|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

A Linear Programming Model
\ of a Multiplant Tomato Pecking T'irm

By
Jeremiah Edward Fruin

(University of Illinois, Urbana) 1958
M.S. (University of Illinois, Urbana) 1959

DISSERTATION

Submitted in partial satisfaction of the requirements for

DOCTOR OF PHILOSOPLY

in

Agricuitural Economics

in the
GRADUATE DIVISIOH
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: W\ ;
// J./‘L // / % LL’ LY

-l.a-o ‘‘‘‘‘‘‘ e vavse et ade
/ &
_ P ~—
O e 1 s N
o-o&-o . ana"aoo-ouou-n-:ui!-cotnlch

)ﬁ /{/ AL Gl

- .-'oloﬁn- -.-.oo,/ [ B B BURY B A BN I I L

Committee in Charge

SP G UGB LG OOO R OBDOENRNGIOBIIERITINNORINDOES

the degree of



A LINEAR PROGRAMMING MODEL OF A
MULTITLANT TOMATO PACKING FIRM

ABSTRACT Jeremiah E, Fruin

A firm processes a perishable seasonal agricultural commodity
into several finished products. The lots of raw commodity are obtained
from many locations and have characteristics which vary with variety,
location and time of season., These raw product characteristics affect
the yield and quality of the various finished products differently but
according to known relationships. These characteristics can be measured
and estimates of their values for each lot can be obtained pricr to
harvest along with an expected harvest date. !

The firm has geographically separated plants with different
preduction capabilities at each plant as all finished products are not
produced at all plants and production costs for s finisheﬁ product mayr
vary between plants, Production capacity is limited and must be
considered. Transportation costs for a lot of raw pfoducts may vary
between plants.

The expected prices of the finished products are known. There may
be maximum or minimum quantities for some or all finiched products end
requirements for a quantity of a product to be produced in a given time
pericd.

Management of the firm desires to know to which plant each lot of
raw product should be delivered and to which finished product it should
be converted subject to the finished product quanitity restrictions in
order to maximize the profit accruing to the conversion process.,

The problem as stated can be expressed as & linear programming

Diroblem but in actual practice the dimensions of the problem may be too



-t

large or unwieldy to solve with standard linear programming computer
codes. The decomposition principle of linear programming allows the
solution of much larger problems if the problem can be formulated so
it can be decomposed.

A linear programming model of an operating tomato processing firm
with the above characteristics was developed, The decomposition
principle of linear progremming was applied to obtain the solution of

the problem described above.
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CHAPTER T

INTRODUCTION
The Problem

The management of a firm processing a perishable agricultural
commodity makes numercus decisions such as selecting the finished
product forms, selecfing the quantity of finished products, and
scheduling the production of each form. The scheduling problem is
complicated by the seasonal production pattern of raw products. They
frequently have periods cf low production at both the beginning and
the end of the season and exhibit a marked production peak sometime
during the middle of the season. The complexity of the situation
facing the decision-maker is even greater if gecgraphically separated
plants and several supply areas must be considered.

If the raw product is essentially of a homogenous quality, the
above problems, although complex, can frequently be solved by standard
techniques. However, some raw commodities are quite variable, and thus
it is necessary to consider several qualitative characteristics in
addition to the transportation and production costs and product prices
to obtain thé production schedule and product mix required to maximize
profits. These characteristics can be affected by such things as the
plant variety, the region of origin, the number of previous pickings,

the weather during the seascn prior to maturity, and the weather



immediately prior to picking. The characteristics might also have a
seasonal pattern of variation. The scope of the problem is further
increased if each finished product can be packed in several styles
and/or grades. Each product form can also be packed in more than one
size container. Although the choice of container size is usually not
affected by the raw product characteristics, it frequently is a factor
to be considered in scheduling due to machinery or plant restrictions.

Consequently, the total number of variables, the number of product
forms, and the number of possible production schedules which must be
considered in order to maximize profits, is usually quite large and
presents a very formidable, if not impossible, task for management
to solve using standard techniques.

This study is an attempt to demonstrate the application of linear
programming as a tool to aid management in solving all of the above
problems. In particular, it is an attempt to develop and demonstrate
procedures which will enable management to determine the profit
maximizing schedule and product mix for a season by decomposing the
problem into a series of smaller manageable problems for solution by
existing linear programming techniques on computer facilities of
reasonable size. A further objective is to examine the potential
uses of decomposition techniques in terms of the information avail-

able and its flexibility as compared to conventional linear programming.



The Test Commodity - Tomatoes

Although any one of several perishable commodities might be
appropriate for such a study, tomatoes were selected in this case,

Tomatoes are processed into a wide variety of finished products
including juice, paste, catsup, sauces, and whole fruit. ZEach of these
products is packed in several container sizes and has several
specifications or grades.

Tomatoes have a number of qualitative characteristics including
acceptability for peeling, size, solids content and insoluble solids
content that are important in allocating the raw product to finished
product. These qualitative chafacteristics vary, sometimes widely,
as a result of such things as variety, weather, soil, and cultivation
practices. Frequently, these qualitative characteristics exhibit
seasonal patterns which should be considered in scheduling. For
example, the percent of solids in raw tomatoes tends to increase as
the season progresses.

In addition to the above attributes which make tomatoes an
appropriate commodity to use in the study, a large multiplant tomato
processor, Tri-Valley Growers, was willing to cooperate in providing
both raw product and manufacturing data for use in constructing
linear programming models of tomato processing operations. The avail-
ability of "live" data from an operating enviromment is of major value
in this type of study.

In addition to the decisions required in the general problem
described above, there are other decisions which relate more specifi-

cally to the commodity under study, in this case tomatoes. For example,



is it possible for tomatoes for canning to be upgraded sufficiently

by sorting before peeling to compensate for the increased labor

costs? OShould raw tomatoes be sold rather than processed, and if s0,
which ones? Similar types of decisions relate to the specific
processing environment. How many plants should be utilized and when
-should each one start and stop operations? Should additional capacity
be added to existing plants? These specific problems are included in
this demonstration of the application of linear programming as a tool

to aid management in their decisions.



CHAPTER II. DATA SOURCES AND INFORMATION FLOW

In the development of methods and procedures to aid the decision-
making process of a firm, the first task is necessarily the identifi-
cation of the decision areas under consideration. The next step is to
determine the information required on which to base the decisions.

At the same time, the available information and its path or flow
through the firm from its source to the decision-maker should be de-
termined and evaluated. A sizable discrepancy may exist between the
already available information and the information required by a formal-
ized decision-making process.

In the tomato problem, the decision areas are divided into four
general groups:

1. Which finished product forms and how much of each to produce,
i.e., the pack quantity problem.

2. Where and when to produce each product form, i.e., the
scheduling problem.

3. The assignment of raw tomatoes to finished products, an
allocation problem.

L. The assignment of raw tomatoes from grower to plant, a
transportation problem.

It should be recognized that these are not isolated decision
areas but are definitely linked together and that a change in any one
area will probably affect the "best" solution to the others. However,
if one doesn't have a way of obtaining the "best" overall solution,

these are probably quite reasonable sub-areas in which to suboptimize.



For anﬁlytical purposes, we can look at the multiplant tomato
processing firm as having the four information sources shown in figure
1. This does not represent the actual organization but‘is based on the
type of information available at each point and the type of decisions
which are made or recommended at that point. There are also related
information (and decision) centers in the figure which, although
generally outside the structure of the firm, definitely influence the
firm and are influenced by it. Two of these are the producers of the
raw product and the purchasers of the finished products.

The first information and decision center is the firm's head-
quarters or general management level. Detailed data about the firm's
operations generally do not originate here.. Rather, the data originating
here are more likely to be centered on such things as general economic
conditions and long-range projections.

In addition, the firm's general management will generally have
the responsibility for coordinating the collection and transfer of all
information needed by the firm's decision-makers, especially if the
information source and the decision-maker are in different parts of
the firm. However, it should be obvious that it is to the advantage
of the general management to avoid having to handle and inspect masses
of information pertaining to routine decisions appropriately made else-
where. Rather, most data should be collected, analyzed, and stored by
routine operations, but should be readily available to aid management

whenever necessary for evaluating either external or internal policies

and procedures.
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Another information and decision-area centers around the sales
function. Here information is obtained about market conditions,
estimates of future sales, and price trends. Information about the
firm's inventory position would also be found in this area. Depending
on the degree of centralization, decisions or proposals regarding price
changes and promotional discounts are appropriately made here. Note
that both the information and the decisions or proposals originating
in this area are essentially outward looking and external to the
processing functions of the firm.

A third information and decision area in Figure 1 is the raw
product acquisition area. Here is where the firm obtains information
on the availability of raw product and changes in the quantity or
Quality available. Decisions or proposals for changes in policy
regarding raw product acquisition will originate here. Although not
shown in Figure 1 because of the preeminence of raw product in the
tomato problem, similar information and decision areas exist with
respect to the purchase of materials other than raw products and the
hiring of labor.

The last information and decision areas shown in Figure 1 are the
plants. BEach plant is generally unique and each probably should be
considered as an individual information and decision center. The
plants are the sources of data on processing costs and production
restrictions,

The information required to base the types of decisions enumerated
earlier necessarily comes from two or more of the information centers.

These decisions normally affect more than one area of the firm. However,



these decisions, although subject to some broad guidelines of policy,
cannot be considered appropriately made at the headquarters level but
rather at various operational levels. For example, decisions pertaining
to the allocation of raw product to the production process of a commodity
may sometimes be determined daily at the plant.

As a result of the necessity to make timely decisions in these
areas and the time lags inherent in passing information through channels
from one part of the organization to another (not to mention distortions
caused by departmental self-images), decisions are frequently based on
something less than full knowledge. For example, pack targets are
necessarily based on the sales estimates which are obtained from know-
ledge of total industry supply, expected demand, consumer trends, and
from information pertaining to the quantity of raw product which will be
available for processing. However, after certain quotas have been ob-
tained, the optimum breakdown of the production targets between individual
products, can sizes, and grades will depend more on the quality of fruit
available and on the manufacturing capabilities and costs than on the
total tonnage available for processing. This information (and the means
to analyze it quickly) is not usually available to the sales or marketing
organization,

The linear programming model of the firm as developed here will
formalize the information requirement so that all the appropriate infor-
mation is included in the decision-making process. The solution to the
linear programming problem will provide a basis for answering the ques-
tions in each of the four decision areas enumerated at the beginning of

this chapter. In addition, if properly maintained, it can be used to
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furnish a basis for decisions pertaining to the related areas mentioned
in Chapter 1.

The remainder of Chapter II discusses in detail the specific areas
included in the model of the tomato packing firm and the types of infor-
mation which must be considered in the decision process. Chapter III
discusses the use of the decomposition principle of linear programming

in the modeling of a multiplant firm.

Problems of Allocation and Scheduling

There are a large number of considerations involved in deter-
mining which commodity and to which plant a given lot of tomatoes
should be allocated. We must consider the raw product characteristics
of the tomatoes, the location of the field as reflected in the transpor-
tation cost, what plants are operating, what specialized equipment or
processes are available at each plant, and the firm production targets
by commodity.

We must simultaneously determine the commodity production targets
for each plant. These are influenced by such things as the available
machinery at each plant, the various plant costs and the raw product
characteristics of the tomatoes which are available for shipping.

The raw product characteristics of most interests are:

1. Percent of choice peelers.

2. Percent standard peelers.

3. Percent peeling loss.

4. Percent total solids.

5. Percent insoluble solids.

6. Percent pulping and finishing loss.

7. Special problems such as mold and other defects.
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The general classes of finished products are:
1. Whole peeled tomatoes (cored).

2. Whole peeled tomatoes (coreless).

3. Juice.
4. Puree.
5. Paste.
6. Sauce and catsup.

The effect of some of the raw product characteristics in allocat-~
ing to the finished commodities should be obvious. A high percent of
choice and standard peelers, and a low peeling loss are desired if the
tomatoes are to be used for canning whole. These characteristics have
no effect on the desirability of the lot for the other commodity
classes. A high percentage of total solids is desired if the tomatoes
are to be used for paste or puree since the total solids ccntent of
the product is the standard for paste and puree. Tomatoes with six per-
cent solids will yield 120 percent as much paste or puree as tomatoes
with five percent solids. In addition, less evaporation is necessary in
the concentration process. Besides the lower processing cost, this means
more tomatoes can be processed if evaporator capacity is limited. Simi-
larly, high insoluble solids are desirable for sauce and catsup where the
consistency is an important element of the standard. A low pulping and
finishing loss is desirable for all the product classes but has no effect
for whole peel tomatoes. Those tomato inputs falling in the category
of special problems will usually result in higher processing costs, but
their use in some types of products will normally yield better results

than in others.
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There are several considerations involved in determining to which
plant site a particular lot of tomatoes should be sent. One of the
most obvious is transportation cost, the major part of which is the cost
of hauling. In the simplest case, the tomatoes are sent to the plant
where the transportation cost is lowest. However, there are numerous
circumstances where this might not be the most profitable action. For
example, if the tomatoes are of extremely good peeling quality and the
plant associated with the lowest transportation cost is only processing
tomato products, the tomatoes might be sent to that plant producing
whole peel tomatoes which has the lowest transportation cost. Conceiv-
ably, these tomatoes should be sent to a third plant if the second plant
is utilizing its capacity fully.

In addition to the monetary cost of transportation, the perishable
nature of the raw product is the source of an intangible cost while the
tomatoes are being moved to the plant site. Although hard to evaluate,
the deterioration of fruit between picking and processing can be a
major cost to the firm.

If the equipment configuration varies between plants resulting in
specialized equipment at one or more plants or the production costs vary
widely between plants, it would be more profitable to send the raw toma-
toes to the plant where the total of transportation and prdduction costs
is smallest, instead of basing the decision on transportation costs
alone. Note that there might only be one commodity produced on the
specialized equipment. If, for example, there are low costs of pro-
ducing whole peeled tomatoes at a particular plant, higher transport

costs only for peeling tomatoes might be justified.
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Theré is also the possibility that it might be advantageous to
incur extra transportation costs to ship tomatoes to a plant to balance
raw product mix so that the equipment will be efficiently utilized.

In addition to determining allocation of raw product to plants,
there are the problems of opening and closing plants and of maintaining
a sufficient flow of raw material so that an efficient level of operation
is maintained. It is desirable to have enough plants open so that
transportation costs are reasonable and, at the same time, run those
that are operating at an efficient level. These requirements are
complicated by the fact that the cost of starting production or closing
down a plant is sufficiently large so that it should usually be done
only once during a season. Once a plant is opened, there should be
sufficient raw material to enable it to operate at an efficient level
until it is decided to close it down for the season. Note that the
decision to open or close a plant will cause a reallocation of the
tomatoes to plants. The destination of tomatoes on the margins of
adjacent plants will usually be changed since the total supply of
tomatoes available for the adjacent plants has been increased or
reduced.

While we are allocating the raw product to the plants, we must
simultaneously assign commodity targets to each plant (probably by
grade and can size). These assignments must consider the machinery
available at each plant, possible cost differences at the plants and any
specific distribution consideration such as warehousing costs.

