reduction in the dispersion of his state-contingent returns. When the area-yield insurance

contract is commercially viable, the individual can never make a positive expected profit

from any positive level of enrolment. His reason for enrolling is not to raise his expected

return but to mitigate the production and price risk that he faces through the use of the area-

yield insurance contract. Hence, the requirement that a radial expansion in state-contingent

revenues and enrolment leads to an increase in expected profit translates directly into a

requirement that the producer forego some expected profit from production.5

Essentially, therefore, (3) requires that a producer with generalized Schur concave pref-

erences operates on a smaller scale than a risk-neutral individual facing the same technology

and a commercially viable area-yield insurance contract in the sense that the risk-averter

can always profitably increase his scale of production and insurance enrolment, whereas a

risk-neutral individual who is behaving optimally cannot. In particular, if the area-yield

insurance contract is arbitrage free, then the scale of the production operation for the risk-

averter must be smaller in this sense than that of the risk-neutral individual. Moreover, as

Chambers and Quiggin (2000b) show, if one imposes constant absolute riskiness on the pro-

duction technology, this finding can be made precise. It follows from their Result 3 that if the

technology exhibits constant absolute riskiness (defined below), a risk-averse producer facing

area-yield insurance will produce a lower expected output than a risk-neutral individual.

Substitute the second expression in Proposition 2, into (3) to obtain

E(75 - C5 (w, r, p)) ± ap5I3) > 0.
sEn

Recognizing that Cs (w, r, p) = 71*, while using Proposition 1 now yields

12



Proposition 4 If the producer purchases a commercially viable area-yield insurance con-

tract,

N"- (7r, — Cs (w, r, p)) rs >0.
seCi

Under risk neutrality, the producer would choose state-contingent revenues so that

r, — Cs (w, p) = 0, s E ft

By Proposition 4, the divergences from risk-neutral behavior are positively correlated with

state-contingent incomes. So in the states where state-contingent production revenue is rel-

atively high, marginal cost of that state-contingent revenue will tend to be less than the

subjective probability of that state occuring. Hence, at the margin, it would be desireable

for a risk-neutral individual to expand that state-contingent revenue. Conversely, in the

states where income is relatively low, at the margin it would be desireable for a risk-neutral

individual to decrease state-contingent revenues. In essence, Proposition 4 implies that the

producer compresses the dispersion of his state-contingent revenues relative to that of a

risk-neutral individual even in the presence of area-yield insurance. Proposition 4, therefore,

manifests the notion of risk-averse efficiency identified by Peleg and Yaari as a necessary con-

dition for equilibrium for a risk-averter making choices over a convex set of state-contingent

alternatives. Chambers and Quiggin (2000a) have confirmed this behavior for an individual

with generalized Schur concave preferences in the absence of insurance markets, and Propo-

sition 4 establishes that it continues to hold in the presence of commercially viable area-yield

insurance. Figure 3 illustrates in the case of two states of nature. A risk-neutral individual

produces where the fair-odds line, whose slope is given by the subjective probabilities of

the producer, is tangent to his isocost curve at point A as illustrated. A strictly risk-averse

individual produces instead at a point like C, where the fair-odds line cuts the isocost curve.

2.2 Individual producer responses to area-yield insurance

One of the primary advantages of a properly designed area-yield insurance contract is that

it virtually eliminates the insurer's moral hazard. It does so because, given the assumption

that the individual producer is so small that he cannot affect the risk pool's average yield, the

13
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individual's indemnity is independent of his or her production actions.6 However, the essence

of insurance (and moral hazard) is that provision of insurance alters behavior. Even apart

from moral-hazard concerns, the way in which insurance provision alters producer behavior

is of general interest. In recent years, for example, a lively debate has emerged on the impact

that insurance provision has on input utilization with particular emphasis on chemical input

use (Horowitz and Lichtenberg; Babcock and Hennessy; Smith and Goodwin).

Area-yield insurance, in fact, will alter risk-averse producer behavior. Generally, how

it alters producer behavior is determined in a state-contingent framework by a complex

interplay between the producer's state-contingent preferences and his state-contingent tech-

nology. As modelled here, both are more flexible than normally encountered in most studies

of agricultural insurance. Therefore, to be more informative about the possibilities encoun-

tered, it is interesting to consider some special cases. In this section by examining some

special preference structures and restrictions on the technology, we consider the roles that

the producer's preferences and the technology play in determining his response to area-yield

insurance.

To encompass the range of possible producer attitudes toward risk, we consider the polar

cases of risk neutrality and complete aversion to risk. Risk-neutral preferences are trivial. If

the insurance is commercially viable, then a risk-neutral individual is not directly affected by

its provision. He will adopt the same production plan as in the absence of insurance and will

only invest in insurance if it is arbitrage free. However, if it is arbitrage free, his expected

return from investing in insurance is zero, so he has no strong incentive to invest.

