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Abstract: Nonparametric cost frontier estimation has been commonly used to examine the 

relative efficiency of firms without critically examining the shape of the cost frontier.  To 

examine the shape of the cost frontier has required additional estimation using parametric 

methods to recover potential cost savings from multi-product and product-specific economies of 

scale.  This paper develops and tests a method for estimating multi-product and product-specific 

economies of scale using the nonparametric approach by evaluating the difference between scale 

calculations from an assumed cost frontier and those estimated using data envelopment analysis.  

The results demonstrated that the nonparametric approach is able to accurately estimate multi-

product economies of scale and product-specific economies of scale under alternative 

inefficiency distributional assumptions.   
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Is Efficiency Analysis all there is with Data Envelopment Analysis? 

1. Introduction 

Efficiency analysis has been a common technique used to examine or explain relative 

costs among alternative economic agents (Färe, Groskopf, and Lovell 1985, Cooper, Seiford, and 

Tone 2007).  Typically, a production frontier is measured either parametrically using the 

stochastic frontier approach (SFA) (Aigner, Lovell, and Schmidt 1977), or nonparametrically 

using the Data Envelopment Analysis (DEA) approach and analysis proceeds by estimating how 

far individual economics agents are off that frontier.  Much analysis (Featherstone et al. 1997, 

Hoff  2007 ) then uses a second stage to examine whether correlations exist between measures of 

efficiency and economic agent characteristics.  DEA and SFA methods in particular have not 

traditionally examined the behavior of the frontier production or cost function.  However, the 

theory of the firm provides the potential for exploring the structure of cost.  Thus estimates of 

frontier functions, and the distance firms are from the frontier should provide insights into how 

firms with similar technological access and marketing achieve different levels of production 

efficiency and average costs.  These methods allow firms operating off the frontier to understand 

the potential disadvantages due to sub-optimal output and input bundling choices and the effects 

on firm performance. In addition, these estimates should provide insight into ultimate industry 

structure. 

Multi-product and product-specific economies of scale, and economies of scope are 

traditionally estimated parametrically using two-sided error systems though specification of a 

cost function and estimation of parameters (Christenson et. al 1973).  The traditional approach is 

limited from the assumed error structure used in the estimation of a cost frontier function since 

negative errors imply that some firms are actually producing at a lower cost or higher quantities 
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than the frontier that was being estimated which is not consistent with the economic definition of 

a cost function (Farrell 1957).   

Another potential issue occurs with the estimation of the indirect cost function1.  To 

accurately trace out the technology that ultimately determines the shape of the cost frontier, 

relative price variability becomes important.  Lusk et al. (2002) examined the relative variability 

needed in the estimation of dual cost functions using a Monte Carlo approach.  They found that 

the relative variability necessary to accurately estimate a dual cost function requires more than 

20 years of data based on observed data.  Thus, dual cost functions may have difficulty 

recovering the underlying technology.  In addition, Featherstone and Moss (1994) note that 

parametric frontier estimations may often violate the necessary curvature conditions needed for 

the indirect cost function to exist. Therefore, the lack of ability to accurately measure the 

underlying technology given data availability and the estimated frontier not being consistent with 

the necessary cost function conditions are issues that may affect economic analysis and the 

ultimate recommendations that are based upon that analysis. 

The nonparametric or data envelopment analysis approach constructs a frontier from a 

series of line segments using a linear cost minimization program (Färe, Groskopf, and Lovell 

1985).  With this method, it is not necessary to restrict the production technology by imposing a 

functional form and the frontier conforms to economic theory because curvature restrictions on 

the production/cost function are imposed in the estimation process using inequality constraints. 

Further, the nonparametric method of Färe, Grosskopf, and Lovell may allow technology to be 

                                                            
1 An indirect function is a function where the choice variable(s) has been optimized and is held constant while 

parameter change is evaluated. 
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measured using a single year’s data; thus, reducing the need of relative price variability to 

accurately measure technology using the dual approach. 

Numerous studies have used nonparametric methods to analyze efficiency in various 

industries including Banker and Maindiratta (1988), Jaforullah and Whiteman (1998), and 

Chavas and Cox (1988).  In these studies, several types of efficiency are estimated to determine 

if a firm is producing on the production or cost frontier, whether the firm is optimally allocating 

inputs, or if the firm is operating at the most efficient size.  Chavas and Aliber (1993) measure 

scope economies to determine cost savings from production portfolio diversification in the 

nonparametric framework while Cummins et al. (2010) use a DEA cost frontier to determine if 

efficiency measures are related to portfolio diversification. 

Other studies have proposed methods for statistical inference and hypothesis testing from 

nonparametric methods.  Cazals et al. (2002) describe a method for robust nonparametric 

estimation offering a technique for the treatment of outliers.  Florens and Simar (2005) follow 

Cazals et al. with a two-step estimation process describing a method for parametric 

approximation from a nonparametric frontier.  However the Cazals et al. method does not 

completely envelope the data as outliers remain below the cost frontier, and still require a second 

step to recover the parameters to explore the structure of that frontier. 