In scheduling the production of different products, one of the

most important considerations is the distribution of tomato receipts
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during the season. Typically, the receipts are quite small initially,
gradually build up to a peak which lasts a week or more and then fall
off until the end of the season. During the seasonal peak, the receipts
might be more than 20 percent greater than the immediately preceding and
following weeks. These tomatoes are generally of high quality. Since
the firm's capacity is based on some normal operating level, the large
supply of tomatoes available during the peak may be greater than the
plant can process unless production is scheduled to obtain the maximum
flow-through of tomatoes. Their perishability effectively prohibits
carry-overs of much more than one day. BEven a short carry-over can
cause marked deterioration in total yield and recovery. The use of
load quotas or other limitations may reduce the quantity delivered, but
damage due to overfilling boxes and the possibility that the tomatoes
will be riper and not hold up well in the yard 1limit the overall
effectiveness of such measures. At these times, judicious scheduling
can be applied to increase the total quantity processed. For example,
whole peel tomatoes might be packed in #10 cans rather than #303 cans

to increase the flow through the canning lines and cookers. The key,
under these conditions, is to avoid machinery or processing bottlenecks
that limit the quantity which can be processed while other equipment is
underutilized. An alternative possibility might be the sale of tomatoes
to other firms to level off receipts. However, the nearby processing
plants of other firms probably are also operating at capacity. If

such an outlet is available, it should be considered. It might be best
not to harvest some tomatoes. Total cost might be least if the poorest

quality tomatoes were left in the field, eliminating picking and transport
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costs and overloading of the plant's facilities. Other considerations
might preclude such action, but if possible it should be considered.

Another consideration in the scheduling of production runs is
the fact that the raw product characteristics typically change during
the course of the season. Peeling quality is generally lower during
the beginning and ending weeks and total solids can be expected to
increase throughout the season.

Other necessary considerations are those due to inventory and/or
market conditions and the uncertainties of weather. Some commodities
from last year's pack might be out of stock, so it is desirable to
produce at least enough to meet current demands as soon as possible in
the season. If an item is in short supply throughout the industry, it
might be possible to advantageously market it early in the seascn.
(However, these factors don't guarantee that the product should be
packed early. Any increase in cost caused by producing the product
early in the season should be compared to the increase in revenue from
higher prices or balanced against the potential loss of good will if
unable to fill orders.)

As a hedge against bad weather and other natural hazards, the firm
might wish to attempt to meet certain minimm pack requirements as
early as possible in the season or by some predetermined date. This
might be an across-the-board requirement or it might apply to only
selected products. Such a requirement might be considered as desirable,
not mandatory, and the costs of obtaining it be considered as an insurance

cost and be evaluated for each product or group of products.
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It should be reiterated that the problems of scheduling production
during the season, the problems of allocating tomatoes to plants and to
commodities, and the assignment of commodity production targets to plants,
are interrelated problems. The least-cost solutions to them cannot be
determined independently. Rather, the solutions must be obtained

simultaneously.

Assembly of Raw Product

The first step in the process of converting raw tomatoes into
finished commodities is the picking of the raw fruit. The method used,
the timing of the pick, and number of times the tomatoes are picked all
affect the quality and characteristics of the fruit for processing.
This is not to say that such things as the variety, cultural practices,
and weather don't also affect the characteristics of the fruit being
picked, but these latter factors cannot be influenced by the firm at the
time of picking.

The fruit can be picked by hand or, in the case of some varies,
by machine.l/ The fields can be hand picked one, two, three or possibly
more times. Machine picking can only be done once, but it does not have
to be the first pick. The hand-picked fruit has less cracks and bruises
and is generally better suited for use as whole peeled tomatoes. The

mechanically harvested tomatoes are usually placed in pallet bins for

1/The discussion of hand and machine picking in this section
pertains to the conditions that existed during the 1965 crop year. In
1970 essentially all of the tomatoes processed in California are picked
by machine including those used in whole peeled products. At the time
the model was developed, the alternative of peeling mechanically
harvested fruit was considered unsatisfactory.
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transport to the plant, while the hand-picked tomatoes are customarily
hauled in wooden lug boxes. Consequently, the two methods require
different equipment for dumping the tomatoes at the plant. Also, the
mechanically harvested tomatoes in the large containers will probably
deteriorate more rapidly than fruit in the smaller wooden boxes unless
special precautions are taken. In addition, there is a difference in
the cost of hauling the bins and wooden boxes.

Once the picked tomatoes have been transported to the plant site
and weighed, they will usually be held in the receiving yard after
unloading for a few hours or more, depending on the backlog, and
possibly on their condition. During this time, costs might be incurred
for some of the lots if it is necessary to use insecticides.

At this stage of processing, there is a yard full of tomatoes of
varying characteristics such as high quality for peeling or a high
solids content. The determination of which commodity the tomatoes are
to be allocated to generally has to be made at this point before they

are dumped for washing and enter the plant.

Manufacturing Process (Whole Peel Tomatoes)

If the lot of tomatoes is to be used in canning whole tomatoes,
some method must be used to separate fruit which is unsuitable for use
as whole tomatoes from the rest. (This can be more than half of the
tomatoes.) One method is to select out the choicest fruit for peeling
and let all of the rest (except culls) go directly to the products
operation without peeling. Another possibility is to peel all of the
fruit except culls and send the fruit unsuitable for canning to the

products operation. Peeled fruit used for products has a peeling loss
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which the fruit sent directly to products does not lose. The relative
merits of the two procedures are dependent on a number of factors
including the quality of the fruit, the cost of selecting out fruit, the
desired grades of final product, and the peeling loss and the pulping

and finishing losses of the tomatoes. A further consideration is whether
there is sufficient peeler capacity within the existing plant configura-
tion to peel tomatoes which will not be used for whole peel commodities.
This is a short term consideration but it might preclude peeling without
selection until additional peeler capacity could be obtained.

Ideally, we would compare the cost of preselecting tomatoes with
the cost of the additional losses and operating expenses of peeling all
the fruit and select the cheaper method. However, the choice of whether
to select out peeling tomatoes before peeling or to peel all the fruit
is complicated by three additional factors. First, the quality of the
fruit for canning cannot be judged with complete accuracy before peeling.
The color of peeled fruit sometimes differs markedly from the color of
unpeeled fruit. Second, many good tcmatoes may be missed in the selec-
tion process because of undermanning when the quality of tomatoes is
high. If the quality is generally poor, there is a tendency to select
poorer fruit in order to keep the peeler full. One solution might be
to vary the manning of the sélection line depending on the quality of
the fruit, but this can result in an even more difficult labor scheduling
problem. Another possibility would be to change the quantity of
tomatoes as the quality changes and use a crew of fixed size. This
also involves coordination problems since the flow of tomatoes to
products will vary and some of the products operations require a fairly

constant input of tomatoes for the most efficient operation.
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A third factor to consider is the greater processing loss on the
fruit which is peeled but not canned. This will vary between lots of
tomatoes but would normally be in the area of ten percent. However, if the
fruit has many cracks or is over-ripe, the loss can be much higher.
Pinally, the characteristics of the peeling equipment can influence
whether the tomatoes should be selected before peeling.

After the tomatoes have passed through the peeler, they must be
separated by quality (essentially color and wholeness) for packing
into cans. Two or more different grades are usually packed at once so
that the higher quality tomatoes can be used in the top grade or grades,
and the lower quality can be used in the lower grades. The tomatoes of
a quality too low to be used in any grade being packed are sent to a
chopper for use in the products operation.

After the tomatoes are sorted by grades, they are placed in cans.
After filling, cans are sent through a syruper where juice and condi-
ments are added, then to a seamer and from there to a cooker. Cooking
is essentially the last step of the produétion process. After being
sufficiently cooled, they are removed to the warehouse for storage

from which they will eventually be labelled and shipped.

Manufacturing Process (Products)

If the lot of tomatoes is allocated to products, immediately after
dumping and washing, it is visually inspected and the fruit unsuitable
for processing is removed. The tomatoes are then crushed in a chopper
and pass through a hot break into a holding tank if appropriate. The

crushed tomatoes are then reduced to pulp in a pulper. The tomato pulp
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eventually passes through a finisher. The texture of the finished
tomato pulp can be varied as desired for various products by changing
the screen sizes used in the pulpers and finishers. Ideally, there
are two or more sets of equipment operating in parallel so that the
tomato pulp can be segregated by its desired end use which is based on
the raw product characteristics.

After finishing, the tomato pulp which will be used for juice goes
to a holding tank where it can be sent to the whole peel syrupers for
use in filling cans of whole peel tomatoes or to a product filling line
where it is canned as tomato juice. Tomato pulp which will be used for
paste or puree passes to a holding tank from which the pulp will be
drawn into preheaters and then into the evaporation equipment. After
sufficient evaporation has occurred so that the pulp has the desired
level of solids, the concentrated pulp goes to the appropriate product
canning line.

The tomato pulp utilized for sauce or catsup is handled in a
similar fashion. The pulp is finished to various levels depending on
the product. The pulp is evaporated until the desired consistency is
obtained and removed to mixing tanks where other ingredients are added,

and is then moved to the appropriate canning lines.

Blending of the Raw Product

In one of the previous sections, the question of whether to select
the tomatoes for canning before peeling or whether to peel the entire
lot was discussed. A related question is whether lots of tomatoes with
different raw product characteristics should be blended. (The character-

isties of interest are primarily the percent of choice peelers, percent
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of standard peelers and percent of peeling loss.) Although the blending
of two or more lots of tomatoes can be carried out regardless of

whether the tomatoes are selected for canning before or after peeling,

it can also affect the relative advantages of selection and non-selection.

By blending tomatoes of various qualities together, a more uniform
raw material can be maintained from which to select tomatoes for peeling
(and thereby maintain a stable crew size and a more stable quantity of
tomatoes going directly to products). Similarly, if the tomatoes are
sent straight to peeling without selection, the quality of tomatoes
which are being peeled is more uniform and the proportion in each grade
available for canning will be more stable. This should have the effect
of generally stabilizing production rates for all grades rather than
spurts on one line or another because of changes in fruit quality.

Blending could also be used to level out the quality of the fruit
throughout the day. Even if enough fruit of desired quality was avail-
able to run for several hours, it might be desirable to blend it with
other fruit either of a desired, or less than desired, quality so that
the fruit would be uniform throughout a shift, or entire day, or pos-
sibly for several days to maintain a more stable production rate and
avoid changing labor requirements.

Similarly, it might be desirable to blend tomatoes going into the
products operation on the basis of total solids or insoluble solids or
other characteristics. The required solids levels of the various products
vary from less than nine percent tomato solids for sauces to 32 percent
or higher for paste. The efficiency with which water is evaporated from

the pulp will usually vary inversely with the concentration of the pulp
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although the characteristics of evaporators vary significantly.
Generally, it is desirable that the low solids tomatoes go to the less
concentrated products although this will not necessarily be true if the
total evaporator capacity is plentiful compared to the capacity of other

equipment.



CHAPTER III

DECOMPOSITION AND THE FIRM

Allocation of Raw Products to Plants as a Decomposition Problem

In the previous chapter some of the problems of allocating perish—
able raw products with different characteristics from a large number of
sources to several geographically separated plants with different
machinery configurations were discussed. It has also been stated that
linear programming is a useful tool to maintain control of raw product
allocation and assignment of production targets while obtaining the
maximum profit product mix and production schedule. Detailed knowledge
of the plant capacities, the raw product information, finished product
requirements and sales information would be collected and maintained at
operating levels of the firm for inclusion in the linear programming (LP)
model. Such a programming model might be of extremely large size, perhaps
even too large to solve with standard LP codes currently available. The
use of the decomposition principle of linear programming would enable
the solution of such a large-scale problem. In addition to this aspect,
there are also interesting possibilities of organizational decentrali-
zation to consider.

For instance, the decomposition of a linear programming model of
a multiplant firm might be undertaken to maintain centralized control

of raw product allocation and production quotas while leaving the
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operating decisions completely to the management of each plant. By
the use of the decomposition technique, furthermore, the maximum
profit allocation and schedules (within the framework of the L P
model) can be determined.

The firm can maintain control of the plants by the prices it
charges for the different raw products, and the prices it is willing
to pay for the finished products. Bach plant manager maximizes profits
based on these prices and his available facilities by the use of an
L P model for his plant. For instance, the raw product acquisition
group must give each plant manager full information about the
characteristics of the raw products available. The transportation
costs for each grower should either be given to the plant manager or
maintained by him.

When the plant model and raw product information is complete,
the firm has the sales department give each plant manager a detailed
list of product specifications and the sales price and sales target
for each finished product. On the basis of this information, i.e., the
characteristics of the tomatoes available, the transportation costs,
desired product mix and expected sales prices, each plant management
having detailed knowledge of their plant machinery and strong points,
computes their maximum profit product mix from the products in the
sales targets and submits it to the firm's headquarters. At the same
time, each plant offers to purchase the raw product which they desire.

In decomposition terminology, each plant problem is called a
subprogram. Note that there are no restrictions on each plant's

product mix or the quantity of raw product desired except that both
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must be within the total quantity to be sold or available for purchase
to the firm. (Even this restriction is unnecessary, but tends to
simplify the problem.)

The firm now has the various profit maximizing product mixes from
the plants and in addition has the quantities of raw product desired
by each plant. However, the total of the proposed product mixes will
probably not be equal to the sales target of the firm and the quantity
of tomatoes desired will probably not be equal to the quantity avail-
able. In particular, some products will probably be significantly
over the sales targets and some under. Some products will probably
not be included at all. Similarly, some tomatoes might be requested
by every plant and some not bid for at all. The firm now computes a
revised price list for the products, offering a bonus for those products
where the sales target is not met and reducing the price of those
commodities where there was an oversupply offered. 1In fact, it might
even assign a negative price. At the same time, a charge or penalty
cost is assigned to tomatoes which are over-utilized by the plants and
a bonus or subsidy is assigned to those tomatoes which were not com-
pletely utilized by the plants. These charges and bonuses can be
obtained from the dual solution to a linear programming formulation of
the firm problem. In decomposition terminology, the firm program is called
the master program.

The revised product prices and the penalties and subsidies for the
use of the lots of tomatoes are then forwarded to the plants and the
plant is asked to recompute their most profitable product mix based on

these prices. This new group of prices is all the additional information
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the plants are given or need to obtain. The plant's new maximum
profit product mix and tomato requirements are then sent to the firm's
headquarters. These plans are then rechecked to see if they meet the
sales targel requirements and the available raw product limitations.
If they do not, another set of bonus and penalty prices is determined
and the process repeated. Although this is an iterative process and
requires several solutions for the firm and each plant, it can be
shown that an overall profit maximizing solution can be reached in a
finite number of iterations.l/

In this manner, the management of the firm can maintain centralized
control of the production targets for its plants and the allocation of
raw product to the plants knowing it will obtain the maximum overall
profit while being relieved of the necessity of maintaining and

reviewing all the detailed plant data.

Scheduling as a Decomposition Problem

The previous section was concerned with the problems of allocat-
ing raw product and/or production targets to the various plants of a
multiplant firm. However, this discussion did not consider the
complications caused by changes in the characteristics of tomatoes
from a given source as the season progresses. In addition, there may
be requirements for scheduling some products during a particular time

period. In this section, we will consider the problem of determining

l/George Dantzig, (Linear Programming and Extensions) (Princeton:
Princeton University Press, 1963), p. 452.
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the maximum profit production schedule for the season which extends
over several time periods. The decomposition technique can be used to
determine the maximum profit schedule of production.

Consider, for simplicity, a single plant firm in the process of
scheduling production for the coming season. The firm can break the
season up into a series of periods of some reasonable length for
planning purposes. Each time period becomes a subproblem. In the
tomato problem, calendar weeks were used. The firm must determine
fixed production requirements and raw product availability by time
periods. It will also want to consider any other special characteristics
such as an anticipated labor shortage or machinery overhauls which may
change from period to period.

The Tirm then obtains the maximum profit product mix for each time
period (subproblem) through the use of linear programming using the
expected product selling prices and quantities of raw product available
in each period. These product mixes for each time period are considered
a tentative schedule for the season and then evaluated via a master
program. Since the total of the products for the season will undoubt-
edly be unsatisfactory for the season's output, it will be necessary to
change the tentative schedule somewhat. This is done by increasing the
prices of those commodities which would be underproduced if the
tentative schedule were followed and decreasing the price of those
products of which too much would be produced. These prices are
obtained from the dual solution to the master program.