Now consider a producer whose preferences over state-contingent incomes are given by

e (Y) = min {Yi, --, Ys} .

These preferences are generalized Schur concave and risk-averse for all possible probability

vectors. These preferences are the most extreme version of risk aversion imaginable as

they literally imply that the producer only cares about his income in the worst state of

nature. Because these preferences cannot be made additively separable across states of

nature, they cannot be represented by expected-utility preferences, but they are consistent

with generalized expected utility models such as rank-dependent preferences.

14
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To provide a point of comparison, we first examine how such an 'individual produces in

the absence of area-yield insurance.' The producer's problem is now:

max {min {7.1 — C(w,r, P), •••, rs — qw, r, p)}}r
. max {min {ri, ..., rs} — C(w,r,p)} .

r

The results one expects to emerge are transparent intuitively. The producer should pro-

duce where her indifference curve just 'sits' on one of her isocost curves. Because maximin

preferences have indifference curves that are 'L-shaped' around the equal-revenue ray, we

therefore expect her to locate at a point on the equal-revenue ray. In other words, the pro-

ducer chooses a non-stochastic production pattern. In fact, we can conclude even more: The

producer not only chooses a non-stochastic production pattern, but she chooses to produce

where the efficient frontier, identified earlier, intersects the equal-revenue ray. Let r* denote

the producer's optimal state-contingent revenue vector. Now suppose, contrary to our as-

sertion, that r* does not lie on the equal-revenue vector, and consider perturbing any single

element of r*, say 7-3, by the small amount Sr,. The associated variation in the producer's

objective function is

(Pin — Cs (W, r, p)) 6r5

where 6min = 1 if r, E min {r1, ..., rs} and 0 otherwise. So if rs El min {7-1, ..., TS} , the

variation in the producer's objective function is

—Cs(w, r, p)Srs

which implies that the producer's welfare can be increased by decreasing this state-contingent

revenue towards the equal-revenue vector. Hence, the optimal state-contingent revenue vec-

tor must involve no revenue uncertainty.

Because the optimal production pattern can involve no revenue uncertainty, the decision-

maker's problem then reduces to

max {r — C (w,r1s,p)}
,

with the associated first-order condition:

1— TCs(w,r1s, p), r > 0,
sec
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in the notation of complementary slackness. Therefore, if the producer chooses to produce,

she will locate at the point where the equal-revenue ray, the bisector, intersects the efficient

frontier.

Now consider how the same producer would choose to produce in the presence of area

yield crop insurance. By an exactly parallel argument, it follows that the producer will

choose state-contingent revenues from production so that

or

r, + apsis = rk ± apkik, s,k E Ci,

rs — rk = a (pk/k — psis) s,k E a

In other words, the producer arranges his state-contingent revenue vector to effectively create

full insurance for the indemnity risk that the introduction of area-yield crop insurance brings.

If he enrolls no acreage, then he acts exactly as in the absence of the area-yield contract. If

the producer did not fully insure in this fashion, it would always be possible to lower at least

one state-contingent revenue, thus realizing a cost saving, without altering the producer's

evaluation of the state-contingent gross revenue vector.

We conclude, therefore, that once differences in mean returns are corrected for, the

producer's choice of state-contingent revenues in the presence of area-yield insurance will

be riskier than in its absence. The introduction of area-yield insurance, therefore, clearly

increases the riskiness of the production patterns for the most risk-averse individuals.

Letting p denote the stable gross income from farming and insurance operations, then

optimal state-contingent revenues must satisfy

T., = p — a/3j,, s E a

Hence, his production cum area-yield crop insurance problem is

Max„,p {p — aq — C (w,pis — apI, p) }

The first-order conditions are

1 _ >---- cs(w, pis _ api, p) 0, p> 0,,
sEll

>7 C's(w, pis — api, p)psis — q < 0, a > 0.
sEs-2
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The completely risk-averse producer chooses his sure gross income to locate himself on

the efficient frontier. If he does otherwise, as we have already seen above, he foregoes an

opportunity to increase profit for sure by increasing or decreasing each state-contingent rev-

enue. He also chooses his insurance position so that the insurance premium just equals the

expected value of the indemnities as evaluated at the virtual probabilities that are defined by

his location on the efficient frontier. In other words, apart from equating his marginal rate

of substitution (which is zero) for state-contingent incomes to his marginal rate of transfor-

mation of state-contingent revenues, he behaves exactly in accordance with Proposition 2.

