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I. Introduction 

 
Resource scientists have recently shown substantial support for managing fisheries with marine 

protected areas, signifying a new resource management paradigm that recognizes the importance of 

spatial processes in both untouched and exploited systems.  Numerous biological studies argue that 

marine reserves, or no-take zones, could benefit fishery management (Davis, 1989; Polacheck, 1990; 

Roberts and Polunin, 1991, 1993; Bohnsack, 1993, 1998; Carr and Reed, 1993; DeMartini, 1993; Dugan 

and Davis, 1993; Quinn et al., 1993; Man et al., 1995; Clark, 1996; Russ and Alcala, 1996; Lauck et al., 

1998; Guenette and Pitcher, 1999; Hastings and Botsford, 1999; Mangel, 2000; Walters, 2000).1  While 

scientists have put forward a number of reasons for why spatial management is sensible, arguably the 

most significant conclusion for the fishing industry is that reserves can generate both conservation 

benefits and long-term harvest increases.2  If this conjecture about reserves is true, then we might expect 

that over time reserves will become far more palatable in fishing communities.  However, many 

projections of increased fishing yield are overly optimistic because they ignore the spatial heterogeneity 

of fishing behavior.   

Most research that supports the idea that reserves will increase fishing yields is counter-factual 

policy modeling.  That is, researchers build analytical or simulation models that strive to assess what 

would happen if a reserve were created in a particular (or in some cases a general) fishery.  There 

                                                 
1 Although a complete review of this literature is beyond the scope of this paper, these references are some of the 
high profile and frequently cited studies on the subject.  Two of them (Roberts and Polunin, 1991; Dugan and Davis, 
1993) provide reviews of the biological literature on marine reserves. 
2 Biological analyses of marine reserves outline five interrelated justifications for using marine reserves to manage 
commercial fisheries.  Reserves can rebuild overexploited areas (Polacheck, 1990; DeMartini, 1993; Bohnsack, 
1993), take advantage of dispersal mechanisms in boosting system-wide biological production (Davis, 1989; 
Polacheck, 1990; DeMartini, 1993; Bohnsack, 1993; Carr and Reed, 1993; Lauck et al., 1998), encourage returns to 
scale and size in system-wide production (Roberts and Polunin, 1991; DeMartini, 1993; Bohnsack, 1993), preserve 
the natural life cycle of an organism (Polacheck, 1990; Bohnsack, 1993; Carr and Reed, 1993), and provide a hedge 
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certainly is substantial empirical evidence that supports population recovery within a reserve (Roberts and 

Polunin, 1991; Dugan and Davis, 1993; Russ and Alcala, 1996).  However, there is limited empirical 

evidence demonstrating that long-term fishing yields increase (McClanahan and Kaunda-Arara, 1995; 

Roberts et al., 2001).3,4 Nevertheless, the idea that reserves will generate fishery benefits in addition to 

conservation benefits is becoming widely accepted in biological circles.  Rather than relying on empirical 

evidence, the most compelling arguments in favor of reserves have come from biological modeling efforts 

that show how a reserve can simultaneously increase spawning biomass and fishing yield.  A recent 

National Research Council report on Marine Protected Areas chooses to paraphrase a yet unpublished 

review of these modeling studies, “with a constant level of effort that would otherwise result in 

overfishing, models indicate that reserves would increase the yield of the fishery relative to conventional 

management”(NRC, 2001, p. 143).  The overall enthusiasm for reserves and the rapid rise of new policies 

to promote reserve formation necessitate a careful evaluation of the robustness of these models. 

In contrast to the biological literature, economists have shown more skepticism about reserve 

formation, although they have identified some conditions under which marine reserves will lead to fishery 

gains for an exploited resource.  By extending existing bioeconomic models to space, economists stress 

that whether a reserve generates net benefits involves a complex function of economic and biological 

factors (Sanchirico and Wilen, 1999).  One immediate economic concern is that the long-term gains from 

reserve creation, when discounted, may not outweigh short-term costs (Holland and Brazee, 1996; 

Conrad, 1999).  Another key concern is simply that reserves do not address open access rent dissipation 

forces that are at work in the remaining fished areas (Hannesson, 1998).  Even under open access, 

reserves can generate steady state biomass and harvest increases under some scenarios (Pezzey et al., 

2000; Sanchirico and Wilen, 2001).  Whether these gains translate into net economic benefits is another 

                                                                                                                                                             
against stock collapses (Bohnsack, 1993; Carr and Reed, 1993; Clark, 1996; Lauck et al., 1998; Hastings and 
Botsford, 1999).  For further discussion of these mechanisms, see Smith, 2001. 
3 McClanahan and Kaunda-Arara actually found that total catch decreased, although catch per unit effort increased 
with a reserve. 
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question, and the only study that demonstrates that implementing a reserve is the optimal policy relies 

heavily on a strong biological assumption of a common larval pool (Brown and Roughgarden, 1997).  