The maximum profit product mix is then obtained for each time

period using the new prices. It should be noted that the new prices
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may not be the same for every week. If there was a requirement that
production of one product be completed early in the season, the price
for the product obtained from the master program could be higher
earlier in the season. These new weekly production figures are taken
as a tentative schedule and evaluated for consistency with seasonal
targets. If this schedule is not satisfactory, new prices are
computed and the process repeated as often as necessary. As in the
allocation problem, the maximum profit solution will be obtained in a
finite number of iterations. In actual practice, it would be unneces-
sary to obtain the solution for every time period with every set of
prices. Rather, only one time period solution need be obtained before
a new set of prices is generated. This will considerably reduce the
computational effort at least in the early stages of the scheduling

process.

Allocation and Scheduling as a Decomposition Problem

In the first section of this chapter, the use of decomposition
procedures for allocating raw product inputs and production quotas to
plants was discussed. In the second section, the use of decomposition
for temporally scheduling the production of a plant was discussed.
The combined problems of allocation and scheduling for a multiplant
firm can be approached simultaneously.

One approach would be to give each plant manager the same infor-
mation as they were given for the allocation problem except that raw
product inputs would be by time period and not for the entire season.

In addition, the plant managers would be informed of any special
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production requirements or special circumstances pertaining to the
time periods.g/ Each plant would then submit its tentative maximum
profit production plans for each week. The firm then has a plan from
each plant for each time period to evaluate for consistency. The
prices that the firm would offer to pay plants for products that were
under target would then be increased and prices for products which the
plants wanted to produce in surplus would be decreased. In addition,
if the plants failed to offer a sufficient quantity of a product to
meet a time period requirement, the price for that product would be
increased during that time pericd. These new prices would then be
submitted to the plant managers with instructions to recompute new
production plans.

In addition to controlling production targets for the plants
through the use of offer prices for the commodities, it is also neces-
sary to allocate the raw material to the plants by time period through
the use of subsidies and penalty charges for the raw product inputs.

This procedure requires that the firm know how much of each input
is available during each week and be informed of the quantity of each

input the individual plants require each week.

Extensions

The previous sections of this chapter have been concerned with

the use of the decomposition technique to aid the firm in solving the

2/This is not a requirement for the solution. If management did
not want to divulge the special requirements for security or other
reasons, it would not be necessary.
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allocation and scheduling problems pertaining to a single type of raw
product. It was implicitly assumed that the machinery and labor in
each plant were devoted exclusively to the product considered and
there were no competing products produced at that plant. This need
not be the case. Two or more products might compete within a plant
for machinery or labor available at that plant. In the California
tomato industry, there is frequently an overlapping of the cling peach
and tomato seasons with a period of time when both compete for the
facilities of the firm. A general example of a potentially scarce
resource throughout the year which would affect all products is ware-
house space. Decomposition might prove useful in this case if the
scarce resources used by more than one product were included in the
master program and a subprogram was developed for each commodity group.
Then, during the periods when there were no competing products, the
solutions to the subprograms would give the maximum profit utilization
of the resources and facilities. If there are several plants, decom-
position might be done in more than two stages, or the plant restrictions
encompassing more than one product might be put in the overall master.
The multiplant firm which does not have any of the circumstances
outlined above might still find the decomposition technique useful. For
instance, consider capital budgeting. Rather than attempt to build one
large overall budget model of the entire firm, if linear programming
models of the plants (or divisions) were available with capital require-
ments as elements of the plant (or division) solution values, the decom-
position principle would allow the plant models to be combined into a

capital budgeting model. The available plant L P models would be the
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subprograms and the master would consist of only one constraint row
for each plant, an objective function, and as many rows as were neces-
sary to write the budget restrictions.

The addition of the decomposition principle should increase the
effectiveness of the linear programming tools already available to the
firm. L P models of the individual plants, parts of plants or groups
of plants, can be used to aid in scheduling for day-to-day operations
and/or seasonal scheduling. The relatively small plant models could
be solved as often as necessary to adjust day-to-day operations to
changing conditions while decomposition can be used on those occasions
when it is necessary to evaluate the whole operation for investment

decisions, seascnal scheduling, or price changes.



CHAPTER IV

THEORY OF DECOMPOSITION OF LINEAR PROGRAMMI NG
Theory of Decomposition

The general linear programming probleml/ is to maximize or minimize
a linear function subject to a set of linear constraints.g/

For example:

Maximi L +c i +. ... .+ecX +....cX =72
axdmize c X, + c L, cj 3 c X
subject to
i + X e e e X, + .. .. X =
1% T At T 15" ' T By
X + X + ... .. X + . ... X =b
#2171 T F22™o 82575 fon'n - %2
a, X +a + ., a, X +....a X =b
il i i2 2 ij J in n i
+ . .. + . . Wn =
aleI am2X2 aijj aman bm
and XJ.?.O for all j m<n

1/For a more extended treatment of the linear programming problem
see Gass, Linear Programming (New York: McGraw-Hill, 1964), p. 45-47.

g/The constraints in the standard problem are strict equalities.
Sets of Iinear constraints which include inequalities can be written in
equation form by adding or subtracting nonnegative slack variables.
The cj associated with these slack variables are assigned values of zero.
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The aij’ bi and cj are all known constants and the X £ are the variables.
Where necessary the equations are multiplied by -1 to make all the
b, 2 0.
In economic terms, the bi are frequently the total quantity avail-
able of a scarce resource (e.g., the quantity of available tomatoes or
the capacity of a machine) or the minimum or maximum quantity of a finished
product that it is desired to produce. The Xj are frequently the quantities
of raw materials used, the quantities of finished product manufactured,
or the levels of particular processes. The aij are the yield or require-
ment coefficients of activity j on restriction i.
The cj are the costs or revenues attributed to a unit of each activity.
If the cj are expressed as revenue or profit, then the objective function
Eijjis typically maximized, i.e., total profit or revenue is maximized.
(If the cj are expressed as costs, thenfichj is minimized.)
In matrix notation, this can be expressed as:
Maximize C'X = Z
subject to X Z 0
and A =5>
A is the m x n matrix of coefficients aij’ X is a vector of n ele-
ments corresponding'to the Xj and b is a vector of m elements correspon-
ding to the m restrictions. Q' is a vector of n elements corresponding
to the cj‘s, Z is the total profit or cost.
If the size of the problem is not too large and if a solution exists,
the linear programming problem can be solved by any of several algorithms
on digital computers. However, if m and n are quite large, the problem

may exceed the capacity of the computer program or it may be quite
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unwieldy for data handling, parameter manipulation and/or interpreta-
tion of the results. Under certain conditions, problems such as these
can be solved using the decomposition principle of linear programming.z/

For example, if A, X, b and C are defined as follows:

_ ) - . . _ W
G 0 X b
A= (m1 X nl) % = (ml xll) b = (ml xll)
(m2 X n2) (m2 le) (m2 x 1)
- . L. B L pu
1 = ] 1
C 1 gin 1 gzn ’
1 2]

Then the problem
B M\ = Bl
X Z 0
C'X = Z max
can be rewritten

[G 1 [ - bll

10 HJ X ) b

X
[Ci 0}2} [X;] = 7 max

E/George Dantzig and Philip Wolfe, "Decomposition Principle for
Linear Programs", Operations Research, Vol. 129, No. 1 (January 1960),
pp. 101-111.
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and the solution of the two separate parts or subproblems

GX. = X =z
1) 1 bl N 0
1
C Xl = Z1 max
H = z
2) : b2 X2 0

=8 -
02 X2 = Z2 max

is jdentical to the solution of AX = b with Z max = Z1 max + 22 max.
It therefore makes no difference whéther we solve the original problem
or the two subproblems. An example might be a firm with two plants
with completely different product lines. However, in general this is
a trivial problem and is of little interest from either conceptual or
computational viewpoint. However, a more general problem exists if we

define A, X, b and C as:

) X, by
A=l 0O X = b= |b,
X
0 H 2
L _ b3
t— far v ]
¢'= [el, ¢}

Now the requirement that AX = b cannot be expreséed in independent

parts as before. Consider expressing AX = b as

—-—

1) FX =p

2) G Xl = b2 or G X = b2

3) HX =b orHX=b
2 3 : 3
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where
F = [Fl:FZ]
G=1[c:0]
H= [0:H]

Now each relationship contains variables included in another part.
This is a more typical case and is schematically represented in figure
4-1. We can obtain the solution to this problem by solving the linear
programming problemé/

X +F, X, =0

1M T2 T
a)

C'X +C'X 7 max
1 1

2 2
subject to the conditions

b) GXy=by, ¥ 20

c) HX

|
o
1

= >
2 3’ 27 .

In the usual case, there are a very large number of vectors Xl and
X2 that satisfy the latter conditions (i.e., any feasible solution to
(b) or (c)). However, any vector Xl in the set of vectors satisfying
G X1 = b2 can be expressed as a convex combination of the P different

solutions for (b).i/ Similarly any vector X2 satisfying (c) can be

4/In economic terms, the equations of (a) might be the overall con-
straints on the firm while the equations of (b) and (c) are the constraints
on two essentially independent parts of the firm, i.e., manufacturing
plants or divisions. In practice, the corporate constraints or restric-
tions of (a) might include limitations on the total raw materials or
capital available to the firm and/or the total quantities of finished
goods that can be marketed by the firm. The restrictions of (b) and (c)
might correspond to the existing technology, manufacturing capacities,
labor availability and other resources available to the individual manu-
facturing plants or divisions.

E/Dantzig, Linear Programming and Extensions (Princeton: Prince-
ton University Press, 1963), p. 449.
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expressed as a convex combination of the Q basic feasible solutions
for (c).

Hence, problem (a) can be rewritten as:

Bl Tyt -+folp‘_]
+F2E,11X21+. R qxgq]=b1
al') _ a —
+ + + 3
Cll}l Xll + .. . Vp le e e . vp YIE]
+ 02 Uy X21 + .. .+ uq X2q + .. . F uq qu] = 7 max
2
v_ =1
=1 "
. Vp,quO
Su, =1
6=1 "
where
le (p=1, .. ..., P)
Xoq (@=1, « « . .., 9

represent all the basic feasible solutions for the subproblems

= P4
b) GX, =by,, ¥ Z0

c) HX,=by, X,Z0

(a) is now a linear programming problem with two additional con-
P
straints, i.e.,;[lvp =1 and.gagq = 1. In decomposition terminology
= a=
(a") is called the master program or extended master program.é/ If all

the basis vectors iip and‘iéq for the subproblems were known, this

problem could be solved directly. The number of columns in (a") although

/1t is also referred to as the extremal program or executive
program.
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finite could be quite large. However, the—iij are not known and would
require a considerable effort to obtain them. Instead, in actual com-
putation only a few of the vectors are obtained.

Typically, a basic feasible solution to each of the subproblems,

Xll and X21, are obtained by solving

GX, £b HX. £ v

2 2 3
1 —_ ! .
b') Cle—Zlmax c) Cy X, = 2, max
> w
X, =0 L, z0

ill and iél are placed in (a') and (a') is solved; (b') and {c') are
then solved again with revised objective functions based on the results
of the solution to (a'). The two new vectors, iizand 222’ are placed
in (a') which is then resolved with the additional vectors. This itera-
tive procedure is then repeated until the overall optimum is obtained.

In decomposition terminclogy, the solution of the subproblems and
the subsequent solution of the master program is called a major itera-
tion. In practice it is not necessary to solve all of the subproblems
during each major iteration. Any i;j which enters the solution to the
master program will improve the solution value of the master and allow
the iterative process to continue.

This decomposition principle can be generalized to any linear

programming problem which has the structureZ/

(A A A, . . A X b

leL 0° 0> . . of X% bi
0 B, 0 .0 X3 b,
0 0 B3 . . 0 XZP — by
_o 0 0 « -+ B, —Xr‘ _br_
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XJ.ZO for j =1,

r
! s =

:1CJ XJ Z max

J

Usually, each Bj Xj = bj is an independent subset of equations referring
to the same production facility, time period or similar grouping and
ilAj )S = bo. is a set of equations tying the subsets (or subproblems)
Jtogether. However, any linear programming problem can be decomposed

to take advantage of its structure if decomposition would present com-
putational advantages. There is no requirement that the subproblems
have an economic or physical relationship but only that the problem can

be decomposed into independent subparts.
The Dual and Its Economic Interpretation

The discussion at the beginning of this chapter defined the usual

linear programming problem as finding the column vector

X = (Xi’ Xop v xn)
which maximizes the linear function

C'Xx =2
subject to the conditions

KX =0b

X Zo mén

Associated with every linear programming problem of this type is a

corresponding problem called the dual.g/ The original problem is called

§/Gass, op. cit., pp. 83-94.
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the primal. The dual problem associated with the primal problem
stated above is known as the unsymmetric dual. The dual problem is to
find a row vector

W=
vy wy, s

which minimizes the linear function

Wb =Y
subject to the conditions

WA = C'

Note that in the unsymmetric dual the variables W, are not restricted
to be non negative.

Feasible solutions to the primal and the dual may appear to have
little relation to one another; however, their optimum basic feasible
solutions are such that it is possible to use oné to obtain the other
readily.

This relationship between solutions to the primal and the dual is
stated in the Duality Theorem.

If either the primal or the dual has a finite optimum
solution, then the other problem has a finite optimum solution

and the extremes of the linear functions are equal, i.e.,

max 2 = min Y. ’

If either problem has an unbounded optimum solution,
then the other problem has no feasible solution.

When the primal problem is formulated in equations as above, the
variables of the dual problem are unrestricted in sign. Specifically,

if the ith constraint in the primal is an equation, then the ith dual

Q/Gass, op. cit., p. 84.
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variable is unrestricted in sign.lg/ However, when the primal problem
is formulated as strict inequalities, the variables of the dual are
restricted to be non-negative. This is the summetric dual problem.
In this case, the primal problem is

Maximize -C' X = Z
subject to

KX =bp

X Zo
The associated dual is

Minimize WB = Y
subject to

WA Z C!

W Zo0
When the linear programming problem is stated in this way we can
use two important theorems which state the properties that are fre-
quently referred to as complementary slackness.ll/ (The theorems are
stated in terms of the primal but conversely hold for the dual as the
dual of the dual is the primal.)

1. If a slack or surplus variable x ,, which has been added to

the ith primal constraint appear% in an optimal basic soclu-

tion, then for the corresponding optimal solution to the dual,
the ith dual variable is zero, that is w, = o.

lQ/Conversely if some variable X, in the primal is unrestricted
in sign, then the ith constraint of the dual will be a strict equality.

ll/Hadley, Linear Programming (Reading, Massachusetts: Addison-
Wesley, 1962), p. 259.
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2. If the variable x. appears in an optimal basic solution to
the primal proble&, then in the corresponding optimal solution
to the dual, the jth constraint holds as a strict equality,
that is, the dual slack or surplus variable Wh+, = o.
The usual economic interpretation of the primal problem can be
stated:
For a given value per unit of output (c.) and an upper limit

on the availability of each resource (b.), hdw much of each output

(X.) should be produced in order to maximize the value of total
output (alZ C.X:)?

13 373

In this framework the physical dimensions of the variables X, are
units of goods being produced. The dimensions of the bi are the units
of resources being consumed. The a.lj then have the dimensions of units
of resource i per unit of good j.

To be consistent, Wiaij of the dual must have the dimensions of
unite of value per unit of good j. Since the dimensions of aij are
units of resource i per unit of good j, the dimensions of W must be
units of value per unit of resource i. That is LA is the value of a
unit of resource i.

The optimal values of the structural variables of the dual prob-
lem (wl, Woy o e e e e wm) can be interpreted as the shadow prices
or marginal profit values of the variables. That is, W tells how much
the objective function value would be increased if the quantity of in-
put i available to the firm were increased by one unit without changing
the solutioﬁ to the dual or

ERZ 1
In practice if we change bi to bi + 1, the prbfit will not generally

increase by LA because the entire optimum solution changes. These
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dual variables W, are also referred to as dual prices or shadow
prices. Note, however, that they have nothing to do with the actual
costs of the resources (which are not stated in the problem and may
not even be known.) If there is a positive slack variable in constraint
i so that not all of resource i is used, then Wy = 0, and the resource
i is a free éood.