Finally, the producer only chooses to participate in the area-yield insurance program if he

can increase his sure income by doing so. Summarizing, we have

Proposition 5 If the producer's evaluation of state-contingent incomes is given by

e(y) = {y1, Ys}

the introduction of area-yield insurance leads the producer to exactly balance his indemnity

risk with his revenue risk so that

r, rk = a (Pkik — Psis) •

Optimal state-contingent revenues in the presence of area-yield insurance are never less risky

than in its absence, and the farmer only participates in the area-yield insurance program if

he can raise his net income with certainty.

Thus, the general response of a risk-averse producer to the introduction of area-yield

insurance seemingly lies somewhere between no adjustment and adopting a state-contingent

revenue vector that is perfectly inversely correlated with the value of the indemnity vector.

In the latter case, a producer who has originally arranged his production pattern so that

idiosyncratic risk is eliminated now arranges production patterns so that his idiosyncratic

risk exactly reflects the systemic risk. Loosely speaking, therefore, one expects area-yield

insurance to have virtually no impact on the riskiness of production patterns for individuals

whose aversion to risk is relatively low, but will encourage individuals with more extreme

aversion to risk to modify their production patterns so that their idiosyncratic risk more
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closely tracks systemic risk. This represents an optimal adjustment to the opportunities

for individual income smoothing that area-yield insurance offers. Moreover, it is precisely

the more risk-averse individuals who would have done their utmost to self insure and, thus,

to eliminate idiosyncratic risk prior to the introduction of area-yield insurance. Hence, it

seems natural to speculate that the net result of introducing area-yield insurance would be

an increase in systemic risk that results from producers increasing their idiosyncratic risk in

an attempt to take advantage of the income smoothing properties of the area-yield insurance

contract. This happens in spite of the fact that area-yield insurance is specifically designed

to have no effect on idiosyncratic risk.

To refine our analysis, we now consider a convenient specification of the technology

that allows us to make inferences about the effect of area-yield insurance on optimal state-

contingent revenues. Suppose that the technology exhibits constant absolute riskiness in the

sense of Chambers and Quiggin (2000a, 2000b) so that

where

C(w, r, p) = O (w, T (r, p, w) , p)

T (r + 61s, p, = T (r,p,w) 6, 5 E

T (Ar,Ap,w) = AT (r, p, w) , T (r, p,Aw) = T (r, p, w) A > 0,

and O (w, T (r, p, w) , p) is positively linearly homogeneous in input prices, homogeneous of

degree zero in T (r, p, w) and p, non-decreasing and convex in T (r, p, w), non-increasing in

p. T (r, p, w) is non-decreasing and convex in r.

The most important property of technologies exhibiting constant absolute riskiness is

that the cost level corresponding to the efficient frontier is unique. Hence, in this special

case, the efficient frontier corresponds exactly to an unique isocost contour. The easiest way

to discern this property is to differentiate both sides of the expression

T (r Sls,p, w) = T (r, p, w)

with respect to 6 and evaluate the resulting directional derivative at 6 = 0 to obtain

Ts (r,p,w) = 1.
sEO
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Using this fact, the definition of constant absolute riskiness, and the arbitrage condition in

Proposition 2 yields in producer equilibrium that

a 7' (w , (r , P w) , p) = 1.

Thus, assuming an interior solution, the arbitrage condition in Proposition 2 determines an

unique level of T and thus of revenue cost. Because the arbitrage condition in Proposition

2 also applies in the absence of area-yield insurance (Chambers and Quiggin, 200048 we

conclude:

Proposition 6 If the technology exhibits constant absolute riskiness, the introduction of

area-yield insurance does not affect the level of revenue cost incurred by a risk-averse pro-

ducer.

Accordingly, the only effect that the introduction of area-yield insurance has on the

farmer's production activities is to alter the expected value and the riskiness of his state-

contingent revenues. Thus, constant absolute riskiness offers a particularly tractable frame-

work in which to study the effect of the provision of area-yield insurance on the producer's

decisions. Denote the farmer's optimal state-contingent revenue in the absence of insurance

by r° and the farmer's optimal state-contingent revenue in the presence of insurance by rt.

y Proposition 6,

C (w, r°, = C (w, .

Now suppose thatEn sr EsEn rsrsi• It then follows by the properties of the revenue-se 71- <

cost function that

w( ri 4- (C (w, r°, p) > C , 7371 — sr 1 1, p,
sEO  sEn

from which we conclude by revealed preference that

e (r° — C (w, r°, 1) >e

This observation yields

  — >7 rsris) 1 — C (w, r°, p) 1)(
sEn sEci I
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Proposition 7 If the producer's technology exhibits constant absolute riskiness and Eseci rsr.s° <

E3Es-27Brsi, then

r° ri + 77-8rso _
sEfi

Proposition 7 implies that, once mean effects are compensated for, the producer perceives

the revenue mix produced in the presence of insurance as being more risky than the revenue

mix he produces in the absence of area-yield insurance. Hence, as we observed in the case of

maxirnin preferences, the introduction of area-yield insurance encourages the farmer to adopt

a riskier production pattern if it also encourages him to expand the scale of his operation.