The only empirically based bioeconomic model of reserves suggests that not only do economic net 

benefits fail to materialize but also that long-term harvest predictions are lower than management without 

reserves (Smith and Wilen, 2002). 

This paper helps to reconcile marine reserve promotion by biologists with the skepticism of 

economists by recasting the biological modeling literature into production economics and exploring 

production surfaces for a spatially differentiated renewable resource.  A conceptual framework is 

constructed to analyze steady state harvests for a fixed amount of total harvesting effort.  The resulting 

model, which applies to a wide range of renewable resource problems, is used to examine management 

through protected areas and to evaluate the importance of assumptions about spatial behavior.  A 

simulation of marine reserve formation in a fishery with Beverton-Holt recruitment adds larval dispersal 

to the conceptual framework.  Together, these analyses help to explain the divergence between the 

overwhelming support of biologists and the qualified enthusiasm of resource economists for marine 

protected areas as a fishery management tool.  

Comparing the economic literature on reserves to the biological literature is difficult because 

numerous factors differ.  The introduction of discounting, dynamic (and spatial) behavior, and open 

access incentives in economic models ultimately means that the modeling works across disciplines are 

essentially apples and oranges.  As such, this paper focuses just on the steady state effect of a reserve on 

total harvest and assumes, like much of the biological literature, that total fishing effort is fixed before 

and after reserve creation.   

The central argument in this paper is as follows.  First, empirically fishing effort is not uniformly 

distributed across space.  Second, steady state production surfaces are non-monotonic in effort.  Third, 

many biological models of a reserve incorporate a non-convexity in the steady state production surface at 

                                                                                                                                                             
4 Undoubtedly, the sparseness of empirical support is at least partly due to the sparseness of reserves designed 
specifically for fishery management, the difficulty of collecting data in these settings, and potentially long time 
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high levels of exploitation.  Fourth, high exploitation rates are the most likely cases in which reserves will 

be considered.  Fifth, in spite of empirical evidence to the contrary, most biological models that evaluate 

marine reserves assume that fishing effort it uniformly distributed across space.  Finally, when spatial 

management is considered, the non-convexity combined non-monotonicity, high exploitation, and the 

seemingly innocuous behavioral assumption of spatial uniformity lead to overly optimistic predictions 

about the potential gains from management with reserves.  Thus, the virtually unqualified support of 

marine biologists for marine reserves as a management tool is partly an artifact of an inaccurate 

behavioral simplification.   

Section II reviews the empirical fisheries and fisheries economics literature to establish that 

fishing effort is not distributed uniformly across space.  Section III defines renewable resource production 

surfaces and explains the rationale for why they typically are non-monotonic and have non-convexities.  

Section IV presents a simple but quite general conceptual model with propositions to shed light on the 

biases in marine reserve modeling.  Section V presents a simulation model that accounts for larval 

dispersal of organisms and demonstrates again that simplifying behavioral assumptions bias results in 

favor of marine reserves.  Finally, section VI discusses the results. 

II.  Spatial Heterogeneity of Renewable Resource Harvesters 

There is substantial evidence that actual commercial fishing is not uniformly distributed across 

space but rather responds to relative economic incentives.  In many circumstances, this leads to a pattern 

of spatial heterogeneity.  Literature in fisheries science analyzes spatial heterogeneity both in attempts to 

explain differences in fishing power (Hilborn, 1985; Hilborn and Ledbetter, 1985) and in efforts to 

account for fleet movement (Hilborn and Ledbetter, 1979; Abrahams and Healey, 1990).  Several 

economic papers estimate structural models of fishing location choice that clearly demonstrate how 

individual commercial fishing decisions respond to relative economic opportunities across space (Eales 

and Wilen, 1986; Dupont, 1993; Larson et al, 1999; Holland and Sutinen, 2000; Mistiaen and Strand, 

2000; Smith, 2002).  In some of these studies, a non-uniform pattern of spatial exploitation will persist 

                                                                                                                                                             
horizons required for stock benefits to spill over into fished areas.   
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even when measurable economic opportunities equilibrate across space because harvesters are 

heterogeneous or have heterogeneous past experiences. 