Traditional measures of multi-product scale and product-specific scale measures have not 

yet been developed in the nonparametric DEA framework for the indirect cost function.  For 

example, Paul et. al. (2004) and Kumar and Gulati (2008) use the DEA method to estimate scale 

efficiency which takes on values of less than, equal to, or greater than one giving an indication of 

returns to scale.  This measure follows from Ray (1998) and Cooper et. al. (2007) where the 

DEA method is estimated assuming constant returns to scale, and then again assuming variable 
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returns to scale and takes the ratio of the two measures.  Paul et al. explain that the interpretation 

of scale efficiency is not as strait forward as a traditional scale economy measure explained by 

Baumol et al. (1984).  Specifically, they note that these measures only indicate if average per-

unit costs are increasing, decreasing, or constant, but not necessarily the magnitude of cost 

savings from scaling.  In both Paul et al., and Kumar and Gulati, it was necessary to perform a 

parametric estimation to recover traditional estimations of economies of scale, and compare the 

results to their DEA estimation.  Førsund and Hjalmarsson (2004) do calculate scale elasticities, 

however their method is based on a DEA production frontier estimation and not by using the 

nonparametric dual approach. Further, techniques for estimating product-specific economies of 

scale have not been reported for the nonparametric method. 

This research derives, operationalizes, and tests estimation techniques for multi-product 

and product-specific economies of scale for the nonparametric cost frontier estimation method.  

Specifically, this research develops a multi-product and product-specific scale measure using the 

definition of Baumol et al. from nonparametrically estimated marginal costs, incremental costs, 

and output quantities.  The estimated measures are then compared to an assumed known cost 

frontier.  From this comparison, it is possible to assess the accuracy of the nonparametric 

approach estimates in measuring the appropriate economic measures.   

Previous research that estimated economies of scope with the nonparametric approach 

has dropped one or more of the output constraints when estimating the cost of producing a single 

output (Chavas and Aliber).  This research compares the Chavas and Aliber procedure by 

comparing a method that requires that output to be zero as required in Baumol et al’s. definition 

of an incremental cost.  The principle advantage to forcing the output to zero rather than 

dropping it is that it should more closely measure the theoretically defined incremental cost of 
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each output, where dropping the appropriate constraint often allows a small amount of that 

output to be produced.  In addition, a modification to the Chavas and Aliber technique is 

proposed when dropping constraints to estimate scope economies.  Finally, we evaluate the 

nonparametric approach under alternative efficiency distributions to investigate the robustness of 

the results. 

2. Theory 

Typical economic measures calculated from a cost function include economies of scale 

and economies of scope.  Measures of scale economies include both multi-product economies of 

scale (MPSE), and product-specific scale economies (PSE) differing only in that MPSE refers to 

changes in cost relative to more than one output in a multi-output firm, while PSE refers to 

proportionate changes in cost relative to a single output (Baumol et al.).  Mathematically these 

measures are defined as follows where C(Y) represents the cost of production with C(Y)/Yp 

representing the marginal cost of the pth output.  

 
( )

(Y)
p

p p

C Y
MPSE

C
Y

Y


 
 
  


 (1) 

To calculate PSE, the average incremental cost (AICp) of producing p must be calculated where 

the incremental cost (IC) for the pth output is defined as: 

 p p j p
j

IC C C j     (2) 

Thus, 

 p
p

p

IC
AIC

y
  (3)  
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Product-specific economies of scale are the ratio of the average incremental cost of output p and 

the marginal cost of the pth output. 

 
(Y)

p
p

p

AIC
PSE

C
Y





  (4) 

Estimates of economies of scope (SC) represent the cost savings of producing multiple 

outputs within a single firm versus producing outputs individually.  Economies of scope may be 

expressed in the following manner where C(Y) is total production cost, C(YT) is the cost of 

producing output YT, and C(YN-T) represents the cost of producing the remaining outputs where 

YN-T = (Y1,…Yk-1,0…0). 
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 Measures of multi-product economies of scale, product-specific economies of scale and 

economies of scope are related.  The relationship between multi-product scale economies 

(MPSE), product-specific scale economies (PSE), and economies of scope (SC) can be 

determined by defining: 
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  (6) 

where αi is the weight placed on the PSE of interest based upon its relative contribution to total 

output.  Thus: 
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 MPSE can take one of three values: decreasing, constant or increasing returns to scale.  

Equation 7 examines the relationship among factors affecting MPSE. If SC is zero and the 

numerator is less than 1, equal to 1 or greater than 1, then there are decreasing, constant and 

increasing returns to scale.  If SC is greater than zero and the PSEs are at constant returns to 

scale, MPSE is in a region of increasing returns (>1). 

3. Data and Methods 

 3.1 The Nonparametric Method 

 

 To derive the scale measures nonparametrically, the cost (Ci) is determined for each firm 

following Färe, Grosskopf, and Lovell where costs are minimized for a given vector of input 

prices (wi) and outputs (yi) with the choice being the optimal input bundle (xi
*).  
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  (8)  

where there are “n” producers.  The vector Z represents the weight of a particular firm with the 

sum of Zi’s equal to 1 for variable returns to scale.  From the above model, the costs and output 

quantities can be estimated.  The output quantities (yi) constrain the cost minimizing input bundle 

to be at or below that observed in the data.  Total cost from the model (Ci) is the solution to the 

cost minimization problem including the production of all outputs for the ith firm.  The cost of 
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producing all outputs except one (Ci,all-p) where p is the dropped output and is determined by 

either forcing one of the outputs to equal zero or by dropping one of the pth output constraints.   