Turning to the effect of the provision of area-yield insurance on input utilization, we em-

ploy the method suggested by Chambers and Quiggin (2000b) of decomposing the adjustment

in input usage associated with the introduction of area-yield insurance. This decomposition

consists of a pure risk effect, which compares input utilization at the vectors with common

means, r° and ri + (Eseci rsrs° — Esen 737-) 1, and an expansion effect corresponding to

the translation movement from ri + (Eseo 7rsrs° — E8En rsrsi) 1 to r1.9 Proposition 7, in

conjunction with results reported in Chambers and Quiggin (2000b) now implies

Corollary 8 If the producer's technology exhibits constant absolute riskiness and L-asEci 7r3rs° <

EsEn 7rr, then the introduction of area-yield insurance has a pure risk effect on an input

that is positive (negative) if the input is a risk complement (risk substitute). The expan-

sion 'effect on the input is positive (negative) if the input is non-regressive (regressive) to

expansions of the revenue vector in the direction of the equal-income vector.

So, under the present assumptions, if area-yield insurance leads a producer to expand

the scale of his operation, as measured by the size of expected revenue, it must also bring

with it the introduction of a riskier mean-compensated revenue. T IS brings with it an

expansion of the use of inputs that are risk complementary and non-regressive at the no-

insurance equilibrium. Intuitively, one might think here in terms of inputs such as chemical

fertilizers which are traditionally seen as risk complementary. If inputs are risk substituting,

then the tendency of the area-yield insurance program to push the producer toward a riskier

production pattern will lead to potentially offsetting effects on input usage. The pure risk
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effect tends to diminish the input's use, while presuming that the input is non-regressive,

the expansion effect on revenues tends to expand its usage.

From Proposition 7, it follows that a sufficient condition for the producer to increase

the riskiness of his state-contingent revenues is that the introduction of area-yield insurance

leads him to operate on a larger scale. Intuitively, it seems plausible that the provision

of insurance by mitigating the adverse risk consequences from operating on the intensive

margin would encourage the producer to operate on a larger scale. More generally, however,

whether the producer expands expected revenue as a result of the introduction of area-yield

insurance depends upon his preferences, his technology, and the opportunities for income

smoothing that area-yield insurance provides. We saw earlier that differences in preferences

could lead one producer to decline enrolment in area-yield insurance where another producer

facing the same technology would seek positive enrolment.

If area-yield insurance is to be useful in smoothing incomes for producers with such

technologies, we expect intuitively that producer's optimal revenue should be positively

correlated with revenue from the area yield, and therefore negatively correlated with the

indemnity vector. In that case, we could reasonably say that the indemnity vector insures

the producer's optimal revenue. We need to make this idea more precise in two ways.

First, we need to specify the class of potentially optimal revenues that may be positively

correlated with area yield in this sense. It is natural to focus on the efficient frontier because

by Proposition 2 these are the state-contingent revenues that potentially can be optimal

under area-yield insurance. Second, we need to make the intuitive concept of correlation

used above more precise. Because, as illustrated by Figures 2a and 2b, the effectiveness of

insurance ultimately depends on the producer's perception of risk, our definition will depend

on the producer's risk ordering.

More formally, we will say that a random variable e with zero mean insures cost function

C if for all r on the efficient frontier for C, r + e -- er. Thus, our notion of c insuring the

cost function simply requires that adding it to all elements of the efficient frontier reduces

the riskiness of the point on the efficient frontier.

With this definition and a further restriction on the certainty equivalent, we can prove

that the producer always responds to the introduction of area-yield insurance by increas-
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ing his mean revenue and adopting a riskier state-contingent revenue vector. We say that

the certainty equivalent, e, is risk additive on the set X if for any y, y' in X such that

y+ (E [3,1 — E [y]) 1 _.•-_, y' and e (y') < e (y) and for any 6 with E [e] = 0 such that for

all y in X, y + e -- ey, e (y" + e) < e (y + e). For expected-utility preferences, risk addi-

tivity corresponds to Kimball's notion of standard risk aversion. We have (a proof is in an

appendix):

Proposition 9 Assume preferences are risk-additive. If the producer's technology exhibits

constant absolute riskiness and the net indemnity vector, a (pI—q1), is arbitrage free and

insures C, then

E[ri] ? E[e]

r° -- r2 + (E[r°1—E[ri]) 1

2.3 Area-yield insurance and other contingent claims

Enrolling in an area-yield insurance program is equivalent to the purchase of a risky asset.