However, the biological modeling literature cited above primarily assumes uniform behavior.5  

The key issue at present is whether the behavioral simplification that most conceptual models posit leads 

to qualitatively different conclusions.  The short answer is that this simplification matters a great deal, and 

qualitative predictions from models are predictably over- or under-optimistic depending on the 

characteristics of the resource production surface. 

III. Steady State Production Surfaces, Non-Monotonicity, and Non-Convexity 

In many renewable resource settings, steady state production as a function of effort (harvesting 

intensity) is non-monotonic, usually due to a combination of intrinsic biological growth and carrying 

capacity.  As steady state effort increases, steady state harvest increases and then decreases.   In a typical 

production setting, one would assume free disposal of effort, and the production function would 

effectively flatten out at its peak.  However, in many renewable resource settings, free disposal is an 

unreasonable assumption in the steady state as a result of discounting; when there are small or nonexistent 

stock effects, harvest is decreasing in effort at the optimal steady state stock and harvest.  Similarly, 

harvest is also typically decreasing in effort at the open access steady state stock level.  In a heavily 

exploited fishery for which management with reserves is under consideration, we expect that steady state 

production is characterized by a place on the back side of this effort/harvest curve. 

The most common production model in fisheries economics is the Schaefer (1957) logistic 

growth model in which net growth in fish stock is a quadratic function of existing stock.  Figure 1 depicts 

this classic textbook starting place for many fisheries economics models.  The most common production 

function for this simple system is one in which harvest is proportional to fishing effort and stock size.  

With this production relationship, the shape of steady state harvest as a function of effort is parabolic as in 

Figure 1.  Unlike in a static production setting in which we typically assume free disposal of an input, 

                                                 
5 One exception is Walters (2000), who builds responsiveness to economic opportunities into his ECOSPACE 
model.   
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steady state production of a renewable resource rises, peaks, and then falls as a function of the amount of 

the input fishing effort.  This non-monotinicity of steady state production is a direct consequence of the 

underlying biological dynamics.   

More realistic depictions of biological production in exploited renewable resource systems allow 

for non-convexities in net growth functions or in harvest functions.  A non-convexity means that there 

exist points outside the production set along a convex combination of two points on the boundary of the 

set.  Such non-convexities can arise due to pure biological compensation, biological depensation, or size 

limit regulations.6  Our focus here is on compensation, since most marine reserve models incorporate 

compensatory mechanisms.   Pure compensation exists when net growth as a proportion of stock is a 

decreasing function of the stock size (Clark, 1990).  The motivation for compensation is density 

dependent survival at high population levels. 

The generalized logistic growth model (Clark, 1990) can account for both compensatory and 

depensatory mechanisms, which in turn introduce non-convexities in the steady state harvest/effort 

relationship.   Figure 2 depicts a growth curve with pure compensation, and Figure 3 depicts the 

corresponding effort/harvest curve.  The effort/harvest curve is a production surface.  It has an inflection 

point at a high level of exploitation where the production surface changes from a concave to a convex 

function.    

Many conceptual studies of marine reserves use Beverton-Holt yield per recruit models, and 

indeed Beverton and Holt were the first to consider reserves as a fishery management tool (Guenette et 

al., 1998).  The standard Beverton-Holt stock recruitment function generates pure compensation (Quinn 

and Deriso, 1999), which in turn creates a non-convexity in the harvest/effort surface.  Similarly, fixed 

size limits in the Beverton-Holt fisheries model also lead to the same form of non-convexity because 

                                                 
6 We do not rule out the possibility that production technologies and their interactions with stock levels may also 
produce non-convexities.  For instance, additional search burden for harvesters with a lower stock level could 
moderate the impact on the stock under increased harvesting pressure.   However, the focus in this paper is on 
biological mechanisms.   
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fishing effort can only harvest organisms that pass the size limit.7  Overall, at high levels of exploitation, 

i.e. fishing effort levels beyond the maximum sustainable yield, production is decreasing in effort first at 

an increasing rate and then at a decreasing rate. 