 To calculate multi-product scale measures, marginal costs must be determined.  The 

marginal costs (MCi,p) for the pth output are obtained from the shadow prices on the output 

constraints on the base model (equation 8).  The calculation of multi-product economies of scale 

(MPSE) uses the total cost of producing all outputs (Ci,all), the marginal costs (MCi,p), and the 

output levels produced (Yi,p) (equation 1).   Using the nonparametric approach, there is an issue 

with the nonparametric marginal cost because the linear structure results in “Kink Points” on the 

frontier that results in non-unique marginal costs.  Thus, the marginal costs for efficient firms 

may not be unique.  In practice this results in a relatively small number of firms.  In addition, a 

range of estimates of marginal costs at a kink can be calculated. 

 Product specific economies of scale (PSE) require the calculation of incremental costs 

(ICi,p) which are the cost of producing all outputs minus the sum of the costs of all individual 

outputs except output (p) for firm i (equation 2).  The Chavas and Aliber method to calculate 

incremental costs using the nonparametric method is to drop one or more of the output 

constraints from equation 8 to determine the cost of producing the output alone.  For example, if 

a firm produces four different products, four different linear programs would be estimated 

excluding one of the outputs at a time.  We examine the results from dropping one of the output 

constraints are compared with constraining the appropriate output to zero. 

 Using equation 2, average incremental costs (AICi,p) are determined by dividing 

incremental costs by individual output as shown in equation 3.  From the average incremental 

cost (equation 3) and the marginal cost calculations from the shadow prices, it is possible to 
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calculate PSEs (equation 4) where PSEs are interpreted similar to MPSEs except that PSEs 

pertain to only one output. 

 The calculation for scope economies (SCi) follows from equation 5 where Ci,p is the cost 

of producing output p for firm i, and Ci,all is the cost of joint production of all outputs for firm i.  

This measure identifies the potential for cost savings through product diversification.  Generally, 

SCi > 0 implies that scope economies exist and average per-unit costs are reduced with 

diversification.  A scope measure of 0.5 implies that jointly producing multiple outputs in a two 

good case would reduce costs of producing these outputs by 50% compared to producing them 

individually. 

 Cost efficiency (CE) identifies a firm’s proximity to the cost frontier for a given 

input/output bundle.  It is the quotient of the estimated frontier cost (Ci) and the actual total cost 

(ATC) the firm incurred producing their output bundle.  

 i
i

i

C
CE

ATC

 
  
 

  (9) 

 This measure must be greater than 0 but less than or equal to 1.  A cost efficiency of 1 

implies that the firm is operating on the frontier at the lowest possible cost for a given output 

bundle.  However, a cost efficiency less than 1 implies that cost can be reduced by altering the 

input bundle. 

 This section has derived and operationalized the measure of marginal costs and 

incremental costs necessary for the measurement of multi-product and product-specific scale 

economies.  The next section examines the methods used to compare the accuracy of the 

nonparametric measures with those from a “true” cost frontier. 
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 3.2 Data Simulation 

 

 The data for the analysis were generated utilizing an economic data generation 

procedure2 found in Gao and Featherstone (2008) run on the SHAZAM software platform 

(SHAZAM Analytics Ltd.). A  normalized quadratic cost function involving 3 inputs (x1, x2, x3) 

with corresponding prices (w1, w2, w3), and 2 outputs (y1, y2) with corresponding prices (p1, p2) 

was used.  The normalized quadratic cost/profit function is used because it is a self-dual cost 

function and a flexible functional form (Lusk et al., Lau 1976).  The input and output prices (wi, 

pi) are randomly generated following a normal distribution. Assumed distributions for the output 

prices and input prices provide observed prices strictly greater than zero with different means 

and standard deviations to ensure some variability in input/output quantity demands and relative 

prices.  They are: 

 w1 ~ N (9, 0.99) 
 w2 ~ N (18, 1.98) 
 w3 ~ N (7, 0.77)         (10) 
 p1 ~ N (325, 99) 
 p2 ~ N (800, 99)3 

The input price variability was set proportionate to its mean while the output prices have 

different relative variability to represent products in markets with different volatilities.  

 The outputs (yi) and inputs (xj) are determined as a function of input and output prices 

using an assumed underlying production technology.  All prices are normalized on w3 and the 

cost function is divided by w3 to impose homogeneity.  To ensure the curvature condition is met, 

the “true” cost function is assumed to be concave in input prices and convex in output quantities. 

                                                            
2 The procedure randomly generates prices for inputs and outputs and then outputs are chosen based upon the 

production technology using the assumption of profit maximization. 
3 The distributions are arbitrarily chosen. 
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The eigenvalues are calculated for the “b” (price) and “c” (output) matrices where the 

eigenvalues for “b” should be negative (concave in prices) and “c” values should be positive 

(convex in outputs).  The assumed parameters are set to satisfy the following theory based 

condition: bij=bji (symmetry in input prices).  The assumed parameters (Table 1) are used to 

generate the output quantities y1 and y2
4.  The general form of the normalized quadratic cost 

function is: 
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 (11) 

 Output quantities (shown below) are calculated using the assumed parameters of the cost 

function (Table 1) and the random prices defined in equation 10.  
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 Using the above cost function (equation 11), a positive random cost deviation term is 

added to the cost function following a half-normal distribution that alters the cost efficiency 

where the absolute value of e is distributed e~N (0,1000)5.  The inclusion of this term adds cost 

inefficiencies in the data such that firms are off the frontier effectively increasing their cost while 

keeping the output quantities the same.  The level of inefficiency is half-normally distributed. 