Similarly, the Wm+j’ the optimal values of the slack variables,
indicate opportunity costs, i.e., how much the objective function would
be reduced if one unit of commodity j which is not in the optimal solu-

tion were produced by the firm.lg/

The Solution of the Decomposed Problem

The solution of the decomposed problem is obtained by the itera-
tive procedure described briefly earlier in this chapter. This sec-
tion will describe the solution procedure including how the changes
are made to the objective function of the subprograms during each major
iteration and the necessary conditions for an optimal solution to the
original problem. The shadow prices or dual variables of the solution
to the master program are used in both.

The function of the master program is to determine the weight of
each proposed subproblem solution in the solution to the original
problem.‘ The total of the weights to be assigned to solution vectors

from any subproblem must be = 1 if the weighted combination of solutions

lg/William Baumol and Tibor Fabian, "Decomposition, Pricing for
Decentralization and External Economics", Management Science, Vol 9,
No. /4 (September 1964) pp. 5-6.
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to the subproblem is to be a feasible solution (to both the subproblem
and the original problem). These weights are the variables in the
master problem.

The restrictions of the master program consist of the corporate
or overall constraints which limit such things as the total use of a
resource by all parts of the firm to the total quantity available to
the firm and the total production of a good to that quantity which can
be marketed by the firm. In addition there is one cors traint for each

subproblem of the form
:E: vrq £ 1

where qu is the weight assigned to the qth solution vector from sub-
problem r.

The coefficient matrix consicts of the subproblem solution vectorslz/
augmented by a one in the corresponding subproblem weight constraint and
zeros in all other subproblem constraint rows. Consequently, the elements
of Xr which were the primal variables in subproblem r are constants in
the master program and the weights Vqr to be assigned to the subproblem
solution vectors are the primal variables in the master. Note that the
number of columns or augmented solution vectors from the subproblems
will increase during each major iterationlé/ as new subproblem solutions

are obtained.

lé/Actually only those elements of the solution vector that are
subject to the corporate constraints.

14/1n practice, this does not cause a dimension problem in the
master as vectors which do not enter the solution to the master can be
dropped from future iterations.
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The objective function values of the master program are the solu-
tion values or max Z = C; Xr associated with the subproblem solution
vectors.lﬁ/ The primal master problem at each major iteration then
is to find the weights for the subproblem solution vectors which will
maximize the total value of the weighted subproblem solutions subject
to the corpofate constraints. This total valu 16 is then increased
during each major iteration. However, the solution values of the
variables in the master are disregarded until the final iteration which
gives the optimal solution to the original problem. Rather the dual
variables or shadow prices of the solutions to the master are the basis
for making changes to:the objective function prices (C;s) of the sub-
programs and also for determining when the overall solution is obtained.

Cnce we have a basic feasible solution to the master, we can obtain
the vector of dual variables or prices, which we shall denote as T&

(or WS during the sth major iteration. DNote that the vector TWis equiv-

alent to the vector W in the preceding section.)

lﬁ/Computational Note: As will be shown later, solutions to the

subprograms are obtained using different objective function values (C;S)
in each major iteration. However, the C; of ClX,. used in optimizing
the master program are always the objective function values of the orig-
inal problem. This does not present a problem as long as the computer
code used allows multiple objective function rows. One objective
function row in the subproblem is revised after each major iteration.
A second objective function row has the original values and is left
unchanged. The solution to the subproblem is obtained using the
revised prices in the first row, but the right-hand side value of the
second objective function row is used in the master program. The value
of the revised objective function is only used to determine when the
optimum solution to the original problem is obtained and in the upper
bound computations.

lé/This corresponds to total corporate profit.
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~~

The vestor T~ consists of one simplex multiplier or dual variable
for each restriction of the master. For example, a master with m

corporate restrictions and n subproblems would have

iI =TG—,ﬁt PR .ﬂz IR/ Py - HFY (NP R ﬂ; . - 73
where TTi is the dual variable for corporate restriction i, and ", is

the dual variable corresponding to-the constraints on the weights of
the rth subproblem,

Zv <1,

all g T4

If the original objective function vector of the rth subproblem
is C;, then at any stage, say after s - 1 major iterations, the revised
unit prices (or er) for that subproblem for major iteration = can be
calculated from
é;j = cpj - (ﬂialj *ags + ... .'+77hamj)
where the aij's are the appropriate coefficients from the jth column
in the original (undecomposed) problem. Note that there are m coefficients,
a.. in this expression or one for each corporate constraint. 1In practice,

1J

this expression frequently reduces to

S _

°rj T Crj ~ 3245
or

S .

crj = cpj — 13

if aij equals one for those products or resources that have only a single
corporate constraint in the master.
Consequently, the revised unit prices to be used in the solution

to the subproblem during major iteration s have been adjusted by subtracting
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the shadow price for that réstriction on that good or resource in the
master program. This is equivalent to applying a set of penalties or
bonuses to the original unit prices.

If the shadow price or dual variable?T& is positive, then unit
price for the corresponding good will be reduced or penalized as there
is already sﬁfficient production (or resource utilization) entering the
solution to the master to fulfill the corporate constraint. If there
is slack in restriction i thenﬁ?i = 0, and the original unit price or
crj is used. If the master is formulated with equations rather than
inequalities, theTTi are unrestricted in sign. IfiTZ is less than zero,
the product is in short supply and subtracting a negative number is
equivalent to adding a bonus to the original unit price.

Those products or resources which have more than one restriction
in the master have a corresponding number of dual prices to be subtracted
from the unit price in the original objective function.

The vectors of revised unit prices C;s forr=1, . . . R are then
used as the objective functions to solve the R subproblemslz/ for major
iteration s

max Zi = C;S Xr r=1....R

The solutions X? are now available for inclusion in the master program.
The test for optimality of the overall solution is applied at this

time. It is in this test that the last R shadow prices ﬂ'f are employed.

17/1n practice frequently less than R subproblems are solved in a

major iteration to reduce the total computation time. This is discussed
in Chapter VIITI.
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The solution value with the revised prices for each of the R sub-
problems

75 = C!8 X
maxr v r 3

is compared with its respectivei?r from the previous solution to the
master. The current solution to the original problem is optimal if
no subproblem solution using the revised prices is greater than its
corre sponding dual variable from the last solution to the master.lg/

That is, the current solution is optimal if for all r

o~s-1
“I‘

Zi max =
If any Zi max is greater than the correspondingﬁT;, then the new
subproblem solutionlg/ can increase the solution value of the master.

Z_ is a measure of the net profit contribution from thenew solution to

H 0

subpreklem r while%i} is a measure of the profit contribution offered
by the previous solutions from subprotlem r. If Zr exceedsiT;, the
new solution offers a higher contribution to profit than the optimally
weighted average of the old solutions, as it can be shown that every
previous subproblem solution X;"i, i 7 0 which has a weight greater

than zero in the last solution to the master has a profit contributiongg/

c's xs-1=1r
r r T

thus if any Zi max >i§, it will pay to introduce the solution vector Xi

l§/Baumol, op. cit., p. 11.

19/1¢ two or more subproblems have solution values greater than
their correspondingﬁir, all will not necessarily improve the master
solution during the next major iteration.

2Q/Baumol, op. cit., p. 14.
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into the master program. If all Z; max =:ﬁz, no improvement can be
made and the current solution is optimal for the original problem.

An upper bound on the solution to the ma;ter program (and there-
fore the undecomposed problem) can be obtained from theii; and the
solution values of the subproblems.gl/ Let M be the solution value of
the master program. Then the upper bound to the master is computed as

max M < M5~1 4+ a%r (28 -7
that is, the upper bound is equal to the last solution value of the
master plus the sum of the differences between the new subproblem solu--
tions with revised prices and their corresponding dual prices from the
last solution to the master. Note that the computation of the upper
bound requires the solution of all of the subproblems during a major
iteration. However, the solution of all the subproblems is usually
not necessary to improve the solution value of the master.

After the overall optimum to the master program is obtained, an

optimal set of weights V.. is available to construct the optimal weighted

q
solution to each subproblem r from its Q previous solutions. These
optimally averaged solutions to the subproblems along with the solution

to the master program furnish the solution to the original problem.

gl/Dantzig, op. cit., p. 452.
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In the tomato problem, the A portion of figure 4-2 has one re-
striction for every finished product of the form:

beginning inventory _ minimum final inventory
+ production ~  + deliveries during the season.

This portion of the program assures that the production targets for
the season will be met (if possible). These restrictions were frequently
changed to ranges to allow more flexibility.

The B portion of figure 4-2 has restrictions to assure that in-
ventory and/or current production is sufficient to meet any shipments
required in a given week. Bi contains a restriction for every product
with a requirement of the form:

beginning inventory _ deliveries required during
+ production during the first i weeks ~ the first i weeks.

It would also be possible te write resirictions to keep production
of given commodities out of the first weeks, or to cause production to
occur in any given week or group of weeks. The A and B restrictions
were combined to form the master program in the tomato problem.

The blocks Wi through wlO represent the ten subprograms, one for
each week of the tomato season. As discussed in Chapter VII, the sub-
problems contain the restrictions on the quantity of raw product avail-

able and the capacity restrictions in the plants for that week.
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Schematic of Full-Scale Tomato Problem
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APPENDIX TO CHAPTER IV

DECOMPOCSITION OF THE TOMATO PROBLEM

The test problem to be discussed in Chapter V is decomposed into

the form
% )
A= |G 0 b= b2
0 H b3

! — t . !
ct = [cl.ch

which was discussed in the first section of this chapter. The test prob-
lem is represented schematically in figure 4-1. The matrices, G and H,
represent the raw product and plant restrictions for each of two weeks,
while F represents the output restrictions for the two week season. C

1

and C2 represent the costs of inpute and product prices for the first
and second week respectively.

Figure 4-2 represents the structure used in constructing the full-
scale model of the tomato firm discussed in Chapter VII. The first, or
firm level, consists of the A and B portion of the coefficient matrix.
The restrictions on this level are developed from decisions or goals

of the firm which occur over more than one time period but not neces-

sarily over the entire season.



CHAPTER V

THE TEST PROBLEM
Purpose and Scope of the Test Problem

Before attempting to develop a full-scale model of a multiplant
firm, a test problem involving only a single plant was formulated. This
test problem was designed to test the feasibility of some of the internal
operations which seemed desirable to include in the model end to evaluate
the accuracy and/or adequacy of the coefficients which were being devel-
oped for the full-scale model. In addition, it provided valuable exper-
ience both in the application of the particular linear programming
code used and in decomposition procedures.

The plant formulated for the test problem was given the capability
of producing any grade of whole peeled tomatoes in #303, #2%, or #10
cans, as well as most common tomato products. In the development of the
internal struc£ure of the test plant, machinery limitations and capacity
restrictions were inserted where such bottlenecks usually occur or where
they could reasonably be expected to occur. In general, the sequence
of operations was that described in Chapter II.

In the receiving and dumping operations, there were three such
bottleneck possibilities, each caused by physical limitations of dumping

capacities. It was assumed that there was a limitation on the physical
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quantity of tomatoes which could be dumped into the corelessl/ whole
peel operation, that there was a physical limit on the amount of toma-
toes which could be dumped into the round peeling operation and that
there was a physical limit on the quantity of tomatoes (coreless or
round varieties combined) which could be dumped mechanically into the
product operations. The last was alleviated somewhat by allowing
quantities greater than this physical limit to be dumped by hand at an
increase in cost. There was no limit put on the quantity that could
be dumped by hand when the model was tested, although provision was
made to set an upper bound if it was deemed necessary or desirable.
There were no limits placed on the capacity of the yard to receive and
hold tomatoes.

Another group of machinery restrictions were those caused by the
tomato peelers. The test plant had two tyoes of peelers, a "Dole"
peeler thch could be used to peel coreless varieties without selection
or to peel round varieties with or without selection, and an FMC peeler
which was used only with round varieties of tomatoes selected before
peeling. It was assumed that two Dole peelers and one FMC peeler were
available for three 7-hour shifts, six days a week.

The next set of capacity or machinery restrictions which might
impede the flow of tomatoes through the model plant were the can fillers.

There were five possible fillers which could be used to can round tomatoes

1/The coreless varieties are varieties of tomatoes which are
suitable for mechanical harvesting. Due to their small core size, they
are not cored in the peeling operation.
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and three édditional fillers which could be used on coreless varieties.
This set of restrictions was fairly elaborate since each filler could
handle two or more can sizes, and the fillers operated at different
speeds. In addition, it was assumed that due to space limitations,
only four of the fillers for round tomatoes could be used at any one
time. Each filler could be used for three 7-hour shifts, six days a
week.

The next set of capacity restrictions pertaining to the production
of whole peel tomatoes were those caused by the syrupers. It was as-
sumed that there was one syruper for each of the three can sizes, each
of which could be run for the same period of time as the fillers.

The next set of restrictions were caused by the cooker capacities.
There was one cooker each for #10 and #2% cans, and two cookers for #303
can sizes. In addition, there was additional cooking capacity in the
form of retorts. The retorts could cook any can size, although at
additional cost.

It should be noted that these capacity restrictions were not likely
to all be binding at once. However, as the product mix changes, the
identity of the machines operating at capacity is also likely to change.
For example, if there was not the possibility of using retort capacity,
the #10 syruper capacity and #10 cooker capacity should not both be
considered bottlenecks. Rather, dnly the one with the smallest capa-
city would be limiting since the cans of tomatoes pass through them
in sequence. If the #10 syruper has greater capacity than the #10 cooker,
it is impossible to tell if #10 cooking capacity is limited until after

the entire whole peel product mix and total retort utilization is known.
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There were no further limitations in the whole peel tomato capacities
as it was assumed that there were no handling or warehouse limitations.

In the products portion of the plant, there were several machinery
and capacity restrictions. These restrictions were generally based on
a 24~hour day, six day week operating schedule. They included a capa-
city limitation on the tonnage of tomatoes which could be processed
through the pulpers, a limitation on the quantity of tomatoes which
could be returned to the products operation after having been peeled
but found to be unacceptable for use in whole peel cans, and a restric-
tion on the amount of evaporation which could be done by the plantts
evaporators.

The last set of physical limitations was imposed by four product
canning lines. One line was used only for #10 paste. Another line was
devoted to other products in #10 cans. A third line was used for eight-
ounce and #300 tomato sauce while the last line was capable of being
used for either 46-ounce Juice or eight-ounce and #300 sauce. These
capacity restrictions are listed in table 5-5.

After the machinery configuration and capacities had been de-
veloped for the test plant, a LP model of the plant was developed.
Although the configuration of the test plant as described would have
permitted a full line of whole peeled tomatoes and an extensive line of
products, the product line was limited to the items listed in table 5-1.
The first column of table 5-1 gives the number of cans per case and the
can size of the commodities. The second column has the commodity nomen~
clature. Columns three and four give the maximum and minimum production

levels allowed in the test problem in 100 case units. The last column
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is the objective function value for the activities producing the com-
modity. This figure is in dollars per 100 case unit. It is obtained
by adjusting the expected price by some of the direct costs of produc-
tion. Although there are only 13 items listed in table 5~1, there
were 21 production activities in the LP model. It was possible to can
either size of sauce on two product lines, and each of the whole peel
commodities could be made from either round or coreless tomatoes.