That risky asset will only be purchased if it can be combined effectively with the producer's

other risky asset, his state-contingent revenue from agricultural production. In principle,

therefore, the introduction of area-yield insurance is exactly analogous from the producer's

perspective to the introduction of any other contingent claim. Presuming that all contingent

claims are arbitrage free,1° then for area-yield insurance to be more attractive to the producer

than other contingent claims, area-yield insurance must enable the producer to reduce the

amount of idiosyncratic risk he faces more than these other contingent claims.

This observation lies behind the manner in which previous studies have chosen to analyze

area-yield insurance (Miranda, Mahul, Wang et al.). In these studies, the producer's yield

is separated into two components, the systemic risk associated with the risk faced by the

risk pool, and the idiosyncratic risk specific to the producer. As modelled in these stut ies,

the producer has no direct control over the idiosyncratic risk that he faces. This contrasts

strongly with the present approach where the producer optimally chooses the amount of

idiosyncratic risk which he will face.' It is the essence of area-yield insurance that it allows

the producer to diversify away his systemic risk (in this sense).

22



More generally, it is also obviously true that the producer's random returns can generally

be related in a similar manner to the 'market portfolio' even in the absence of area-yield

insurance. The systemic risk would then be that associated with the market portfolio and

the idiosyncratic risk would be the residual risk faced by the producer not accounted for

by the market portfolio. This, of course, is the basic idea behind the capital asset pricing

model and Ross's arbitrage pricing theorem. The financial relevance and with it the practical

importance of area-yield insurance, therefore, hinges upon its ability to reduce the idiosyn-

cratic risk the farmer faces beyond that which the market portfolio currently permits. In the

language of the finance literature, area-yield insurance will be useful to the producer only if

its state-contingent returns are not in the span of existing contingent claims. If area-yield

insurance is in the span of existing state-contingent claims, its structure can be duplicated

by creating an appropriate portfolio of these existing claims. Area-yield insurance would

then be redundant from the producer's perspective.

At present, there appears to exist no firm empirical evidence that confirms whether area-

yield insurance is in the span of existing contingent claims. Because there exist a number

of contingent claims market directly relevant to agriculture, including yield-based futures

contracts, there exist some theoretical reasons to suspect that further investigation of this

issue is merited. We address this issue by way of an illustrative example which shows that

there exist circumstances, special circumstances to be sure, in which area-yield insurance

will be redundant because of the prior existence of perhaps the most common form of an

agricultural contingent claims markets, forward markets.

We start by narrowing our focus to the case where S = 2. Then roposition 2 implies

producer equilibrium is characterized by

Ci (w, r, P) ± C2 (w, r, p) = 1,

Ci (w, r, P) Piii ± C2 (w, r, P) P2/2 = q.

So long as there is indemnity risk, that is pi/i 132/2, these equations can be solved to
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obtain

P212 — q 
Ci (w, r, P) =

P2I2 — Mil '

q - Piii 
(4) C2 (w, r, p) ,

P2 I2 — Pi /1.

Notice, in particular, that (4) implies that the producer's optimal marginal rate of transfor-

mation between state-contingent revenues only depends upon the structure of the area-yield

insurance contract. Hence, regardless of the producer's risk preferences, he will choose the

same production equilibrium as all other producers who use the same technology and who

participate in the area-yield insurance contract. Therefore, we conclude

Proposition 10 If S = 2, and there is indemnity risk, then any interior production equilib-

rium will be independent of the producer's attitudes toward risk and identical for all producers

facing the same technology and the same area-yield insurance policy.

Proposition 10 is an example of a separation result for state-contingent technologies of the

type isolated by Chambers and Quiggin (1997, 2000a). The reason it emerges in this special

case is that the producer's arbitrage condition in Proposition 2 and the area-yield insurance

indemnity structure combine to span the possible space of state-contingent outcomes. Since

there exists a spanning portfolio, it follows from basic results in portfolio analysis that all

producers facing the same stochastic technology make the same choices (Hirshleifer and

Riley; Milne).

Proposition 10 can be explained in the following way. When there are only two states

of nature, the existence of an area-yield insurance contract allows the producer to trade off

state-contingent incomes at the rate of P2/2 -q which is illustrated in Figure 1 by slope of the
piii-q 1

ray through A in the direction of (Phil - q, -q).12 The individual will make these trades,

by varying the size of his enrolment, until he equalizes his marginal rate of subsitution

between state-contingent incomes to this ratio. But recall from (1) that the producer also

equates his marginal rate of substitution to his marginal rate of transformation. Hence,

the arbitrage opportunity offered by the presence of area-yield insurance and the producer's

optimal arbitrage across states of nature leads the producer to equate his marginal rate

of substitution to something that is independent of his risk preferences. Visually, this can
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be depicted by considering Figure 2a. The producer locates his production point, which is

tangent to the dotted line in Figure 2a, giving the area-yield insurance opportunities, and

then trades along the area-yield insurance ray until he encounters a point of tangency with

his indifference curve.