                                                            
4 The analysis also was completed for alternative assumptions on price distributions. 
5 The analysis also examined alternative normal standard deviations. 
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 An additional data set6 is generated assuming a uniform distribution.  The uniform 

deviation ranged from zero to 900.  The normal distribution standard deviation of 1000 generates 

a mean and standard deviation for cost efficiency roughly equivalent to a uniform distribution 

with a range from zero to 900.  

 From equation (11), and using Shephard’s Lemma (Shephard 1970) where 

(C(W,Y)/wi)=xi, the factor demands for inputs x1 and x2 are recovered.  Factor demand for x3 is 

found by subtracting the product of quantities and prices for x2 and x3 from the total cost 

(equation 13).  

 
1 1 11 1 12 2 11 1 12 2

2 2 12 1 22 2 21 1 22 2

3 1 1 2 2( , )

x b b w b w a y a y

x b b w b w a y a y

x C W Y x w x w

    
    
  

 (13) 

The input quantities (xi’s) are then adjusted (xi
a) by the cost efficiency (CE) effectively 

increasing the input demands proportionate to the costs generated for each firm. 

 a i
i

x
x

CE
  (14) 

 Using the above method, 400 observations were generated where firms produce a 

combination of both outputs.  Fifty firms were generated producing only y1 with another 50 firms 

producing only y2 which is accomplished by restricting either y1 or y2 to equal zero and re-

running the simulation for 50 separate observations each.  Thus, a total of 500 observations were 

simulated with descriptive statistics shown in Table 2.  In Table 2, xi
n represents inefficient input 

quantities for the normal error distribution and xi
u represent the inefficient input quantities for the 

uniform distribution.  The summary statistics for the multi-product scale, product-specific scale, 

scope, and cost efficiencies for each data point from the “true” cost function are shown in Table 

                                                            
6 The analysis was run using 2500 observations with little difference in the results. 
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3.  Summary statistics on scale and scope are independent of the distribution of cost 

“inefficiency”.  Figures 1 through 4 provide a visual representation of the multi-product scale 

and scope economies as well as cost efficiencies and product-specific scale economies calculated 

from the “true” cost function.  These calculations are used to examine the accuracy of the 

proposed nonparametric approach.   

 Economies of scale and economies of scope calculations are made at efficient data points 

projected to the DEA-estimated cost frontier. While the cost efficiency for each firm is simulated 

under a uniform and a half-normal distribution (Figure 2), the MPSE, PSE’s, and Economies of 

Scope are identical for each data point (Table 3) for the “true” cost function.  This occurs 

because the input prices (wi’s) and output prices (pi’s) remain unchanged and thus, the output 

quantities (yi’s) remain unchanged (Equation 14).  The input quantities (xi’s) are different in that 

the deviation in input quantity is uniformly distributed.  The uniformly distributed data more 

evenly distribute the quantity of firms at each relative distance from the frontier, rather than 

many firms being clustered around the mean distance as in the half-normal case.  

 The difference between the “true” and the nonparametric approach is evaluated by 

subtracting each nonparametric calculation from the “true” measure calculated with economic 

simulation.  Since the approximation of the “true” measure is key, the statistics reported hereafter 

are the difference between the “true” measures and what was estimated nonparametrically.  

Using this approach, any possible bias from the DEA approach can be determined.  A positive 

number implies that the nonparametric approach underestimates the measure being evaluated and 

conversely, a negative difference indicates the nonparametric method overestimates the measure.  

The mean absolute deviation is also reported for all three models allowing for the comparison of 

average absolute deviation from zero  
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 Cumulative density functions are presented for the differences between the true measures 

and the estimated measures to produce visual representation of both bias and deviation.  If there 

is no difference between the estimated measure and the true measure, the cumulative density 

function is a vertical line at zero (see Figure 10 for the No Inefficiencies model).  

4. Results 

 Three comparisons were conducted using the half-normal distribution for cost 

inefficiency, and three identical comparisons using the uniform distribution for cost inefficiency.  

The first comparison for both distributions uses the economic simulation data with only cost 

inefficiencies in the cost function (No Inefficiency).  The purpose of this simulation is to ensure 

the model is estimating the measures correctly, and to examine the nonparametric procedure 

estimates of scale and scope when all firms are efficient in input quantities.  The second and third 

comparisons for both distributions involve introducing technical inefficiencies into the input 

quantities (equation 16), and are more consistent with observed data.  Since efficient firms have 

a cost efficiency of 1, and less cost efficient firms have a cost efficiency between 0 and 1, an 

efficient firm uses optimal input quantities.  However firms may use additional inputs to produce 

output if the firm is not efficient.  Inputs x1, x2, and x3 are adjusted upwards by the proportionate 

cost inefficiency to reflect this.   