For test purposes, a group of tomato inputs with varying raw
product characteristics was developed. There were ten lots of toma-
toes rep;esenting round varieties and five lots representing coreless
varieties. These 15 tomato inputs and the raw product characteristics
ascribed to each are listed in table 5-2. The first column of table
5-2 lists the grower number assigned to each lot. The next five columns
give the raw product characteristics in percentages. (The sixth charac-
teristic, pulping loss, was not included in the test problem.) The
last two cohmns give the percentages of tomatoes suitable for use as
whole peeled fruit if they go through the selection process prior to
being peeled. (There are no entries in the last two columns for the
coreless tomatoes because preselection was not allowed as an alternative
use for the coreless tomatoes.) The mean and range of each raw product
characteristic is approximately equal to the expected mean and range
for the season.

In the test problem, there were no price or transportation cost
differences among the lots of tomatoes. All lots were assigned a price
of $25 per ton and transportation costs of $5 per ton. The cost before

processing was, therefore, $30 per ton. In addition, there was a
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selection cost of $3.50 per ton for those round tomatoes which were

selected prior to peeling.
The Structure of the LP Test Model

The linear programming model of the test plant was composed of
94 rows, 92 réstrictions and two objective functions. There were 345
columns of which 280 were included in the plant matrix and 65 were
“tomato input activities. The first 15 rows were devoted to input re-
strictions requiring that the total tomatoes used from each lot are
less than or equal to the quantity available. This is one restriction
for each of the 15 lots having the raw product characteristics listed
in table 5-2.

The next 28 rows were related to capacity or machinery limitations.
These restrictions are listed in table 5-5 along with the capacity
levels which were assumed for the test plant.

There were eight requirements that the amount of finished product
be equal to or greater than a given quantity. If a specific product
could be made by only one activity, then the finished product require-
ment could be met by using the bounded variable option of the LP code
and no row was necessary. However, as previously mentioned, some of
the products could be made on more than one line (sauce) or from two
different materials (round or coreless peeled tomatoes) and were repre-
sented by more than one activity.

The remainder of the réws or restrictions were transfer egquations
necessary to transfer the raw or intermediate product from one operation

to another (or to dispose of waste). The general nature of the LP model
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is illustrated in table 5-7, which is an abbreviated version of the
test problem. The transfer rows will be covered in more detail in

both the. appendix and in the explanation of the activities.
Activities

Each one of the ten groups of round tomatoes could be brought
into the program in one or more of five input activities. The five
activities were the FMC peeler (select) activity, the'Doléd peeler
(select) activity, the Dole peeler (non-select activity), the paste,
puree, or juice activity, and the sauce or catsup activity. Each of
the five lots of coreless tomatoes could be brought into the program
in one or more of three activities. These were the same activities
as for round varieties except that the FMC peeler and the"Dole' (select)
peeler activities were omitted. A total of 65 columns is devoted to
input activities. The input activities for three growers are shown in
table 5-7. A detailed explanation of the coefficients will be given
in the appendix.

The next group of activities are those for blending lots of toma-
toes which have different percentages of choice quality peelers. This
group of activities allowed the model plant to blend lots of tomatoes
in order to run at the most efficient level. The raw tomatoes were
assigned to one of seven categories based on the percent of choice
peelers in the input section. These categories ranged from 20 percent
to 80 percent choice at ten percent intervals. Each of the blending
activities in effect took tomatoes from two of the categories in appro-

priate quantities and deposited them in an intermediate category.
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For example, 20 and 40 percent choice peelers could be blended into
30 percent choice peelers. Using the ten percent increments, there
were 35 blending activities for each category of whole peel tomatoes,
i.e., select rounds, non-select rounds and coreless varieties.

The following group of activities were used to transfer the choice
peeled tomatoes out of the seven percentage categories into the row
for either choice round or choice coreless tomatoes as appropriate.
There are seven of these activities for each of the three classes of
peeled tomatoes (select round, non-select rounds and coreless).

Another group of activities performs the function of blending
tomato inputs of various solid levels to that level at which the plant
will operate most efficiently. Tomatoes were divided into categories
based on their solids content in levels differing by .2 percent from
4.7 percent to 6.3 percent. This group included 85 activities which
made it possible to blend lots of tomatoes of any two solids levels to
obtain any intermediate solids level (on .2 percent intervals).

Further activities were used to transfer tomatoes from the solid
level rows into the juice row or the concentrated pulp rows. The evap-
oration process occurred at this point in the LP model. There were
sets of nine activities (one for each solids row) to transfer pulp to
juice, to evaporate pulp to 10.8 percent solids pulp (for 1.045 puree)
to evaporate pulp to 14.2 percent solids (for 1.06 puree) and to evap-
orate pulp to 25.5 percent pulp (for paste).

There are three remaining groups of activities. The first of
these consists of activities to transfer production capacity between

rows. For example, some of the whole peel fillers could be used to



63

£i11 more than one can size. A transfer activity was used here to
give the LP model the same flexibility as the test plant.

Another type of transfer activity was used to allow higher quality
raw product to be substituted for a lower quality if this would be the
most economical course of action. For example, this allowed choice
tomatoes to be-used in place of standard tomatoes. These activities
also allowed raw material to be disposed of as waste if this would be
the most economical course of action.

The final group of activities consists of the 21 production ac-
tivities, one for each of the products listed in table 5-4, and the
waste disposal activity. By using a waste disposal activity, the cost
of waste disposal can be included in the objective function. If the
cost of waste disposal shifted upward at various levels, it might be
desirable to use several such activities with appropriate prices and
upper bounds. On the other hand, if the cost of waste disposal was

fixed or unimportant, an explicit activity might not be necessary.
Solutions

After the construction of the LP model based on the test plant
and the development of the raw product characteristics and the finished
product requirements listed previously in this chapter, the model was
tested using four different raw product input levels. These input
levels were designed to range from definite under-utilization of the
plant capacity to providing a definite surplus of raw material. The
quantities of tomatoes available from each of the 15 growers were kept
equal at eaqh input level. The solutions from two of the levels are

shown in table 5-3 through 5-6.
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Table 5-3 shows the utilization of each lot of tomatoes for each
of the two weeks. In addition, the shadow prices and the reduced costs
are listed as well as the values of the alternative ways to utilize
that lot of tomatoes. There are several significant differences in the
allocation of the lots of tomatoes, even though the only difference in
initial conditions was that the input quantity for the second test was
greater. Also, note that the shadow prices are lower in all lots in the
second week.

Table 5-4 gives the levels of each of the 21 production activities
during the two weeks and the value of one additional case of product.
There are several commodities which have been forced into the solution
at their lower bound in both sclutions and in the higher level week,
production of extra standard catsup is at its upper bound. There are
some changes in the production pattern for which the reason is not ob-
vious. For example, choice coreless tomatoes in #10 cans are produced
at the lower level of raw product but not at the higher.

Table 5-5 shows the machinery and capacity restrictions. The
columns on the right show the value of one additional period of time to
the plant as obtained from cost ranging. The values for additional capa-
city do not increase uniformly as the input level increases. In fact,
some remain the same and some even decrease as input increased.

Table 5-6 lists the other activities which were included in the
optimal solution for the two levels of inputs. The first activities in
the table are the transfer of peeled tomatoes from each of the input rows.
(There were no blending activities of tomatoes for peeling in the solutions
to the test problem.) Note that there are fewer levels of peelers used

in the higher week as the quantity of tomatoes in each lot increased.
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The function of the next set of activities in the table is to
blend tomato inputs of different solids levels. There were no changes
in the blending activities in the optimal basis between the two levels
although the quantities differ. The total quantity‘of pulp which was
blended in the test problem is insignificant relative to the total
quantity processed. The next group of activities transfers tomato
pulp to the juice row. These activities are relatively low in tomato
solids. In the 520 ton week, only the two lowest solids levels are
used for juice. This is reasonable since the higher solids tomatoes
will yield more paste. (There were no 4.9 percent solids tomatoes in
the test problem.) Immediately following are the evaporation activities.
The only change of interest between the two weeks is the drop in the
level of solids used for tomato paste from over 5.7 percent to less
than 5.3 percent. Although not obvious from casual inspection, part
of the shift was the result of an increase in the catsup and sauce
production which utilized the higher solids tomato pulp. Also, the
puree and paste were all forced into the solution at their lower bound
in the 260 ton test. The production of these commodities during the
260 ton week was at a higher level than if the solution were unbounded
and required a major part of all solids not used in the whole peel
operation.

The last group includes the transfer activities which augment
machine capacities. In the 520 ton test, it was necessary to dump toma-
toes by hand for the products operation.

In both weeks, the capacity of the two straight line can fillers

was completely utilized to augment the #2} and #303 can fillers. In
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addition, the retort was used in both weeks to cook #2% cans. The
last activity is the waste disposal activity which gives the quantity

of waste in 1,000 pound units.



APPENDIX TO CHAPTER V

EXPLANATION OF THE IWNEAR PROGRAMMING MATRIX

FOR THE TEST PROBLEM

Table 5-7 is a portion of the linear programming matrix used
in the test problem. The rows and columns have been selected so
that all of the types of activities and restrictions used in the
test problem are included. The table in conjunction with this
appendix shéuld illustrate the method of construction and the
structure of the test program. Some sections of the test problem
have been omitted if they are similar to those included. For ex-
ample, there are no coreless tomato activities included in the
sample matrix since these are quite similar to the round tomato
activities. The first row of the table contains the column
number which is a number assigned to the column for identifi-
cation throughout this appendix. The next row contains the col-
umn name as used in the program. These usually have some consis-
tent characters throughout a group of activities. For example,
all of the tomato input activities begin with the letter G (for
grower) followed by the two-digit grower number 01, 02, etc. The
last digit indicates the type of input activity. For example, FMC
whole peel is one, Dole select whole peel is two, nonselect whole

peel is three, paste is four, and sauce is five.
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The next two rows are the objective function rows. All of the
tomato plant problems were handled as profit or revenue maximization
problems. Consequently, these activities which caused net costs have
negative values in the objective function rows and those representing
revenue~producing activities are positive. (The second objective
function is used for computaticnal convenience in the decomposition
procedure.) The entries in the left-hand column are the row numbers
assigned for describing the matrix in this appendix. The next column
has the row names used in the test problem. Whenever possible, they
are mnemonic. The rest of the columns except number 64 are the matrix
entries. Column 64 contains the right-hand side values. If there is
no entry in the table, the value of that matrix element is gzero.

In this abbreviated version of the matrix, the first five columns
represent the five different ways in which the first lot of round
tomatoes could be used in the plant. Each unit of the activity is
equivalent to one ton of tomatoes. The first column represents toma-
toes which are peeled in the FMC peeler. The objective function value
represents the cost of the tomatoes plus the cost of selecting for the
FMC peeler in hundreds of dollars. Note that the cost is greater for
this activity than for the next activity where there is no expense of
selection. Other handling expenses could be added if desired. In the
full-scale model, transportation costs from the farm to the plant and
yard handling costs were added to the objective function cost.

The next entry in the first column is in row three, R01110, which
limits the amount of tomatoes which can be obtained from the grower one.

The entries in this row are necessary to insure that the total tons of
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tomatoes input through the five activities for each grower are less
than or equal to the tonnage available from the grower.

The next entry is in row six. It represents the quantity of
choice tomatoes (in 1,000 pound units) that can be obtained after
selection and peeling in the FMC peeler, a quantity of 204 pounds in
this instance. The entry is made in this row because "grower one" had
20 percent choice peelers. 30 percent peelers would be entered in
RSEL30.

The entry in row 18 represents the amount of whole peel box
dumping capacity used by one ton of tomatoes. This particular row
insures that the dumping capacity required will not exceed the capacity
available in the plant. Row 22 represents the amount of FMC peeler
capacity used by one ton of tomatoes. The numbers .007874 and .024316
represent the fractions of a three and one-half hour time period (one-
half shift) required to process one ton of tomatoes on that equipment.
The FMC peeler, therefore, takes substantially more time per ton than
the box dumper. However, there are other activities, the "Dole" peeling
activities, which utilize the box dumper.

The entry in row 23 represents the amount of pulper capacity that
is utilized by one ton of tomatoes in this input process. This is the
total amount of pulper capacity required and includes both that used to
pulp tomatces not selected for peeling and for those that are peeled
but returned tc the products operation.

The entry in row 15, RSOL53, gives the number of 1,000 pound units
of tomato solids obtained when the tomatoes are processed through the

FMC select activity. In this case, the entry .068 in the RSOL53 row
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means that there are .068 thousand pound units of tomato solids or 68
pounds of solids available for use in the juice or products operation.
This is the amount of solids which can be obtained from the tomatoes
which are either not selected for peeling or returned from the canning
lines to the product operation. This entry was in RSOL53, the 5.3
percent solids row, because this lot of tomatoes had 5.3 percent solids.

The row 25 entry represents the amount of tomato waste from one
ton of tomatoes used in this activity. This figure is .216 thousand
pound units or 216 pounds. This represents both peeling loss from
tomatoes going through the peeler, and pulping and finishing loss from
tomatoes used in the products operation. The last entry in this column,
row 29, represents the 306 pounds of standard peeled tomatoes obtained
from a ton of this lot of tomatoes processed through the FMC peeler
activity.

In short, this column of coefficients tells us that from one ton
of tomatoes with these characteristics processed through the FMC peeler,

we will obtain:

204 pounds of choice peeled fruit
206 pounds of standard peeled fruit
1,27/ pounds of tomatoes for juice or paste

(68 pounds of solids is equal to 5.3 percent of 1,274
pounds of juice)
216 pounds of waste

These figures are based on the assumption that 40 percent of the
tomatoes (or 800 pounds) are selected for peeling with the percent of
choice and standard after selection as given for grower one in table 5-2.
Of the 800 pounds of tomatoes peeled, 240 pounds are choice, 360 are

standard, and 200 pounds can not be used as whole peeled fruit. After
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a peeling loss of 15 percent (also obtained from table 5-2), 204
pounds of choice fruit and 306 pounds of standard fruit remain. The
200 pounds of fruit not suited for canning yield 170 pounds of fruit
which is sent to the products operation.

There are 1,370 pounds of tomatoes which go to the products
operation, 1,200 of which were not selected for peeling and 170 pounds
from the peelers. Assuming a seven percent pulping loss, the pulping
loss is 96 pounds. (Seven percent was used for all lots of tomatoes in
the test problem, but a ten percent average pulping loss was used in
the full-scale model.) The 1,274 pounds of 5.3 percent solid tomatoes
yield 68 pounds of tomato solids.

Column two represents the activity of peeling all the tomatoes
without selection in the "Dole" peeler. One difference between activity
one and activity two is that the objective function cost is less in
column two. The smaller cost is due to the fact that there is no cost
due to selecting tomatoes. The meaning of the entry in the third row
is the same, since this activity also used tomatoes from the first
grower.

The next entry is in row 10, the RNON20 row. This row is different
from RSEL20 which had the comparable entry for the first activity even
though both contain choice tomatoes from 20 percent choice stock. This
is to maintain the identity of the assigned peeler while blending. Blending
must occur before peeling in the actual plant operation, but in order to
reduce the number of restrictions in the LP model, the peeling operation
appears here before blending. The .34 represents 340 pounds of choice

peeled tomatoes (the 400 pounds available in one tone less a 15 percent

peeling loss.
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The machinery restrictions are essentially the same as in the
first activity. These tomatoes are peeled in the "Dole" peeler,
rather than the FMC, and the coefficient is entered in row 21 which is
labeled RDOLPL. Since fewer tomatoes go to the products operation,
the pllping requirement in row 23 is less than for the first activity.

The .033 in RSOL53 (row 24) indicates that 33 pounds of tomato
solids are obtained from a ton of tomatoes in this activity. This
quantity of solids is computed by reducing the 800 pounds of non-
peeling stock by 15 percent to correct for peeling loss, which means
that 680 pounds of tomatoes are sent to the pulper. This quantity is
reduced by the seven percent pulping loss to give 632 pounds of toma-
toes. At 5.3 percent solids, solids available is 33 pounds. The last
two entries in the second activity indicate that there are 348 pounds
of waste to be disposed of and 680 pounds of standard peeled tomatoes
available for canning (800 pounds of standard tomatoes in one ton less
120 pounds peeling loss). The waste is greater than in the first ac-
tivity since all the tomatoes (rather than selected ones) are peeled
with a 15 percent peeling loss.