Appendix A derives steady state production for a two-patch Beverton-Holt model.  Figures 4 and 

5 depicts the steady state production surface for two different values of the slope of the stock recruitment 

function (a=18 and a=40).  The peak of each surface is the steady state maximum sustainable yield and 

corresponds is characterized by a magnitude and spatial distribution of fishing effort.  Here there is 

neither larval nor adult dispersal, and the biological parameters are the same across patches.  Thus, the 

peak occurs where effort is uniformly distributed.   

While production non-convexities can complicate bioeconomic modeling of single pool 

resources, when space is introduced, the consequences are more severe.  As we will see in the next 

section, the assumed baseline spatial distribution of fishing effort greatly affects the conclusions about 

total system harvest when creating a reserve. 

IV. A Conceptual Model of Steady State Production in Space 

Figures 6 and 7 depict level sets for the two production surfaces. Thus, we can view these 

contours as isoquants.  In both figures, we see not only the non-monotonic relationship between f values 

and production but also the changing shapes of isoquants and how they reflect production set non-

convexities.  Here it is important to recall that the upper contour sets lie further from the origin for 

contours before the point of maximum production and closer to the origin for contours beyond the 

maximum sustainable yield.  This figure also reinforces the importance of not assuming free disposal.  If 

we permit free disposal of fishing effort, then the curve never turns down past the maximum sustainable 

yield. 

Figure 8 zooms in on the first level sets, depicts more of the contours, adds several iso-effort lines 

(lines along which total system-wide effort is constant), and removes the contour labels for clarity.  This 

figure uses a gray scale so that lighter shades correspond to higher elevations on the production surface.  

                                                 
7 This assumes knife-edge selectivity. 
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We will use this figure to evaluate the importance of the distribution of fishing effort and not just the 

magnitude of effort.  The iso-effort lines divide each figure into four regions.  First we define these 

regions.  All regions are bounded by the positive orthant.  Next we apply Jensen’s inequality to prove two 

simple lemmas.  Finally, the results of the analysis are summarized in four propositions.  Note that 

system-wide yield is y(f1,f2), or more concisely, y(f).  Figure 8 motivates the following definitions of 

production regions, but it is important to emphasize that these definitions are more general than the 

analytical model that produced Figures 4-8.  The definitions of the production regions are: 

Region 1 

Production is increasing and strictly concave in f.  The boundary is defined by (f1*,0) and (f2*,0) where 
f1* = argmax[y(f1,0)] and f2* = argmax[y(0,f2)].  That is, the boundary is the point on each axis that 
corresponds to each patch’s maximum sustainable yield. 
 
Region 2 

Production is strictly concave in f, increasing for part of the region, and decreasing for part of the region.  
Along the axes, production is decreasing in f because f’s are beyond patch-specific maximum sustainable 
yields.  The boundary is defined by (f1**+f2**,0) and (0, f1**+f2**), where [f1**,f2**] = argmax[y(f)].  
That is, the boundary is the point on each axis that corresponds to the total amount of fishing effort at the 
system-wide maximum sustainable yield. 
 
Region 3 

Production is decreasing and strictly concave in f.  The boundary is defined by the plane of inflection 
between the convex and concave region of the production surface.8   
 
Region 4 

Production is decreasing and strictly convex in f.  
 

In the following two lemmas, we appeal to Jensen’s Inequality rather than simply apply the 

definitions of concave and convex functions.  The reason is to present results that are proved easily but 

generalize to more complicated settings including a larger number of patches and fishing distributions that 

are continuous across space. 

  
Lemma 1 

A uniform distribution of fishing effort maximizes system-wide production in regions 1, 2, and 3.   
                                                 
8 In Figure 8, the plane depicted is linear, but it in general it does not have to be linear. 
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Proof: Ytot = y(f1) + y(f2) = 2*E[y(f)].  For a uniform distribution of effort, Ytot = 
y((f1+f2)/2) + y((f1+ f2)/2) = 2y(E[f]).  By Jensen’s Inequality, y(E[f])>=E[y(f)].  Q.E.D. 

 
Lemma 2 

A uniform distribution of fishing effort minimizes system-wide production in region 4.   
 

Proof: Same as Lemma 1 except using the result from Jensen’s Inequality for convex 
functions. 

 

Proposition 1 

For a given isoquant in region 1, a redistribution of uniform fishing effort into a reserve allocation 
decreases production more than the same redistribution of any other effort allocation along the same 
isoquant.   
 