 The second nonparametric comparison for the half-normal and uniform distributions 

assume the appropriate constraints are dropped (Dropped) for the estimation of incremental 

costs.  The third simulation forces the appropriate output to be zero (Constrained).  The 

estimation was done using the General Algebraic Modeling System (GAMS Development 

Corporation, Washington D.C.). 
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 Twenty-four frontier points are identified from the nonparametric estimates for the half-

normal distribution and twenty-five using the uniform data.  For each distribution, the firms 

found on the frontier were the same for the Dropped Model and the Constrained Model.  These 

points have non-unique marginal cost estimates.  Due to the non-uniqueness of the marginal 

costs from these observations, MPSEs were not reported.  For single output observations, PSEs 

cannot be calculated for the output not being produced.  Economies of scope are also not 

reported for single output observations. 

 4.1 Multi-product Economies of Scale 

 The differences results for MPSE are found in Table 4 and Figure 5.  The No 

Inefficiencies model for both distributions shows little difference from the actual frontier 

function (Figure 5).  The average bias was close zero for both distributions with a standard 

deviation of 0.11 in the half-normal case and a standard deviation of 0.023 for the uniform case 

(Table 4).  The mean absolute deviation was nearly zero as well.  This result indicates that since 

MPSE is a function of total costs, marginal costs, and output levels, the marginal costs are 

estimated closely to the “true” marginal costs.   

 For the two models estimated where technical inefficiencies were introduced, with half-

normal distribution nearly 85% of the MPSE difference calculations were within 0.1 in absolute 

value to the “true MPSE” (Figure 5).  The standard deviations for both the Constrained and 

Dropped models were small (Table 4) and the mean absolute deviation was less than 0.05 for 

both models.  For the uniform distribution, the average for both models was nearly zero with the 

Constrained model being slightly closer to zero than the Dropped Model in terms of bias but the 

mean absolute for the Constrained model was 0.04 higher than the Dropped model.  The standard 

deviations for both models was approximately 0.05.  When comparing the distributions, the 
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models with the uniform distribution estimated the MPSE’s closer to the “true MPSE’s” for each 

observation with greater than 99% within between -0.1 and 0.1 and mean absolute deviations less 

than for the half-normal distribution. 

 The nonparametric approach showed a very close proximity to the calculations from the 

frontier function with respect to the MPSE.  The model with outputs constrained to zero results 

in slightly more accurate estimate of MPSE compared to those estimates dropping a constraint. 

 4.2 Product-specific Economies of Scale 

 Product specific scale economies estimated from the No Inefficiencies model showed 

slight differences from that of the actual frontier function for both distributions (Table 5, and 

Figures 6 and 7).  The averages and mean absolute deviations for both PSEy1 and PSEy2 were 

nearly zero and the standard deviations were also low.  This result concurs with the results from 

the other measures where deviations from the frontier function were small.  Though the averages 

were nearly zero for both distributions, the bias for both PSEs y1 and y2 were negative in the half-

normal case showing that the nonparametric approach slightly overestimated PSE while the 

average difference in the uniform case was positive showing a slight underestimation of the 

PSEs. 

 The differences for the estimates with technical inefficiencies in the input quantities were 

highest for the PSE estimates compared to the other measures.  For the half-normal distribution, 

the average of PSE1 for both the Constrained and Dropped models was about 0.13 showing 

negative bias with standard deviations and mean absolute deviations of approximately 0.22.  For 

PSE2 the average was much closer to zero at approximately 0.03 for the Dropped model and 0.02 

for the Constrained model with standard deviations for both around 0.11.  The mean absolute 
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deviations were also lower with both being around 0.085.  The direction of bias was negative in 

that the models with technical inefficiency overestimated the PSE estimates.   

 The estimations for PSE1 and PSE2 were closer to the “true PSE’s” for both models with 

the uniform distribution having lower standard deviations, and averages closer to zero.  The 

average PSE1 for the Dropped model was nearly zero in the uniform case with a standard 

deviation of 0.106, while the average for the Constrained model was 0.05 and a standard 

deviation of 0.19 (Table 5).  Mean absolute deviations for the uniform distribution were also 

closer to zero however the dropped model’s mean absolute was nearly halved while the 

constrained model changed by only 0.01.  Like the half-normal case, the differences for the 

uniform distribution were positive on average indicating that both models slightly 

underestimated the PSE’s.  The differences for PSE estimates are also evident in Figures 6 and 7. 

PSE measures are relatively less accurate than the measurement of MPSE. 

 The cause of the higher error in the PSE estimates in both the half-normal case and the 

uniform case occurs due to variations in the incremental cost calculations.  The total costs 

estimated by the nonparametric methods were nearly the “true” costs, as were output quantities 

with only slight variations in marginal cost.  Thus, the MPSE differences were small. Product-

specific economies are calculated using total cost and incremental costs. Incremental costs 

exhibit some, albeit small variation. 

 The concern with the incremental cost was hypothesized to be due to missing frontier 

observations with zero quantities.  This results in the frontier estimation for regions with missing 

data to shift upward for an inefficient firm reflecting that a firm is on the frontier when it is not.   

This conclusion is apparent in that the No Inefficiency model under both distributions which has 
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no inefficiency shows less deviation from the frontier function than the two models with cost 

inefficiency.  