Column three, the Dole select activity, is identical to column
one except that the peeler capacity entry is in the "Dole" peeler row
rather than the FMC peeler row. In this case, it was assumed that
peeling loss, selection costs, and recovery rates for the two peelers
were equal. If they are not, the appropriate coefficients would be
different.

Column four is the paste, puree and juice activity for grower one.

Since the tomatoes go directly to products and there is no selection
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cost, the ijective function is 0.3 or a cost of $30.00 a ton. Toma-
toes entering the plant and going directly to products are dumped by
box dumper two until the capacity constraint is reached. This box
dumping requirement is represented by the entry in row 19, RBOX02.
The solids ‘entry in this column is .099, indicating that 99 pounds of
tomato solids will be obtained from one ton of lot one. This is 5.3
percent of 1860 pounds (2,000 pounds reduced by the seven percent
pulping loss). The waste is 140 pounds as indicated by .14 entered
in row 25. The only other entry in the column represents the pulper
capacity utilized by one ton of tomatoes.

The last activity for the first lot of tomatoes is the sauce and
catsup activity. It has the same entries as the preceding activity
except that there is an entry in row 28, the RSAUCE raw, rather than
in the solids row, and there is an entry in the REVAPR (evaporator)
row. This lot of tomatoes had only eight percent insoluble solids as
a percent of total tomato solids. Because of this, more total solids
are needed to give the same consistency in sauce and catsup as tomatoes
with a higher percentage of insoluble solids. For eight percent in-
soluble solids, a case yield factor of 80 percent is used, i.e., only
80 percent as much product can be obtained from this lot of tomatoes as

a similar lot with ten percent insoluble solids. The equivalent yield

in terms of ten percent insoluble solids can be obtained by multiplying
the available solids by .8. This gives the entry of .079 in the RSAUCE
row (.8 x .099). There is an evaporator capacity requirement for sauce
production entered in row 22. In the full-scale model, the evaporator

utilization for sauce was entered in transfer columns in the same manner
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as the evaporator utilization for paste. (See the explanation for
columns 40-43 in this appendix.)

The next five columns are for another lot of round tomatoes. Many
entries are the same as those for the first lot. In the test problem,
the objective function costs are the same for all lots. In the full-
scale model, the costs varied by differences in transportation costs.
The costs entered here might vary if some lots required special handling.
The next entries are in the grower row which, of course, is different.
The following entries are in the choice rows. The second lot of toma-
toes has 30 percent peelers so, for example, the entry for FMC select
(column six) is in row seven, RSEL 30 rather than RSEL 20 as in the
first lot. The peeling loss is 20 percent, so there are 256 pounds of
choice peeled tomatoes and an entry of .256 in the first column. As
before, 40 percent of the tomatoes are selected. Of these, 40 percent
are choice (320 pounds), and 20 percent pooling loss amounts to 60
pounds, leaving 260 pounds of choice tomatoes.

Many of the machinery coefficients are the same. These are general-
ly the coefficients determined by the physical handling of one ton of
tomatoes. Any differences in machinery coefficients between the first
and second lot are caused by a different proportion of the tomatoes
utilizing that particular machine.

The insoluble solids for this lot of tomatoes is ten percent or
average. In column ten the sauce entry of .095 in row 26 is, therefore,
the same as the solids entry in column nine.

The set of columns 11-15 is quite similar to the first two sets.

One point of interest is that the insoluble solids are 12 percent of the
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total solids. In this case, the sauce coefficient is greater than the
entry in the solids row because a higher case yield is possible. There
are only three sets of grower inputs included in the sample matrix, all
of which were round varieties. There were 15 sets of inputs in the test
problem, one for each of the sets of raw product characteristics listed
in table 5-2. These included five lots of coreless varieties.

The next group of activities, columns 16 through 23, are the whole
peel blending activities. Column 16, BSE 243, for example, is the ac-
tivity to blend raw tomatoes with 20 percent choice peelers and raw
tomatoes with 40 percent choice peelers to obtain raw tomatoes with 30
percent choice peelers. In the actual operation, blending would occur
as the tomatoes were being physically dumped, but in the linear program-
ming model it occurs after peeling. This was done in order to reduce
the size of the matrix. Peeling loss and percent of standards for each
lot are entered into the matrix via the input activities. If the blend-
ing was done in the dumping activities, each lot would have to be blended
with many other lots with a large increase in the number of activities
required. Some errors enter the program using this more compact pro-
cedure because of lots having greater peeling losses or a different
percent of standard peelers than the average, but the errors should be
relatively small. In the full-scale model, correction rows were used to
reduce the possible errors. In this example, the columns with labels
starting BSE are the blending activities for the selected tomatoes, and
those starting with BNS are the blending activities for the nonselected
tomatoes. In the test problem, there was also a similar set of activities

for the coreless tomatoes. All of the blending activities for the four
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levels of choice tomatoes included in the example are illustrated. In
the test problem there were seven levels of choice tomatoes and, conse-
quently, more possible blends.

The interpretation of the coefficients in column 16 (BSE 243) is
that .3333 units of choice tomatoes (333.3 pounds) are taken from the
20 percent choice row and .6667 units of 40 percent choice tomatoes are
taken from the 40 percent choice row. The total of one unit, or 1,000
pounds of choice tomatoes, is then put in the 30 percent choice row.
The 333 pounds of choice tomatoes in the 20 percent row actually re-
quires a total input of 1,667 pounds of raw tomatoes via the grower
input activities. The 667 pounds of choice tomatoes in the 40 percent
choice row also represent a total input of 1,667 pounds of raw tomatoes
before selection. The net result of blending is 3,333 pounds of raw
tomatoes with 30 percent choice peelers before selection. These 3,333
pounds of raw tomatoes contain one unit or 1,000 pounds of choice
tomatoes.

The next group of columns, 24 through 31, are activities which
transfer the choice peeled tomatoes from the rows in which they have
been entered or blended int& one row for all choice round tomatoes.
This row is an equality row with the RHS set equal to zero. Every
pound of tomatoes which is entered here must be taken out by one of the
whole peel canning activities or be downgraded to standard. The "-1"
in the particular row of choice peeled tomatoes indicates that 1,000
pounds are being withdrawn from that row; the "1's" in row 30, the
choice tomato row, indicate that 1,000 pounds of choice tomatoes are

being placed in the choice round row. Note that there are two sets of
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transfer activities, one for the selected peeler rows and one for the
non-selected peeler rows. In the test problem there was another set
of transfer activities for the coreless tomatoes. (There was also a
separate choice row for the coreless tomatoes.) The group of columns,
32 through 35, are activities for blending lots of tomatoes which are
to be utilized in products. Column 32, the 51553 column blends toma-
toes with 5.1 percent solids with 5.5 percent solids and yields 5.3
percent solids. The coefficients in the matrix are in units of 1,000
pounds of tomato solids. The columns 36-39 are juice transfer activities.
Here, the effect is to convert tomato solids back into their juice
equivalent. There is, of course, no such activity in a tomato plant.
However, by handling juice in this way, the total number of columns

in the LP matrix is considerably reduced. In column 36, the -.051 in
row 14 means that the total amount of solids for processing is reduced
by 51 pounds and the 1 in row 27, the juice row, stands for 1,000
pounds of juice. Columns 40 - 43 are evaporation activities. In ad-
dition to the evaporation activity, the tomato solids are transferred
to the solids row for 1.045 puree. (The 1.045 puree contains 14.2 per-
cent tomato solids.) The physical interpretation of this set of ac-
tivities.is that 142 pounds (.142 units) of tomato solids are removed
from a solids row in juice form. An appropriate amount of water is
evaporated, and 1,000 pounds of 14.2 percent tomato puree is put into
row 28, the 14.2 percent solids row. The amount of evaporator capacity
utilized in the concentration is represented by the entry in the evapo-
rator row. The entry in the objective function row represents the cost
of evaporation in this model. In the test model there were also sets of

evaporation activities for 1.06 puree and for paste.
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Column 44 provides for the use of choice tomatoes in place of
standard tomatoes when the supply of fruit and the desired product mix
is such that it is economical to do so.

Column 45 provides for the pulping of peeled standard tomatoes into
juice if juice is a more economical use than whole peel commodities. To
accomplish this, one thousand pounds of standard tomatoes are removed
from row 29, and 930 pounds (.93) are entered in the juice row. This is
1,000 pounds less a seven percent pulping loss. There are also entries
required in the pulper capacity and waste rows.

Column 46 is the waste disposal activity. Since the corresponding
row is an equality, the quantity of waste that entered in the input and
processing activities must be equal to the activity level of this column.
A cost of $7.50 a thousand is entered in the objective function rows.

In the case of multiple plants, differing waste disposal costs could

be entered. By using the bounded variable technique, the total quantity
of waste can be restricted to an upper limit. Also, if the cost of
waste disposal increases and the quantity increases, this can be handled
by using two or more disposal activities with upper bounds to give an
exact or approximate answer depending on the nature of the cost function.

Column 47 allows the dumping of product tomatoes by hand if the
mechanical box dumper is utilized to capacity. There is a negative
value in the objective function because hand dumping is an added opera-
ting expense. Because of the cost, the activity will enter the solution
only after the mechanical dumper capacity is completely utilized. The
negative coefficient in row 19, the mechanical box dumper row, and the

positive coefficient in row 20, the hand dumping row, are physically
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analagous td the hand dumping of fruit. In this example, there is a
RHS value for the hand dumping row to limit the total amount of fruit
which could be hand dumped.

The next three columns, 48-50, are activities to utilize 'straight
line! can fillers after the capacity of the more efficient 'hand pack!
fillers are utilized. There is one hand pack filler for each of the
two whole peel can sizes. There are also two straight line fillers, but
one could be used only for #303 cans while the other could be used for
both #303's ard #2F cans. These transfer activities are constructed
similarly to the one for the hand dumping activity. Row 31, RCANL, the
straight line filler which can be used for either #303 or #2f cans, has
to have two entries to allow both additional #2% and #303 can filling,
and cannot be removed in this manner. The negative objective function
values are the differences in the costs of running the straight line
fillers and the hand pack fillers for 100 cases of product.

Activities 51 and 52 allow the use of retorts when the cookers
are operating at capacity. These activities are quite similar in con-
struction to the two preceding groups.

The remaining activities are production activities. These are
the only revenue producing activities in the matrix. Column 53, headed
CHR 303, is the production activity for choice, round tomatoes in #303

cans. The unit here is 100 cases and the objective function is scaled

by $100. The prices used here are approximate wholesale prices in 1964

and are not corrected for direct supplies and labor. In the full-scale

model both of these factors were subtracted from the price. The -.525
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in the juice row indicates that 525 pounds of juice are used in 100
cases of choice 24/303. The next entry, .22857 in RCANL 4, indicates
that packing 100 cases takes 22.857 percent of a three and one-half
hour time period on filler line four. The last two entries indicate
that 100 cases of #303's takes only .06079 of a three and one-half
hour period on the #303 syruper and only .082237 of a three and one-
half hour period on the #303 cooker. Since the same number of units
(36) is the restriction for each piece of machinery, the last two rows
would have been unnecessary for they would never be restrictive if not
for the ability to utilize the hand fillers and the retorts. However,
if these possibilities did not exist, these machinery restrictions
would not be left out if it was desired to investigate the effects of
changing the right-hand side values, i.e., investigate the possibility
of increasing machine capacity or adding more equipment.

The remainder of the production activities are constructed and
interpreted similarly. However, there are two separate activities,
numbers 60 and 62, which can produce eight-ounce sauce and two activ-
ities, numbers 61 and 63, which can produce #303 sauce as these products
can be produced on two different product lines. Rows 42 and 44 are in-
equalities which insure that the combined production of one of these
products on both lines meets the desired restrictions. In the test
model, which included the coreless tomatoes, there were several other
rows of this nature since whole peeled tomatoes could be canned from
either coreless or rounds, each of which required a canning activity.
In the full-scale model some of the whole peel commodities could be

made by three activities. This type of row restriction was not used in
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the full-scale model because of the size limitations on the matrix.
The activity levels were summed before being inserted in the master

program.
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Table 5-1. Production Limits and Objective Function Values for
Test Problems

Objective
1/

Case Sige Commodity Maximum Level Minimum Level Function Value
100 Cases

24,/303 Choice_yhole

Peeled2 600 200 $115
24,/303 Standard Whole

Peeled? 250 0 105
24/2% Choice Whole

Peeledgyh 200 0 195
2/4,/2% Standag? Whole

Peeled 112 0 170
6/10 Choice2 ole

Peeled 330 100 160
6/10 Stand Whole

Peelegé? 120 0 145

- 6/10 25% Paste 500 100 430

6/10 1.06 Puree 250 20 250
6/10 1.045 Puree 75 30 190
6/10 X Standard

Catsup 250 10 265
48/8 oz. Sauce?d 700 0 85
12/46 Juice 450 50 120
24,/303 Sauced/ 500 0 80

l/Expected price per 100 cases adjusted for direct costs of
production. '

g/Can be either round or coreless tomatoes.

Q/Can be canned on either of two lines.
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Table 5-2. Raw Product Characteristics for Test Problem

Insoluble Percent Percent
Solids Choice Standard

Percent Percent as % of After After
Grower Percent Percent Peeling Total Total Selec-  Selec-
Number Choice Standard _ Loss Solids Solids tion tion
Rounds '
1 20 40 15 5.3 8 30 45
2 20 40 20 Sk 11 30 45
3 30 40 15 5.5 9 40 45
4 30 30 20 5.1 10 40 35
5 30 40 25 4.7 12 40 45
6 40 40 15 5.0 11 50 40
7 40 20 20 5.3 8 50 30
8 50 30 15 5.7 12 55 35
9 60 30 20 é.O 9 65 30
1070 70 20 15 5.3 10 75 20

Average Range 20-70 20-40 15-25 4.7-6.0 8-12 30-75 20-45

Coreless

11 20 50 15 5.0 9
12 30 60 20 4.5 11
13 40 30 20 6.0 10
14 60 20 15 5.0 8
15 70 10 20 6.2 12

Average Range 20-70 10-60 15-20 L.5-6.2 8-12




Table 5-3. Comparison of Raw Product Utilization at 260 Tons per Week and 520 Tons per Week
(1) (2) (3) (4) (5)
Basic Cost per Ton
Grower $33.50 $30.00 $33.50 $30.00 $30.00
Dole Dole Paste, ruree Sauce and
FMC Non-gelect Select and juice catsup
Grower 7l
20 % Choice 260 ton/wk Quantity used 260T
15 % Peeling loss Shagow pricel/ 23.20
5.3% Total solids Us Juice
8 % Insoluble solids Reduced costd/ 5.90 4.70 1.70 17.70
Mternative valueZ/ 17.30 18.50 21.50 5.50
520 ton/wk Quantity used 520T
Shadow price 5.11
Use Paste
Reduced cost .10 11.20 4.10 9.80
M ternative value 5.01 -6.90 1.01 -4 .69
Grower #2
20 % Choice 260 ton/wk Quantity used 260T
20 % Peeling loss Shadow price 25.50
5.7% Total solids Use Paste
11 % Insoluble solids Reduced cost 1.60 9.50 6.30 2.30
Alternative value 23.90 16.00 19.20 23.20
520 ton/wk Quantity used 520T
Shadow price 8.47
Use sauce & catsup
Reduced cost 3.40 16.10 7.40 .30
Alternative value 5.07 -7.63 1.07 8.17

(continued)
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Table 5-3. (continued)

Grower #3
30 % Choice 260

15 % Peeling loss
5.5% Total solids
9 % Insoluble solids

520
Grower #4
30 % Choice 260

20 % Peeling loss
5.1% Total solids
10% % Insoluble solids

520
Grower #5
30 % Choice 260

25 % Peeling loss
4.7% Total solids
12 % Insoluble solids

ton/wk

ton/wk

ton/wk

ton/wk

ton/wk

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

(1)

(2)

260T
26.00
Paste

5207
g.11
puree

260T
21.70
Juice

.80

2C.30

13.
-10.