These results are very similar to separation results contained in the context of forward

markets by Chambers and Quiggin (1997, 2000a). There, too, it was found that in the

two-state case, the producer facing an active forward market would produce in a fashion

that is independent of his attitudes toward risk. The similarity of these findings, of course,

manifests a more general phenomenon. Area-yield insurance always reduces to offering the

producer a risky asset which he may or may not be able to combine with his production

behavior to reduce the riskiness of his overall portfolio.

To illustrate, consider the case where there exists a forward price of 4 at which the pro-

ducer is free to execute forward contracts. This forward contract can be for any commodity.

It need not be for any of the commodities that the producer producers. In what follows,

to conserve on notation, we take the forward contract to be for the same commodity that

the producer is producing, but we emphasize that the results are perfectly general. His

state-contingent return from one unit of the commodity sold forward is (4 — pi, 4 - p2)• If

(5)
4 - Pi = P212 - q
4 - P2 Piii - q

the ray defining the vector of state-contingent returns from the forward contract coincides

with the ray defining the vector of state-contingent returns from the area-yield insurance

contract. Visually, this ray lies over the one illustrated in Figure 1. Hence, by varying the

size of his hedge the producer can exactly replicate any level of enrolment in the area-yield

insurance contract. Area-yield insurance would be redundant in this case. More generally, if

there are any two pre-exisiting forward markets whose state-contingent returns are linearly

independent (regardless of which commodities are involved), the producer can replicate any

level of enrolment in the area-yield insurance contract by taking appropriate positions in the

two forward markets. Or, if there exists a pre-existing forward market for any commodity

and a yield-based futures contract, which are independent, area-yield insurance will also

be redundant. Essentially, the existence of the alternative markets allows the producer
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to design his own area-yield insurance contract. This individualized area-yield insurance

contract always at least weakly dominates any that is introduced in the span of the forward

contracts.

Returning to the case where there exists only a single forward contract, one might argue

that there is no reason for a forward contract and an area-yield insurance contract to satisfy

(5), but even in this instance, there exists at least one important case in which they always

will. Notice that if the forward market is unbiased in the sense that

-= 7r1P1 72P2,

then the slope of the state-contingent return from the forward contract is equal to the slope

of the fair-odds line. In that case, Chambers and Quiggin (1997, 2000a) have shown that

the producer operating in the forward market produces exactly as would a risk neutral

individual and completely stabilizes his state-contingent returns at the level of maximum

expected revenue.

Suppose also that the area-yield insurance contract is arbitrage free, then manipulating

(4) yields (this also follows from Proposition 1)

(w, r, p)

C2 (w, P)

= 7r1,

2

which in combination with the generalized Schur concavity of the certainty equivalent and

(1) gives

Proposition 11 If S = 2, there is indemnity risk, and the area-yield insurance contract

is arbitrage free, then producers produce as though they were risk neutral and completely

stabilize their income at maximal expected revenue.

Proposition 11, when combined with the results of Chambers and Quiggin (1997, 2000a),

reveals that arbitrage-free, area-yield insurance is redundant in the presence of an unbiased

forward market for any commodity in the two-state case. Following an exactly analogous

reasoning, one can also show that area-yield insurance is redundant in the presence of an

unbiased yield-based futures contract. As an aside, we also note that Proposition 11 can
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be combined with the results of Chambers and Quiggin (2000b) to ascertain that under the

assumption of constant absolute riskiness, area-yield insurance leads the producer to produce

a higher expected revenue and to adopt a more risky production pattern in this case. This

result can then be coupled with other results in Chambers and Quiggin (2000b) to determine

the effect of area-yield insurance upon input use.

These rather stark examples are derived specifically for the two state case, which, of

course, is quite unrealistic. However, they were chosen precisely to illustrate two essential

points. Area-yield insurance can be redundant if it lies in the span of pre-existing contingent

claims. And even if area-yield insurance does not lie in the span of pre-existing contingent

claims, its financial and empirical relevance depends on the extent to which it can combine

with the existing span of contingent claims to further reduce the idiosyncratic risk that

the producer faces. Realistically, one might be hard-pressed to believe that a county-based

area-yield insurance contract would lie in the span of existing contingent claims. But the

real issue is not whether existing contingent claims can be improved upon, but whether the

extra reduction in idiosyncratic risk brings with it gains large enough to cover the cost of

introducing the area-yield insurance program.