 To examine the importance of the single output firms, the 24 efficient observations from 

the models with the half-normal distribution were set to be efficient.  This puts them on the true 

frontier and the model is re-estimated with the remaining observations unchanged.  Table 6 and 

Figure 8 show the results for PSE1 which had the largest deviation for both distributions.  The 

standard deviations for both models decreased from 0.221 to approximately 0.169 and 0.164 

while the averages were reduced from 0.133 to 0.065 and 0.069 respectively.  The mean absolute 

deviations also fell for both models indicating a closer proximity to the true PSE values than in 

the initial estimation of PSE1.  Thus, obtaining correct measures of the frontier for zero output 

observations is important to improving the accuracy of PSEs. 

 4.3 Economies of Scope 

 The distribution of the difference for scope between the frontier function and the 

nonparametric estimates for both distributions are shown in Figure 9.  For the half-normal 

distribution, differences in scope for the No Inefficiency model were very small yielding a 

standard deviation of about 0.017 and an average and mean deviation close to zero.  For the 

uniform distribution, the differences were small as well with a standard deviation of 0.020 and 

mean absolute deviation nearly zero (Table 7).  The implication is that in the absence of input 

inefficiency, the individual cost estimates from the nonparametric method are close to that of the 

actual frontier function.   

 The estimates for models where inefficiencies were introduced were also very close to 

that of the frontier function for both distributions.  For the half-normal case, the standard 

deviation for the Constrained, and Dropped models were small.  The average differences were 
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both less than 0.1 in absolute, value as were the mean absolute deviations (Table 7).  The 

estimates were identical for both models.  This indicates that the calculations for costs for 

producing zero output (Ci,all-p) are the same.  Thus, both approaches including dropping a 

constraint, or constraining an output to zero appear to do equally well estimating economies of 

scope. 

 In the uniform distribution case, both models with technical inefficiency did not estimate 

an identical scope.  The absolute values for average and standard deviation for the Dropped 

model was -0.017 and 0.066 respectively for the while the absolute values for average and 

standard deviation for the Constrained model was -0.028 and 0.095, respectively.  Also, the 

mean absolute deviation was more than twice as high for the Constrained model than the 

Dropped model.  Thus, under a uniform distribution, dropping the appropriate constraint reduces 

the mean absolute deviation of economies of scope more than constraining the appropriate output 

to zero. 

 Figure 9 shows that most of the differences in scope estimates from the models with 

technical inefficiency for both distributions are negative.  This implies that the economies of 

scope measures for the Constrained and Dropped models slightly over estimate economies of 

scope.  The average scope difference with inefficiency is less than 0.1 in absolute value and over 

70% of the differences are within this proximity range to the “true” scope measure in the half-

normal case for both models.  In the uniform case, the models with technical inefficiency have an 

average difference of nearly zero with all but five observations within 0.03 of the true scope 

calculation in absolute value.  The results demonstrate small differences between the economies 

of scope estimates between the Dropped model and Constrained model in the half-normal case.   
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However, the uniform case shows that the Dropped model in Figure 9 had a slightly tighter 

estimation of economies of scope than the Constrained model. 

 4.4 Cost Efficiency 

 The difference of cost efficiency estimates from the nonparametric models without 

technical inefficiency in quantities (No Inefficiency) for both distributions and the actual frontier 

were identical in that every single observation yielded the exact same cost efficiency estimate 

(Table 10).  This implies that the minimum cost estimated from the nonparametric system was 

the same as that of the actual frontier.  Thus, the No Inefficiency procedure correctly estimated 

the “true” cost frontier for the half-normal and uniform distributions. 

 With inefficiencies introduced in the input quantities, the Constrained and Dropped 

model’s differences for the half-normal distribution were small.  Approximately 80% of the 

observations had a difference of less than 0.05 in absolute value from the true cost efficiency 

with approximately 12% having a difference of less than 0.1 but greater than 0.05 in absolute 

value (Figure 9).  The implication is that, an introduction of technical inefficiency in the input 

variables does not significantly reduce the accuracy of the nonparametric models estimates of 

cost efficiency in the half-normal case. 

 In the case of the uniform distribution, both the Constrained and Dropped model 

estimated the same frontier as illustrated by the same mean and standard deviation for the 

differences.  However, the half uniform estimated the frontier more closely than the half-normal 

with a mean, mean absolute deviation, and standard deviation for both models of nearly zero 

(Table 10).  This is also confirmed in Figure 9.  Both models slightly over estimated the cost 

efficiency on average with an average for both models in the half-normal case being negative 

and in the uniform case however, they are both close to zero. 
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5. Conclusions 

 This paper develops, and tests a method for estimating product specific scale economies 

and multi-product scale economies using Färe’s nonparametric method using two efficiency 

distributions.  Results indicate that much more economic information can be obtained from Data 

Envelopment Analysis (DEA) than has occurred in the literature.  Thus, there is more to DEA 

analysis than just efficiency analysis.   

Alternative specifications of the nonparametric approach to measure incremental costs by 

forcing the appropriate output to equal zero rather than dropping the constraint as suggested by 

Chavas and Aliber are tested.  The results are compared to a “true” cost function using economic 

simulation where the difference between the “true” measures and the estimated values are used 

to evaluate the accuracy of the approach.   