.30
.70

.30
.19

.90
.80

70
24

.90
.20

4.70
21.30

4-70
17.00

5.20
-1.74

5.50
15.60

2.70
23.30

1.70

.30
21.40

520T
3.46
Paste

260T
21.10
Juice

14.40
11.60

13.00

.86

3.90
17.20

(continued)
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Table 5-3. (continued)
(1) (2) (3) (4) (5)
520 ton/wk Quantity used 520T
Shadow price 3.97
Use Sauce % catsup
Reduced cost 2.20 13.90 6.20 .70
Alternative value 1.77 -9.93 -2.23 2.27
Grower #6
40 % Choice 260 ton/wk Quantity used 24T 236T
15 % Peeling loss Shadow price 24,60 24,.60
5.0% Total solids Use Juice Juice
11 % Insoluble solids Reduced cost 4.70 4. 40 8.40
Alternative value 19.90 20.20 16.20
520 ton/wk Quantity used 5207
Shadow price 6.70
Use Juice
Reduced cost 2.30 4.00 4.00 3.40
Alternative value 4. 40 2.70 2.70 3.30
Grower ﬁz
40 % Choice 260 ton/wk Quantity used 260T
20 % Peeling loss Shadow price 22.00
5.3% Total solids Use Juice
8 % Insoluble solids Reduced cost 6.90 4.70 .50 16.40
Alternative value 15,10 17.30 21.50 5.60
520 ton/wk Quantity used 520T
Shadow price 5.11
Use Paste
Reduced cost 1.00 13.90 5.00 8.80
Alternative value 4.11 -8.79 .11 -3.69

(continued)
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Table 5-3. (continued)
(1) (2) (3) (4) (5)
Grower #8
50 % Choice 260 ton/wk Quantity used 260T
15 % Peeling loss Shadow price 28.00
5.7% Total solids Use Paste
12 % Insoluble solids Reduced cost 1.70 3.00 2.50 .20
Alternative value 26.30 25.00 25.50 27.80
520 ton/wk Quantity used 520T
Shadow price 11.93
Use Sauce & catsup
Reduced cost 1.70 6.00 .90 3.80
Alternative value 10.23 5.93 11.03 8.13
Grower #9
60 % Choice 260 ton/wk Quantity used 108T 152T
20 % Peeling loss Shadow price 29.00 29.00
6.0% Total solids Use Puree Puree
9 % Insoluble solids Reduced cost 4.30 4.70 13.20
Alternative value 24.70 24.30 15.80
520 ton/wk Quantity used 440T 80T
Shadow price 10.93 10.93
Use Puree Puree
Reduced cost 5.00 4.00 8.00
Alternative value 5.93 6.93 2.93
Grower #10
70 % Choice 260 ton/wk Quantity used 260T
15 % Peeling loss Shadow price 29.70
5.3% Total solids Use Juice
10 % Insoluble solids Reduced cost 3.00 = 7.70 8.20 14.90
Alternative value — %6.70 22.00 21.50 14.80

(continued)
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Table 5-3. (continued)

520
CORELESS VARIETIES
Grower #11
20 % Choice 260

15 % Peeling loss
5.0% Total solids
9 % Insoluble solids

520

Grower #12

30 % Choice 260
20 % Peeling loss
4.5% Total solids

11 % Insoluble solids

520

ton/wk

ton/wk

ton/wk

ton/wk

ton/wk

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost

A ternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

Quantity used
Shadow price

Use

Reduced cost
Alternative value

(3)

520T
11.13
Paste

1.70
17.70

8.10
-4.50

18.70

1.90
.12

260T
19.40
Juice

520T
3.60

Juice

260T
19.30

Juice

520T
2.02
Juice

10.60
8.80

5.90
-2.30

7.70

11.60

2.20
-.18

(continued)
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Table 5-3. (continued)
(%) (2) (3) (L) (5)
Grower #13
40 % Choice 260 ton/wk Quantity used 260T
20 % Peeling loss Shadow price 29.00
6 % Total solids Use Puree
10 % Insoluble solids Reduced cost 12.00 8.10
Alternative value 17.00 20.90
520 ton/wk Quantity used 520T
Shadow price 10.93
Use Puree
Reduced cost 16.60 4 .20
Alternative value -5.67 6.73
Grower #14
60 % Choice 260 ton/wk Quantity used 260T
15 % Peeling loss Shadow price 23.60
5 % Total solids Use Juice
8 % Insoluble solids Reduced cost 3.30 20.40
Alternative value 20.30 3.20
520 ton/wk Quantity used 236T 284T
Shadow price 2.71 2.71
Use Juice Juice
Reduced cost 9.10
Alternative value -6.39
Grower #15
70 % Choice 260 ton/wk Quantity used 260T
20 % Peeling loss Shadow price 32.90
6.2% Total solids Use 1.045 Puree X Std. Cat.
12 % Insoluble solids Reduced cost 10.10 -
Alternative value 22.90 32.90

(continued)
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Table 5-3. (continued)

520 ton/wk Quantity used
Shadow price
Use
Reduced cost
Alternative value

(4) (5)

520T
15.74

Puree  Sauce and catsup

15.74

1/Shadow price is the value which would be added by one additional ton of tomatoes from that grower.

2/Use for columns 1-3 are for those tomatoes not used for whole peel.

3/The reduction in total profit if one ton was used in that activit

y rather than the selected activity.

(Alternatively, the amount costs have to be reduced for that activity to enter the solution at a positive

level.)

4/ The value of one additional ton of tomatoes if usad in the alternative activity. (Equal to the

shadow price minus the reduced cost.

68
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Table 5-4. Commodity Production Levels in Test Problem
260 T/wk 520 T/wk

Product/ Price Value of one Value of one
can sigze per  #Cases additional # Cases additional

casel/ case case
Choice round 303 81.15 5,962 -.006  7,6422  ~.039
Standard round 303 1.05 23,776 .003 20,381 .001
Choice coreless 303 1.15 14,5052 -.016 12,3582/ -.039
Standard coreless 303 1.05 - -.003 3,395 .054
Choice round 303 2% 1.95 17,536 .000 18,534 .009
Standard round 2% 1.70 - -.105 - -.104
Choice coreless 2% 1.95 - -.006 - -.026
Standard coreless 2% 1.70 - -.105 - -.133
Choice round 10 1.60 10,282 .005 19,328 .001
Standard round 10 1.45 7,265 .000 5,837 013
Choice coreless 10 1.60 525 .020 - .075
Standard coreless 10 1.45 2,473 .005 - 077
Juice 46 ogz. 1.20 43,6802 149 43,680 .379
Pur 1.045 10 1.90 3.0002, -.535 3,000/  -.085
Pur 1.06 10 2.50 2,0002 -.723 22,165 .085
Paste 25 10 4.30 10,0002/ -1.652 35,280 .403
X std cat 10 2.65 6,273 .082 25,0002/ .566
Line 2 sauce 8 oz .85 - -.373 - .G70
Line 2 sauce 300 .80 - -.270 88,200 -
Line 3 sauce 8 oz .85 - -.462 - .297
Line 3 sauce 300 .80 - -.344 - .188

l/Expected price per case adjusted for direct costs of production.
Q/Commodity was forced into solution at lower bound.

3/Production was restricted by upper bound on commodity.
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Table 5-5. Machinery Restrictions and Simplex Multipliers for Test
Problem
Number Simplex Multipliers
Restriction of
T 20 Tons
Deriodsl/ 260 Tons/wk 520 Tons/wk
Dole peelers (2) 72 $122.66 352.50
FMC peeler 36 - 387.45
Box dumper 1 36 - -
Box dumper 2 42 - 127.00
Coreless hand dump 36 - -
Products hand dump 42 - -
Canning line chopper 36 - -
Pulper 42 - -
Evaporator 1502/ - -
Canning line 1 36 18.06 R2.47
Canning line 2 36 18.06 22.47
Canning line 3 36 46.82 57.83
Canning line 4 36 44.08 52.89
Canning line 5 36 - -
Total canning #10 2/, - -
Total canning #2% 48 - -
Tolal canning #2303 72 30.08 35.02
#10 Syruper 36 - -
#25 Syruver 36 - -
#303 Syruper 36 - -
#10 Cooker 36 - -
#2% Cooker 36 37.98 37.98
#303 Cooker 36 66.13 58.58
Retort 108 - -
Product line 2 42 - -
Product line 3 42 154.60 507.45
Product line 4 42 - -
Product line 5 42 - -

1/Whole peel activity periods are three and one-half hours of

operation.

2/1,000 lbs. of water.

Product activity periods are four hours of operation.



Table 5-6.

Miscellaneous Activities in Optimal Solutions to Test Problems

Activity 228¥eiei§ 5gg¥eiei§ Units

Transfer selected 20% choice rounds 53.0 - 1,000 1bs. after peeling
Transfer selected 30% choice rounds 137.3 141.4 1,000 1lbs. after peeling
Transfer selected 40% choice rounds 91.4 176.8 1,000 1bs. after peeling
Transfer selected 50% choice rounds 97.2 - 1,000 1bs. after peeling
Transfer selected 60% choice rounds 45.0 183.3 1,000 lbs. after peeling
Transfer non-select 40% choice rounds 160.5 - 1,000 1bs. after peeling
Transfer non-select 70% choice rounds 309.4 618.8 1,000 1lbs. after peeling
Transfer coreless 60% choice rounds 265.2 240.7 1,000 1bs. after peeling
Blend 53% solids pulp with 5.9% to yield 5.5% 21.21 7.58 1,000 1lbs. of solids
Blend 5.5% solids pulp with 6.1% to yield 5.7% 57.94 63.63 1,000 1bs. of solids
Blend 5.7% solids pulp with 6.1% to yield 5.9% 20.58 127.26 1,000 1bs. of solids
Transfer 4.7% solids pulp to juice 945.96 029.36 1,000 1bs. of solids
Transfer 5.1% solids pulp to juice 514.74 1,460.05 1,000 1bs. of solids
Transfer 5.3% solids pulp to juice 890.96 - 1,000 1bs. of solids
Evaporate 6.1% solids pulp to 10.8% 117.56 117.56 1,000 1bs. of 1.045 puree

for 1,

045 puree

(continued)

cb



Table 5-6. (continued)

Activity 228¥6$ei§ 528¥eiei§ Units

Evaporate 5.3% solids pulp to 14.2% - 2.6 1,000 lbs. of 1.06 puree
for 1.06 puree

Evaporate 5.9% solids pulp to 14.2% - 878.42 1,000 1bs. of 1.06 puree
for 1.06 puree

Evaporate 6.1% solids pulp to 14.2% 79.50 - 1,000 1bs. of 1.06 puree
for 1.06 puree

Evaporate 5.1% solids pulp to 25.5% (paste) - 141.41 1,000 1lbs. paste

Evaporate 5.3% solids pulp to 25.5% - 592.52 1,000 lbs. paste

Evaporate 5.7% solids pulp to 25.5% 362.27 - 1,000 1bs. paste

Evaporate 5.9% solids pulp to 25.5% 52.98 - 1,000 lbs. paste

Use Hand Pump - 229.5 Manhours

Use canning line 2 for 2% cans 17.9 22.7 100 case units

Use canning line 1 for 303 cans 78.8 78.7 100 case units

Use canning line 2 for 303 cans 56.4 50.4 100 case units

Use retort to cook 2% cans 65.1 70.0 100 case units

Waste disposal 810.26 1,343.84 1,000 1bs. of waste

£6



Table 5-7. Sample LP Matrix

1 2 3 4 5 6 7
GO1111 G01112 G01113 GO1114 GO1115 GO4111 G041112

OBJEC1 -.335 -.3 -.335
OBJEC2 ~.335 -.3 -.335
RO1110 1. 1. 1.
RO, 110 1. 1.
RO8110
RSEL20 . 204 . 204
RSEL30 .256
RSEL40
RSEL50
10 RNON20 .34
11 RNON30 WA
12 RNON4O
13 RNON50
14 RSOL51 .065 .03
5 RSOL53 .068 .033 .068 .099
16 RSOL55
17 RSOL57
18 RBOXD1 .007874 .007874 .007874 .007874 .007874
19 RBOXD2 .007874 .007874
20 RHANDP
21 RDOLPL .095238 .038095 .095238
22 RFMCPL .024316 .024316
23 RPULPR .000266 .001063 .000266 .003125 .003125 .00025 .001
2/, REVAPR .02
25 RWASTE .216 .348 .216 .14 14 .255 455
26 RSAUCE .079
27 RJUICE
28 RSS142
29 RSDRDS .306 .68 .306 .22/ A:
30 RCHRDS
31 RCANL1

-.335 -.3
-.335 -.3

[ |
W W
o
W W

VeI oowmb-wn -+

76

32 RCANL2 (continued)
33 RCANL3



Table 5-7.

(continued

8 9 10

GO4113 GO4114 GO4115

11
GOog111

13
GOg113

14
GO0g114

oo~ oowmSwH

1.

335 -.3 -.3
335 -.3 -.3

1. 1.

.256

.005 .095

.007874

.007874 .007874

.038095

.00025 .003125 .003125

.02152

.255 .14 4

.095

W R24

-.335
-.335

374

.067
.007874

.024316
.000106

. 208

.238

=t

.85

.018
.007874

.095238
.000531

. 324

.51

-.335
-.335

374

.067
.007874

.038095
.000106

.208

.238

-.3

.106

.007874

.003125

.14

.007874

.003125
.01729
.14
.127

(continued)

g6



Table 5-7.

(continued)

16
BSE243

17
BSE253

18
BSE254

19
BSE35

L

20
BNG243

21
BNS253

22
BNS254

23
BNS354

oe~2owum~wnH

-.3333
1

6667

- bbbl
1.

-.5556

-.1667

1.
-.8333

-.375

625

-.3333
6667

~ hbddy

-.5556

-.1667

_.8333

-.375
625

(Continued)

96



Table

5.7, (continued

R4
TRSE20

25
TRSE30

26
TRSELO

27
TRSE50

30 31
TRNS40 TRNS50

-1.

-1.

(continued)

L6



Table 5-7.

(continued)

32
515553

33
515753

34
515755

37
TRJU53

38
TRJUS5

39
TRJU57

ORI ooWm W

HERFRFHERHRHPF
Q~1ToWnm>~NWNDEHO

FJ

WWLWLWLWNNNDNDDDOLDDDNDNDNDN
wWwporRrowelIoowm~-wWwn O

-.5

-.667
1.

-.3333

-.3333

1.
-. 6667

-.051

-.053

-.055

-.057

(continued)
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Table 5-7.

(continued)

E51142

40 41
E53142

42
E55142

43 44
E57142 TRCHSD

45 46
TRSDJU WASTED

47 48
HANDDP T212L2

woeToownmb~wpo e

-.0666
-.0666

~.0616
-.0616

-.142
-.142

.01784 .01645

-.0592
-.0592

-.142

.01582

-.0559
-.0559

-.142

.01491

-.075 -

-.075

.001562
.07 -1.

.93

-1.

-.01 -.0038
-.01 -.0038

-.007874
.009524

57142
-.22857

(continued)
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Table 5-7.