Before leaving this discussion, we also point out that one can combine the arguments

made in this section with those made in Chambers and Quiggin (1997, 2000a) to elaborate

a complete theory of producer behavior in the presence of area-yield insurance and multiple

futures and forward markets.

3 Selecting the Coverage Level

The GRP, as actually implemented, allows the producer to elect the level of coverage for

which he wishes to enroll. The premium paid adjusts in accordance with the level of coverage

chosen.° In this section, we modify our analysis to account for the possibility that the

producer effectively can alter the trigger level by varying a parameter c, which we refer to as

the coverage level. For analytic simplicity, we assume that both v and q are smooth functions

of the parameter c."

In analyzing the choice of the optimal coverage level, several observations should be made.
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First, the first-order conditions presented in (1) continue to apply. Thus, all of the results

that are predicated upon them continue to apply when they are appropriately re-interpreted

in terms of the optimal coverage level. We leave that reinterpretation to the reader. Second,

if the area-yield insurance contract is to be commercially viable or arbitrage-free, the manner

in which the trigger level and the enrolment price can vary in response to the coverage level

must ensure the continued commercial viability of the area-yield contract. And, finally, even

given the assumption that v and q are smooth functions of c, the indemnity vector will

generally not be smoothly differentiable in c. This latter point can be illustrated by recalling

that the indemnity in state s is

{Is . max 7) —
N

N

TL = 1

Let v' denote the derivative of the trigger level with respect to c, which we shall assume to

be positive. The variation in Is associated with a small positive change in c is v' if Is > 0

or if v = k EnN 1 vs?, and zero otherwise. On the other hand the variation in Is for a small
negative change in c is v' if Is > 0 and zero otherwise. ence, the right-hand and left-hand

derivatives may not agree. To keep the analysis as simple as possible, we shall put such

subtleties to the side and write the variation in the indemnity associated with a change in c

as v'6,9 where Ss is the appropriate subdifferential of I.

Our first observation is that the insurance contract is arbitrage-free only if it is also

arbitrage-free at the margin, i.e.,

(6) q1 = v1

s E n

7sps6s.

The producer's first-order condition for the optimal coverage level is

(7)

which can be re-written as

a es (y) (ps116, — q') <0, c>0,
sEn

a (,

sEo )*sp,s6,5 — q' <0, c > O.

This condition requires that the producer adopt the coverage level that makes the insurance

contract arbitrage-free at the margin when evaluated in terms of the virtual probabilities.
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Notice, in particular, that this just requires that a risk-neutral individual facing these vir-

tual probabilities would have no strong-incentive to alter his or her coverage level. Thus,

this condition can be recognized as yet another arbitrage result that requires producers to

systematically exhaust any intrastate opportunities for gain from altering the coverage level.

Although we do not state it directly, an obvious observation to draw u om these results,

by analogy with Proposition 1, is that the divergences of the actual probabilities from the

virtual probabilities must be orthogonal to the marginal values of the indemnities associated

with changing the coverage.

It follows immediately from these arguments and Proposition 2 that

Proposition 12 Any interior solution to (1) and (7) satisfies

E6,8 (w, r, p) = 1,
BEn

Ecf., (w, r, p) psis = q,
sol

Ec, (w, r, 01336s =
sEci

tit

VI

Perhaps the most important implication of Proposition 12 is that area-yield insurance

contracts with a variable trigger level increase the producer's ability to take actions which

potentially span the state space. We saw in Proposition 10 that the presence of indemnity risk

and the producer's optimal reaction to price and production uncertainty allow the producer

to create a portfolio that spans 2 space. Thus, in that case, all individuals facing the

same technology and the same contract structure would take the same production actions

regardless of their risk preferences. Here a similar result would emerge for the S = 3 case if

the matrix

1 1 1

pill P2-1-2 P3I3

P161 P262 P363

is nonsingular. Production patterns would be independent of individual's attitudes toward

risk. The explanation lies in the recognition that giving the producer the chance to select his

trigger level effectively creates yet another financial asset in which the producer can take a
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position. Because all individuals face the same financial asset, in equilibrium, their marginal

evaluations of the asset must agree. If they face enough such markets to span the state

space, the conditions for a production equilibrium guarantee that their virtual probabilities

must also agree regardless of their attitudes toward risk.

4 Conclusion

This paper has studied optimal producer behavior in the presence of area-yield insurance.