 When measuring observations with inefficiency, the nonparametric approach with the 

uniform and half-normal distributions does well in estimating scope, multi-product scale 

economies, cost efficiency, and product-specific scale economies.  The mean differences were 

close to zero as were the mean absolute deviations.  While the PSE estimates are close to the 

“true” frontier PSEs, in the half-normal case, the deviations for PSE calculations using a uniform 

distribution illustrate the importance of having observations from efficient firms producing a 

single output.  Since PSE is based on a ratio of incremental costs to marginal costs, the PSE 

measures are sensitive to these calculations. In areas where there are few single output 

observations where observations are not on the “true” frontier, the estimated incremental costs 

for these observations may deviate from the “true” incremental cost.  In areas of the data where 

there are many observations, the likelihood that observations do not come close to the frontier is 

small.  Thus, areas where the data are clustered yield more precise results than areas where 
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observations are sparse.  It should be noted that this is important when estimating these measures 

using parametric estimation. 

 The approach developed in this article to obtain more economic analysis out of DEA has 

been shown to accurately estimate scope, multi-product scale, and product-specific economies.  

DEA’s consistency with economic theory without restrictions on technology make it particularly 

attractive empirically along with the ability to estimate from a primal rather than a dual approach 

due to the higher need for relative price variability in the dual approach.  Thus, with the new 

approaches developed to measures economies of scale, there are many more economic effects 

that can be obtained from DEA analysis than has been reported in the literature. 
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Tables 

 
Table 1 Coefficients used in cost function for data simulation for half-normal and uniform 
distributions 
Coefficient Value 
A1 30.0 
A2 80.0 
A11 0.50 
A12 1.00 
A21 0.60 
A22 0.50 
B0 20.0 
B1 10.0 
B2 35.0 
B11 -0.09 
B12 -0.15 
B22 -0.47 
C11 1.44 
C12 -0.24 
C22 2.29 
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Table 2 The average, standard deviation, minimum and maximum for the input/output quantities 
and input prices in half-normal (xi

n) and uniform (xi
u) cases  

N=500 Average 
Standard 
Deviation 

Minimum Maximum 

x1
n 42.29 11.95 13.35 88.33 

x2
n 69.85 23.29 38.44 268.76 

x3
n 2602.60 1154.75 152.95 8083.87 

x1
u 36.93 8.644 14.06 68.89 

x2
u 60.16 10.25 38.43 136.13 

x3
u 2302.06 1027.79 147.92 6585.05 

w1 
9.05 0.98 5.42 11.98 

w2 
17.95 1.88 13.15 24.70 

w3 
6.98 0.78 4.85 9.75 

y1 
11.67 5.90 0.00 30.19 

y2 
14.31 7.53 0.00 37.92 
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Table 3 Summary statistics for MPSE, PSE, economies of scope, and cost efficiency 

Economic Measure Average 
Standard  
Deviation 

Minimum Maximum 

------Half-normal Distribution------ 

Multi-product Scale              
Economies 
 

0.931 0.108 0.779 1.989 

Cost Efficiency 
 

0.721 0.177 0.129 1.000 

Scope 
 

0.096 0.051 0.037 0.513 

Product-specific Scale 
Economies for y1 
 

0.728 0.246 0.000 0.957 

Product-specific Scale 
Economies for y2 

0.763 0.257 0.000 0.995 

------Uniform Distribution------ 

Cost Efficiency 
 

0.799 0.133 0.268 1 

Note: Economies of Scope, Multi-product Scale Economies, and Product-specific Scale 
economies are identical for the Half-normal and Uniform distributions 
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Table 4 Statistics for simulated multi-product scale economies estimates minus multi-product 
scale economies estimated nonparametrically for the half-normal and uniform distributions 
N=476 Average Standard 

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
------Half-normal Distribution----- 

Nonparametric No 
Inefficiency 
 

-0.002 0.011 -0.108 0.046 0.008 

Dropped 
 

0.001 0.047 -0.145 0.235 0.049 

Constrained 
 

0.001 0.047 -0.145 0.235 0.049 

------Uniform Distribution----- 
Nonparametric No 
Inefficiency 
 

-0.003 0.023 -0.336 0.198 0.008 

Dropped 
 

-0.012 0.054 -0.277 0.114 0.027 

Constrained 
 

-0.006 0.055 -0.266 0.320 0.031 
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Table 5 Statistics for simulated product-specific scale economies estimates minus product-
specific scale economies estimated nonparametrically for the half-normal and uniform 
distributions for outputs 1 and 2 
N=426 Average Standard 

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
------Half-normal Distribution----- 

 Nonparametric No 
Inefficiency 
 

0.000 0.046 -0.325 0.629 0.016 

y1 
Dropped 
 

0.133 0.221 -0.257 0.633 0.219 

 Constrained 
 

0.133 0.221 -0.257 0.633 0.219 

 Nonparametric no 
Technical 
Inefficiency 
 

-0.002 0.020 -0.080 0.260 0.007 

y2 
Dropped 
 

0.032 0.108 -0.344 0.712 0.086 

 Constrained 
 

0.022 0.109 -0.204 0.723 0.085 

-----Uniform Distribution------ 
 Nonparametric No 

Inefficiency 
 

0.002 0.024 -0.084 0.109 0.016 

y1 
Dropped 
 

0.003 0.106 -0.214 0.185 0.107 

 Constrained 
 

0.050 0.191 -0.239 0.735 0.259 

 Nonparametric No 
Inefficiency 
 

0.002 0.021 -0.148 0.082 0.014 

y2 
Dropped 
 

-0.003 0.051 -0.169 0.109 0.042 

 Constrained 
 

0.019 0.088 -0.294 0.294 0.068 
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Table 6 Statistics for simulated product-specific scale economies estimates minus product-
specific scale economies estimated nonparametrically for y1 removing the technical inefficiency 
in the input quantities 
N=426 Average Standard  