Proof: A reserve allocation corresponds to a point on either axis.  By definition, yield is 
increasing in either f throughout region 1.  Since uniform effort maximizes production for 
a given total effort (from Lemma 1), it has a dual interpretation as the minimum effort 
needed to obtain a given yield.  Thus all other effort allocations for that yield correspond 
to a higher iso-effort line.  The higher iso-effort line intersects the axes further from the 
origin, i.e. at a higher production level, than the iso-effort line corresponding to the 
uniform distribution of effort.  Q.E.D. 

 

The immediate implication of Proposition 1 is that at low levels of exploitation a reserve is likely to seem 

worse in terms of system-wide steady state harvest than it really is.  That is, if analysts assume uniform 

fishing effort when, in fact, effort is heterogeneous across space, a reserve will appear to be a less 

favorable option than it really is under the correct effort distribution assumption.  

Proposition 2 

For a given isoquant in region 2, a redistribution of uniform fishing effort into a reserve allocation 
decreases production less than the same redistribution of any other effort allocation along the same 
isoquant.   
 

Proof: The proof is the same as the proof for proposition 1, and we note simply that by 
definition of region 2, points along the axes correspond to lower levels of production as 
they move further from the origin.   
 

The implication of Proposition 2 is just the opposite of Proposition 1.  If managers falsely assume 

uniform effort, they will infer that reserves are less costly in terms of total yield than they actually are.   

Proposition 3 
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For a given isoquant in region 3, a redistribution of uniform fishing effort into a reserve allocation 
decreases production more than the same redistribution of any other effort allocation along the same 
isoquant.   
 

Proof: By Lemma 1, uniform effort maximizes production for that total amount of 
effort.  Because production is strictly decreasing in effort within region 3, a non-uniform 
level of effort that lies on the same isoquant must be a lower level of total effort.  Thus, 
the corresponding iso-effort intersects the axes closer to the origin, i.e. at a higher level of 
production.  Q.E.D. 

 

The implication of proposition 3 on the surface is essentially the same as that of proposition 1.  However, 

on a deeper level, there is a key difference.  In region 3, the fishery is heavily exploited.  If a reserve 

seems more costly than it in fact will be, then analysts would be less likely to recommend one.  Yet, in 

this region, the system is closer to being overexploited.  So, choosing not to implement a reserve for 

allocations in region 3 could be more costly if there were an environmental shock to the system.  

Whereas, in region 1 choosing not to put in a reserve is likely the best policy anyway. 

Proposition 4 

For a given isoquant in region 4, a redistribution of uniform fishing effort into a reserve allocation 
decreases production less (or increases production more) than the same redistribution of any other effort 
allocation along the same isoquant.   
 

Proof: By Lemma 2, uniform effort minimizes production.  So, any other point on the 
isoquant is on a higher iso-effort line, which intersects the axes further from the origin.  
Points further from the origin correspond to lower levels of production.  Q.E.D. 

 

The implication is  that in a very heavily exploited fishery, falsely assuming that uniform effort produced 

the observed harvest gives rise to an overly optimistic evaluation of reserves.   

 To summarize the implications of Propositions 1-4, consider regions 1-4 as qualitatively 

representing regions of low, moderate, high, and extreme exploitation.  Consider a management model 

that is calibrated to total fishing catch in the system.  Then a naïve assumption that fishing effort is 

distributed uniformly over space has different implications at different levels of exploitation.  At low 

levels, a marine reserve seems more costly than it really is, but there is little practical significance of this 

finding.  The reason is that managers would be unlikely to consider a reserve in a lightly exploited 

system.  At moderate levels of exploitation, a reserve seems less costly than it really is.  If managers are 

 10



extremely risk averse, falsely assuming a uniform effort distribution could lead to support for reserves 

when they are very costly in terms of total harvest.  For high exploitation, the bias of assuming uniform 

effort goes against implementing a reserve.  Finally, for extreme exploitation, the bias of assuming 

uniform effort favors implementing reserves.  The point, then, is that the typical effort distribution 

assumption embedded in most biological models of reserve formation, namely that effort is distributed 

uniformly, can bias the predicted impacts of marine reserve formation in significant ways and in a manner 

that depends upon the region in which the status quo is presumed to be located. 