The producer's optimal allocations of state-contingent revenues and insurance coverage have

been characterized. The effect of the provision of area-yield insurance on production pat-

terns and input use has been studied. Sufficient conditions for the provision of area-yield

insurance to increase the riskiness of the individual producer's decisions have been derived

and discussed. These results have been used to characterize how the provision of insurance

impinges upon the producer's allocation of inputs. Attention has also been directed to cases

where area-yield insurance may be redundant because of the prior existence of other financial

instruments closely related to agriculture. A separation result has been derived for area-yield

insurance contracts and stochastic technologies.

5 Appendix: Proof of Proposition 9

Suppose that preferences are risk-additive and that the net indemnity from insurance a (pi—q1)

is arbitrage-free and insures C. Consider the optimum revenue in the presence of insurance

r2 and r°. Under constant absolute riskiness, both are on the e cient frontier by Proposition

6, which corresponds to a unique isocost contour for C. Call that cost level O. Now suppose

that

Then the fact that

r2 ± (E[r°]—E{r1) 1 ± a (0 — q) -- e r° + a (pi — q) .

e(r° ± a (pi—q1) —61.) < e(ri ± a (pi—q1) —Cl)

L
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implies under risk additivity that

e(r°—a1) < e(r1-611).

This contradicts the optimality of r° in the absence of area-yield insurance. Hence, it must

be true that

r° + a (pI — q) :_-_<, r2 + a (pI — q) + (E[r0]—E[ri]) 1,

or equivalently

e (r° + a (pI — q) — 61'1) _> e (r2 + a (pI — q) + (E[r0]—E[r2]) 1—al.)

Now suppose E[rc]—E[ri] > 0. The monotonicity of the certainty equivalent then implies

e (ri + a (pI — q) + (E{r01—E[rM 1-611) > e (ri + a (pI — q) — 01)

which leads to another contradiction. Hence,

E[r2] _.> E[r°].

Now apply Proposition 7.

Notes

'Because we ultimately operate in terms of state-contingent revenues, all results generalize to the case of

multiple outputs.

2This indemnity specification may appear to differ from that postulated in Miranda and in Skees, Black,

and Barnett because the indemnity does not depend upon the 'scale' of enrollment. Let the scale of enrol i tent

be denoted by i . Then in our notation, their indemnity structures, which differ from one another, are both

special cases of

{Is = max i VT — —

= 4

n

n
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The individual enrolling a* acres in such a program receives the total indemnity equalling

{
1

a*i max vT — --R
n

This is equivalent to our model upon setting a = a*i. In the GRP, both a* and i are subject to constraint.

To preserve as much analytic simplicity as possible, we treat a as unconstrained except that we do not allow

the individual to short the area-yield market. Thus, we consider 'optimal coverage' in the sense defined

by Miranda. Placing restrictions on enrollment levels would change the analysis mainly by requiring us to

examine a variety of corner solutions.

3Chambers and Quiggin (2000, Chapter 4) contains a complete discussion of the restrictions on X (z)

that are required for the revenue-cost function to satisfy these properties. Basically, they are that the input

correspondence be closed and convex and not admit the possibility of either a free lunch or fixed costs.

40f course, as is traditional in the net-returns model, we are ignoring the possible presence of wealth

constraints. Such constraints would obviously place a bound on the long trades that would be feasible.

5This result parallels a similar result isolated by Chambers and Quiggin (1997) in their analysis of producer

hedging behavior with forward and futures contracts. It generalizes to the case of stochastic technologies

and general risk averse preference structure Sandmo's demonstration that an expected-utility risk averter

facing price uncertainty produces less than a risk-neutral individual.

6More generally, however, area-yield insurance programs don't completely eliminate moral hazard. Unless

the risk pool's population is very large in an economic sense, by affecting the risk pool's average yield, the

individual does affect his indemnity as well as that of all others. This opens the possibility for strategic

interaction in a symmetric game that is more commonly known as a team problem.

7These results closely follow the discussion in Chambers and Quiggin (2000, Chapter 5).

8We also note that it applies for risk-neutral producers.

9Chambers and Quiggin (2000b) define their pure risk effect for radially-corrected, as opposed to translation-

corrected, revenue vectors and their expansion effect for radial movements of the mean-adjusted revenue

vectors.

wOtherwise, income effects could lead an individual to adopt the other contingent claims.

"Of course, the standard approach is taken to abstract from the production side of the problem. But this

abstraction also comes at the cost of denying the producer's ability to adjust his production risk optimally

to the systemic risk associated with area-yield insurance. In short, it abstracts away from the very aspect

of the production insurance problem that makes area-yield insurance potentially unique.
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12Recall that Figure 1 is drawn under the presumption that the indemnity in state 2 is zero.

13See Skees, Black, and Barnett for the actual details.

141n the GRP, the producer is free to choose between several discrete alternatives.
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