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
Nonparametric No 
Inefficiency 
 

-0.002 0.053 -0.399 0.629 0.016 

Dropped 
 

0.065 0.169 -0.744 0.583 0.154 

Constrained 
 

0.069 0.164 -0.272 0.671 0.154 
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Table 7 Statistics for simulated scope economies estimates minus scope economies estimated 
nonparametrically 
N=397 Average Standard 

Deviation 
Minimum Maximum Mean Absolute 

Deviation 
------Half-normal Distribution------ 

Nonparametric No 
Inefficiency 
 

0.000 0.017 -0.201 0.193 0.003 

Dropped 
 

-0.098 0.070 -0.709 -0.043 0.098 

Constrained 
 

-0.089 0.034 -0.249 0.234 0.098 

------Uniform Distribution------ 
Nonparametric No 
Inefficiency 
 

0.001 0.020 -0.201 0.206 0.008 

Dropped 
 

-0.017 0.066 -0.712 0.017 0.020 

Constrained 
 

-0.028 0.095 -0.813 0.206 0.044 
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Table 8 Statistics for simulated cost efficiency minus cost efficiencies estimated 
nonparametrically for half-normal and uniform distributions 

N=500 Average 
Standard 
Deviation 

Minimum Maximum 
Mean Absolute 

Deviation 
------Half-normal Distribution------ 

Nonparametric No 
Inefficiency 
 

0.000 0.000 0.000 0.000 0.000 

Dropped 
 

-0.025 0.041 -0.530 -0.003 0.026 

Constrained 
 

-0.025 0.041 -0.530 -0.003 0.026 

------Uniform Distribution------ 
Nonparametric No 
Inefficiency 
 

0.000 0.000 0.000 0.000 0.000 

Dropped 
 

-0.004 0.007 -0.079 0.000 0.004 

Constrained 
 

-0.004 0.007 -0.079 0.000 0.004 
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Figures 

 

 

 

 

 

Note: the MPSE calculations for both the half-normal and uniform error distribution is identical. 

 

Figure 1 Frontier Multi-Product Scale Economies Cumulative Frequency for Generated Data 
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Note: The PSE calculations for Y1 and Y2 for both the half-normal and uniform error 
distribution are identical 

 

Figure 2 Frontier Product-Specific Scale Economies   
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Note: The Economies of Scope calculations for both the half-normal and uniform error 
distribution is identical. 

 

Figure 3 Frontier Economies of Scope Cumulative Frequency 
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Figure 4 Frontier Cost Efficiencies Cumulative Frequency for both Half-normal and Uniform 
Distributions 
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Note: Constrained and Dropped trace out identically for Half-normal distribution. 

Panel A: Multi-product Scale Economies Half-normal 
Distribution  

Panel B: Multi-product Scale Economies Uniform Distribution 

Figure 5 Differences between frontier Multiproduct Scale Economies and nonparametric estimates of Multiproduct Economies of 
Scale for Half-normal and Uniform Cumulative Distributions 
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Note: Constrained and Dropped trace out identically for half-normal distribution 

Panel A: Product-specific Scale Economies Y1 Half-normal 
Distribution  

Panel B: Product-specific Scale Economies Y1 Uniform 
Distribution 

Figure 6 Differences between frontier Product-specific Economies of Scale for Y1 and nonparametric estimates of Product-specific 
Economies of Scale for Y1 for Half-normal and Uniform Cumulative Distributions 
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Panel a: Product-specific Scale Economies Y2 Half-normal 
Distribution  

Panel b: Product-specific Scale Economies Uniform Y2 
Distribution 

Figure 7 Differences between frontier Product-specific Economies of Scale for Y2 and nonparametric estimates of Product-specific 
Economies of Scale for Y2 for the Half-normal and Uniform Cumulative distributions. 
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Note: Constrained and Dropped trace out nearly identically 

 

Figure 8 Differences between frontier Product-specific Economies of Scale for Y1 and 
nonparametric estimates of Product-specific Economies of Scale for Y1 removing technical 
inefficiency from frontier firms 
 

 

 

 

 

 

 

 

 



 

42 

 

Note: Constrained and Dropped trace out identically for economies of scope for the half-normal Cumulative distribution 

Panel b: Economies of Scope Half-normal Distribution  Panel b: Economies of Scope Uniform Distribution 

Figure 9 Differences between frontier Economies of Scope and nonparametric estimates of Economies of Scope for Half-normal and 
Uniform distributions 
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Note: Constrained and Dropped trace out identically for Cost Efficiency in Half-normal and Uniform cases. 

Panel b: Cost Efficiency Half-normal Distribution  Panel b: Cost Efficiency Uniform Distribution 

 
 

Figure 10 Differences between frontier Cost Efficiency and nonparametric estimates of Cost Efficiency for Half-normal and Uniform 
Cumulative Distribution 
 