V. Simulation with a Beverton-Holt Model and Larval Dispersal 

The derivation of the production surface in Figure 4 is based on the standard Beverton-Holt 

recruitment, which has compensatory mechanisms built into the model structure.9  It is also possible that 

larval dispersal may affect the shape of the steady state production surface.  Derivation of a surface 

comparable to Figure 4 is far more complicated with dispersal, but it is possible to explore the predictions 

of the previous section with simulations of the steady state.10  We use parameter values from Wilen et al. 

(2002) for an eleven-patch metapopulation of red sea urchins, and for simplicity we assume uniform 

larval dispersal.  This is equivalent to a common larval pool in which the number of incoming larvae for 

each patch in a given year is simply one eleventh of the total larvae produced in the system.  

For a fixed amount of fishing effort, we use the Beverton-Holt recruitment parameter a to 

characterize different levels of exploitation.  When a is high, relative exploitation is low, but when a is low, 

relative exploitation is high.  We first run simulations for three different a parameters for a given total fishing 

effort that is distributed uniformly across the patches.  Then we re-run the simulations such that effort in half 

of the patches is twice the level of effort in the other half of the patches but the total effort in the system is the 

same.  The results of these simple simulations are completely consistent with the analysis above.  For a=0.1 

(a high level), the uniform distribution of effort leads to a higher steady state harvest level than heterogeneous 

                                                 
9 It is also possible to introduce depensation directly into the recruitment function and generate another source of 
non-convexity.  See Liermann and Hilborn (2001) for details. 
10 Efforts to derive an explicit analytical expression for a surface with the model in Appendix A have not been 
successful.  To date, we have found only a set of implicit functions that describe the surface. 
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effort (484,512 kg compared to 464,525 kg).  For a=0.005 (a low level), the uniform distribution leads to a 

lower steady state harvest level than heterogeneous effort (246,804 kg compared to 269,963 kg).  For a=0.01 

(an intermediate level), the steady state harvest levels are very close (371,494 kg and 372,067 kg).  At a low 

a, the system is exploited in the extreme region and uniform effort minimizes production.  At high a, the 

system is in the high exploitation region and uniform effort maximizes production.  The intermediate a falls 

near the inflection plane. 

 
V. Discussion 

Unlike previous economic analyses of marine reserves, this paper does not address the 

intertemporal tradeoffs in reserve formation nor does it address the implications of open access in the 

remaining fishing areas.  Instead, it interjects skepticism about a key central claim in the biological 

literature on reserves: that marine reserves will both generate conservation benefits and increase fishing 

yields.  The claim of increased fishing yields is far less justified when relaxing an obviously inaccurate 

behavioral assumption.  While much of the biological modeling ignores the short-run losses from 

implementing marine protected areas, even the steady state comparisons are questionable given the biases 

that result from assuming uniformly distributed behavior.   

Ironically, many models of reserves incorporate compensatory mechanisms that ultimately induce 

biases in analyses that ignore spatial behavior, yet several qualitative arguments for reserves have focused 

on depensatory mechanisms such as Allee effects.  These mechanisms also generate non-convexities in 

steady state production surfaces but in different ways and may also lead to multiple equilibria.  As 

modelers explore the effects of marine reserves when there is biological depensation, it important to 

consider the potential biases that may result with simplifying behavioral assumptions. 

A second irony is the role that spatial structure plays in motivating management with marine 

reserves.  In particular, appeals to metapopulation ecology suggest that spatial heterogeneity of the 

resource and the dynamics of dispersal favor some areas for exploitation and others as breeding 
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populations to feed exploited areas.  Yet, it is inattention to spatial structure in the harvest sector that 

generates biases in biological models of marine reserves. 

The analysis in this work should not be taken as an indictment of marine reserves in general or 

even specifically as a fishery management tool.  Rather, it casts doubt on the existing biological modeling 

that simplistically depicts fishing behavior as uniformly distributed in space.  To make any reliable 

predictions about the performance of spatial management options therefore requires serious empirical 

analysis of harvester spatial behavior. 
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Appendix A – Derivation of the Beverton-Holt Steady State Production Surface 

The following model is based on Botsford et al. (1999) and is the NOECON model that appears 

in Wilen et al.(2002).  Consider a metapopulation with larval dispersal and sedentary adults.  Adult 

organisms grow according to the following von Bertalanffy relationship: 

Size j,a = ( )akj jeL −
∞ −1 ,         (A1) 

where j indexes locations (patches), is patch-specific terminal size, a is age, and kjL∞ j is a patch-specific 

growth parameter.  Aj,a is the number of adults in each patch of each age class.  All adult organisms are 

subject to patch-specific natural mortality (mj), and ones above the size limit (Llimit) are subject to fishing 

mortality (fj) 

 
LSizeifeA

LSizeifeA
A

itlima,j
fm-

 aj, 

itlima,j
-m

 aj, 
 aj, 

jj

j







>

<
=

−
      (A2) 

Catch (C) is a matter of adding up fishing mortality across all locations and age classes weighted by 

organism size and allometric parameters (w and b) that convert size into biomass. 
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The following equation describes egg production (ej) in the system. 
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∞

=0a
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where α and β are parameters that relate organism size to fecundity.  Eggs disperse to other locations 

according to the following: 

Des pin =           (A5) 

wher sin is a vector of number of juveniles entering patches, p is survival probability, D is a dispersal matrix.  

Finally, we have the Beverton-Holt recruitment function with parameters a and c: 

in
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where sout is the number of juveniles settling out in a location and becoming  age zero adults 

Consider a two-patch version of the (A.1)-(A.6) in which all larvae disperse to the own-patch, so 

that the patches are only linked through harvest and not through biology.  The metapopulation model 

essentially has Beverton-Holt models within each patch.  We assume that fishing gear has knife-edge 

selectivity.  This means that organisms below the size limit are never harvested but all urchins above the 

size limit are subject to exploitation.  Clark (1990) explains how to obtain steady state yield from a 

Beverton-Holt fishery with constant recruitment.  The basic idea is that integrating over all age classes in 

the steady state is the same as integrating over the life phases of an individual organism.  Continuing to 

index patch by j, denoting recruits as R, and patch-specific steady state harvest (yield) as y, we have: 

dt)t(weefRy
t

t)fm(ft
jjj

j∫
∞

+−

µ

µ= ,      (A7) 

where w(t) is the weighting function and tµ is the age at which an organism is first subjected to fishing 

mortality.   From (A1) and (A2),  
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µ L

L
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From (A1) and (A3),  

([ bkteLw)t(w −
∞ −= 1 )] .       (A9) 

In principle, biological and oceanographic parameters in the model could be patch-specific, but we set 

them equal to simplify matters and explore questions about effort distribution.  Clearly, the integral in 

(A9) will be problematic without the parameter b taking on an integer value.  Typically, this parameter is 

assumed to be 3.0.  See Clark (1990) for an example.   

 Finding steady state recruits involves finding steady state egg production.  We note first that new 

recruits are simply settlers out, so: 
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jj sR ≡

In (A6), we have an expression for settlers out as a function of settlers in.  With own-patch dispersal, 

settlers in is simply a fraction of egg production in the patch, which we can assume for simplicity is one.  

Using the same logic as in (A7) and substituting for settlers out, the following relationship must hold in 

the steady state: 
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To continue with analytical expressions, suppose that β=2.  We can then find an implicit expression for 

steady state egg production as a function of effort and parameters: 
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Thus we have an analytical expression for Rj at different values of fishing mortality.  Substituting the 

result into (A7) and assuming b = 3, we can find an analytical expression for steady state yield in each 

patch: 

 ,       (A15) ( ) Γ= µ−
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In the two-patch system, total steady state yield is simply the sum of patch-specific yields.  So, 

we can depict the production surface in three dimensions. Throughout this section, we refer to the fishing 

mortality parameter f and fishing effort to be synonymous.  In reality, the parameter is a scaled fishing 

effort. 11   

                                                 
11 The scaling of the recruitment parameter is different than in later simulation modeling because we permit infinite 
horizon organism life cycles and we are abstracting into a two-patch world.  Total harvest is also re-scaled to avoid 
labels that are in scientific notation. 

 20



 

Figure 1 

Logistic Growth Model

0
0.05
0.1

0.15
0.2

0.25
0.3

0 0.2 0.4 0.6 0.8 1 1.2

Stock
(Effort)

N
et

 G
ro

w
th

(H
ar

ve
st

)

 

Figure 2 

Net Growth with Compensation
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Figure 3 

Effort/Yield Curve with Compensation
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Figure 4 

Two Patch Beverton-Holt Production 

 

 22



Figure 5 
Two Patch Beverton-Holt Production 

 

Figure 6 
Level Curves for Steady State Production 
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Figure 7 
Level Curves for Steady State Production 

 

Figure 8 
Region Definitions 
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