(continued)

49
T303L1

50
T303L2

51
T212RE

52 53 54
T303R% CHR303 SDR303

55
CHR212

56
SDR212

OBJECL
OBJEC2
RO1110
R04110
RSEL20

s i \W NI

18 RBOXDL
19 RBOXDR
20 RHANDP
21 RDOLPL
22 REFMCPL
23 RPULPR
2/, REVAPR
25 RWASTE
26 RSAUCE
27 RJUICE
28 RSS142
29 RSDRDS
30 RCHRDS
31 RCANL1
32 RCANL2
33 RCANL3
3, RCANL,
35 RSY212
36 RSY303
37 RCO212
38 RCO303
39 RETORT
4LC RPRDL2
41 RPRDL3
42 RPRDL5
43 RQSA30
44 RQSA8Z

-.018
-.018

45704

-.22857

-.018
-.018

45704

-.22857

-.124
-.124

-.32653
. 34482

-.0545 1.15 1.05
-.0545 1.15 1.05

-.525 -.825

-.1875
-1.6875

-1.4175
-.1575

. 22857 . 22857
.06079 .06079

-.082237
.151515

.082237 .082237

1.95
1.95

. 22857
.0907

.32635

1.70
1.70

-1.425

-2.4975
-.2775

. 22857
.0907

. 32653

(continued)

Q0T



Table 5-7. (continued)
57 58 59 60 61 62 63 64,
JUICL6 P10610 YSDK10 2SALG87Z 2SA300 3SAUBZ 3SA300 RHS

1 1.2 2.5 2.65 .85 .8 .85 .8

2 1.2 2.5 2.65 .85 .8 .85 .8

3 < 520

4 £ 520

5 £ 520
18 £ 36
19 £ 42
20 £ 42
21 £ 72
22 £ 36
23 £ 42
24 .00963 < 150
25
26 -.572 -.264 -.231 ~ .26/, -.231
27 -3.735
28 -3.975
29
30
31 £ 36
32 £ 36
33 < 36
34 < 36
35 £ 36
36 < 36
37 £ 36
38 £ 36
39 £ 108
40 057471 .047619 =2 3]
41 .096154 057471 .047619 £ 42
42 .089286 .078125 £ 42
43 31250

3500

TOT
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CHAPTER VI

THE SOLUTION OF A TEST PROBLEM BY DECOMPOSITION

After the test problem described in Chapter III had been solved
and the results evaluated, the test model was used as the basis for a
pilot decomposition study. The problem had two subprograms representing
weeks and a master for'thé season, so the basic configuration was similar
to figure 4-1. The two iﬁpﬁt.levels of 260 tons per grower (week one)
and 520 tons per growef (week two) were selected to be used as the two
"weeks". The raw producﬁ characteristics and the plant's configuration
and capzcity were those outlined in Chapter V. A master program was
constructed that had the Jisgasonal" quantity restrictions on products
listed in table 6-1. Most'of fhe restrictions are the maximum amounts
to be produced during the season, but there are six that require a
minimum amount of a product to be produced in a given week. These
restrictions are less than the weekly restrictions listed in table 5-1
which allow production at a level of 1200 tons a week. However, they
are consistent with the initial solutions obtained at the 260 and 520
ton level.

The master program initially was composed of a single objective
function, the 13 seasonal restrictions limiting total production, and
the two restrictions requiring that the sum of the weekly solutions

for each week be less than or equal to one in the solution to the master.
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The six restrictions requiring minimum weekly production were not
included until the fifth major iteration. The master was first solved
using only the optimal solutions to the two weeks that were previously
obtained in the trial rums.

Since there were no minimum restrictions, the master program was
immediately feasible although neither of the weekly solutions was included
in the master solution with a weight of one. The simplex multipliers
were used to obtain the revised objective functions for the subprograms.
The procedure throughout the test problem was to obtain optimum solu-
tions to both weeks in each major iteration. (This procedure was
altered in the full-scale problem.)

After the first major iteration the optimal solutions to the
subproblems were in the solution to the master with values of .04 and .99,
The objective function value of the master was $1567.413. This is not
much larger than the‘objective function value for the solution to week
two and substantially less than the eventual solution to the test proolem
of $229/.732. The maximum production restrictions for each week in the
subprograms was equal to the maximum production restrictions for the
season in the master program. Since some of the products were produced
at their maximum level in week two and also produced in week one, week
two with its higher objective function value blocked week one out of the
solution to the first major iteration. If the solutions to the subproblems
had not been restricted, their initial optimal solutions would have been
larger, but the objective function value of the master after the first
major iteration would have been even less since a smaller fraction of the

week two solution would have filled at least one seasonal production
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restriction. It appears that unrestricted solutions would have required
more computations to approach an approximate solution to the test prob-
lem, but this is an area which requires more investigation. A great
deal depends on the nature of the subproblems and on the properties of
the particular linear programming computer code.

Even though the subproblems had bounds so that the minimum weekly
quantities required in the master would be produced each week, these
minimum production restrictions were obvious possible sources of in-
feasibility in the master as long as both weeks were not in the solution
with summed weights equal to 1.0. For instance, the 25 percent paste
was relatively uneconomical to produce and was in the optimal solution to
week one at the lower bound and at an intermediate level in week two.
Both weeks could not come in with a weight large enough to meet both the
lower 1limit on paste and be less than the seasonal upper bounds simul-
taneously. In this test problem, no great difficulties were encountered
by +the simultaneous requirement of maximum and minimum restrictions be-
cause the master program was simple enough to be inspected visually and
the minimum restrictions were not added to the master tableau until it
was possible to get a feasible solution. In any case, meeting these re-
quirements can take considerable computing time. Five sets of solutions
to the subproblems were required before a feasible solution was obtained.

There are several ways to handle the problem of initial infeasibili-
ties in the master.

1. Ignore either the maximum or minimum requirements until a
sufficient number of product vectors are available so the infeasibilities

are eliminated as was done in the test problem. This process might be
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speeded up by restraining some activity levels in the subprograms
either by bounds or artificial prices.

Using this approach, it might also be advantageous not to bring
in all the restrictions at once as was done in the test problem but to
phase them in singly or in small groups.

2. Bounds and constraints could be added to the restrictions used
for the initial solutlons to the subprograms so that the master program
will be feasible after one set of solutions to the subprograms is com-
pleted. For a large master program, however, this would require con-
siderable bookkeeping. It might not be practical or possible to put
all of the needed constraints into the subprogram without significant
changes in its formulation.

3. Artificial variables could be inserted in the initial tableaun
of the master for all the restrictions which might cause infeasibilities.
This has the advantage of having the full set of restrictions in the
master from the very beginning without continuously changing the master
program except to drop out dummy variables. These artificial variables
could be given objective function values which would make them relatively
uneconomical activities. This will also influence the simplex multi-
pliers on the applicable rows and thereby adjust the objective function
values of the activities in the subproblems.

4. Use artificial variables in the master and solve with a general

"two-phase technique",l/ in which Phase I consists of maximizing an

1/c. Hadley, Linear Programming (Reading, Massachusetts: Addison-
Wesley Publishing Co., Inc., 1962), pp. 149-151.
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objective function with a cost of -1 assigned to each artificial variable
and a cost of zero assigned to every other variable. When Z max equals
zero, all of the artificial variables have been driven out of the solution
and Phase II is accomplished by maximizing the original objective func-
tion. If the optimality conditions have been satisfied in Phase I and

Z max is less than zero, there is no feasible solution to the overall
problem.g/ There is no similar computational proof of infeasibility avail-
able from the other methods described, so that computations could continue
indefinitely if the overall problem was infeasible. On the other hand,

if the problem is feasible, it would appear that obtaining feasibility

via Phase I would frequently add to total computational time.

A combination of two and three above was used for the full-scale
model with dummy variables being used to eliminate the infeasibilities
that it was impractical to avoid by using bounded variables or constraints.
Due to the nature of the IBM 1620 LP code (but not 1130-LP-Moss), con-
siderable computational time could have been saved if the subprogram solu-
htions had been manipulated only by objective function changes. Solving
a problem with the IBM 1620 on which either the bounds or restrictions
had been changed took essentially as long as solving a new problem, while
solving a problem with a revised objective function typically took from
five to 50 percent as long to solve.

The solution to the master after each of the first seven and the 10th major

iterations is given in the upper portion of table 6-3. The bottom portion

2/1bid., p. 406.
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of the table gives the levels of the individual products. Table 6-4
gives the optimal solution to the master and the final product levels.
(This was after 40 major iterations.)

The first row of table 6-3, labeled objective function, gives
the value of the objective function of the master after each iteration.
The next row gives the objective function as a percent of the maximum
value for the season of $2,294.732. (This value is scaled by 100.)

The decrease in the objective function value from iteration four to
iteration five was due to the addition of the three minimum production
restrictions in the master for each week. As was noted earlier, this
was the first time that the master would yield a feasible solution with
these restrictions included. The objective function value (and solu-
tion) did not change from iteration five to iteration six because the
sixth solution to the subprograms used prices that were computed before
the additional restrictions were added to the master. As a result,
these subprogram solutions did not enter the solution to the master at
that time. However, they did enter after an additional set of sub-
program solutions was obtained using the prices obtained with the minimum
restrictions added to the master.

The next two rows in table 6-3 are the values of the simplex
multipliers associated with the rows restricting the sum of the weights
for each week to be less than to or equal to one. %Fl is the multiplier
for week one and%fé is the multiplier for week two. These two multipliers
combined with the objective function value of the subprogram can be

used to determine the upper bound to the overall solution.z/ (They are

E/Dantzig, Linear Programming and Extensions, p. 452.
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also used in determining when an overall optimal solution is obtained.)é/
The following two rows are the values of the slacks for the restrictions
on the weeks. Following the slacks are the weights for each week in
each of the ten solutions and the product levels obtained from each
solution.

The master for the first major iteration had 13 rows and only two
non-slack columns. As might be expected since the subprograms had
relatively large bounds on the products, two products, juice and catsup,
were restrictive and there were slacks for both weeks. Week two had a
value of .99, however, since its objective function value was much
larger than week one (see table 6-2) as it had more raw tomato inputs
than week one. Both produced the same amount of juice, the most over-
produced commodity in toctal for the two weeks.

The solution to the master after the second major iteration is
shown in the next column of table 6-3. There were four input vectors
or columns in the master during this major iteration of which all four
entered the basis. Three of the commodities restirictions were effective.
The fourth active restriction was the requirement that the sum of week
two solutions be £ 1. The third major iteration produced similar results.
Although there were six input vectors, only four entered the basis.
Profit for the two week season did not increase appreciably during the
first three iterations especiaily whgn it is realized that the optimal
solution to week two had an objective function value of $1541 and, after

three major iterations, the objective function for the season was on

A/Baumol and Fabian, op. cit., p. 14.
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$1642. However, there was a significant improvement after the fourth
major iteration, although there were slacks in both weekly restric-

tions. The value of 2065.916 was over 90 percent of the optimal objective
value for the season although the weekly minimum production requirements
were not yet included in the master.

The fifth and sixth iterations were the first to require the
minimum quantities for each week. Consequently, the objective function
value was somewhat smaller, although it was still 85 percent of the
season maximum. The seventh major iteration was the first to have no
slacks in the restrictions that the sum of each week's weights equal one.
The objective function value was over $2,237 or 97.5 percent of its op-
timal value for the season (which was not obtained until after 40 major
iterations). The increase in the objective function from the seventh to
the tenth major iteration is less than one percent. On an actual dollar
basis, (unscaled), this was a difference of slightly less than $2,000.
The value at the seventh iteration is less than $6,000 less than the over-
all maximum, and the value after the tenth iteration is less than %/,000
from the maximum of $229,473.

There are few differences in the product levels for the seventh
through the tenth iterations. Nine of the products are already at their
maximum levels after seven major iterations. The production levels for
the final solution, which are shown in table 6-4 are quite similar.

The six whole peel products are all at their upper limits in both the
tenth and the final iteration. Paste production has shifted in the
final iteration between weeks one and two until only the minimum is

produced in week one. (However, the shadow price on this restraint is
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only 1.4¢ pér case, so this is not an expensive limitation.) Shadow
prices for the final solution are shown in table 6-4. Catsup and
juice production also was shifted between weeks and the production of
eight-ounce sauce has been eliminated from the final solution. Eight-
ounce sauce was dropped from the solution in the 13th iteration and
never entered again after the 20th.

The greatest amount of physical production did not coincide with
the largest profit solution. Rather, the greatest amount of production
occured after the 13th major iteration. The number of units of paste
produced was 379. All the other products, except for eight-ounce sauce,
were at their maximum. The objective function value was $2,276,186 or
99.2 percent of the final value. After that, total production decreased
slightly until the final solution was reached. (there was one ocrasi;n
when #300 sauce dropped below the maximum and paste production increased
to 383 units, but the patiern of decreasing total production returned
in the next major iteration.)

Any solution after the completion of the seventh iteration would
have been very effective. Unfortunately, the maximum value of the ob-
jective function is unknown at this point. We know that it cannot
exceed $2,575.239, which is the sum of the objective functions when
week one and week two were solved independently, but upper bound cal-
culations give a result larger than this value until after the tenth
major iteration. The value of the upper bound computed after the
tenth iteration was $2,473. This meant that the current solution was be-
tween 93 and 94 percent of the lowest known upper bound at that time.
Actually, the solution value was 98.4 percent of the final value at that

point.
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After the 11th major iteration, the computed upper bound decreased
to $2,348. The corresponding solution value was then greater than 96
percent of this value. The upper bounds computed after each of the
next three major iterations were all greater than $2,348. After the
15th major iteration, the computed upper bound was $2,313. The solu-
tion value at this time was $2,276 or over 98.3 percent of the bound
and over 99.2 percent of the final solution value. This bound of
$2,313 was the lowest bound obtained until after the 28th major itera-
tion. These bounds ranged from $2,316 to $2,395 with six of the first
seven being greater éhan $2,330. After the new lower bound was ob-
tained after the 28th major iteration, the actual solution of $2,292
was 99.5 percent of the bound (and 99.8 percent of the final value).
Although upper bounds can be used to determine when to stop if
it is not desired to do all the computing necessary to obtain the optimal
overall solution, they might not be particularly efficient. In fact, if
it was desired to minimize or limit the amount of computational expense,
this information would not have been available, since it involves com-
pletely solving all the subprograms using the objective function values
computed after the last master. In the test problem, there were only
two subprograms so the price paid for the information about the bound
would have been at most a doubling of computer time (if the optimal
solutions to both subproblems were always obtained). In the early
stages of the problem, both solutions frequently entered in the solutions
to the master so the effort was not wasted. Only two of the 20 sub-
problem solutions generated had not entered into a solution by the end

of the tenth major iteration. (Thirteen of these were in solution to
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the master at that time.) Both new vectors did not enter the solution
in only four of the first ten major iterations. After the first ten
major iterations, however, the entering of both vectors was more unusual.
It only occurred three times in the last 20 major iterations. Only 60
of the 79 subprogram solutions generated actually were used in a solu-
tion to the master, and many of these entered for just a few iterations
at a low level.

In the test problem, only optimal solutions to the subprograms
(and masters) were used. It would speed convergence up if non-optimal
solutions had been used, either obtaining several feasible non-optimal
solutions while iterating to an optimal solution or entering another
feasible solution into master after a fixed number of iterationsﬁ/ and
then proceeding with the revised prices and not bothering with obtaining
optimality of the subproblems. Under such operating conditions, one is
effectively barred from obtaining the upper bound unless it is explicitly
sought. However, the upper bound is only an estimate and does not nec-
essarily decrease. It can have wide fluctuations if calculated only at
intervals and not at every major iteration. It would be possible not to
get a good estimate of the upper bound until long after the solutions
to the master were converging on the maximum.

A possible approach to obtaining a satisfactory but not necessarily

optimal solution to the program would be to stop computing after the

5/811 Hellerman, Large Scale Linear Programs: Theory and Computa-
tion. Paper presented at Technical Association of the Pulp and Paper
Industry Symposium, Philadelphia, Pennsylvania, March 28-30, 1966.
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incremental improvements to the objective function of the master become
less than a predetermined amount. It might be possible to determine
this quantity by solving the problem once and inspecting the sequence of
objective function values of the master after each major iteration. In
the test problem, there was a definite tendency for the increases in the
objective function of the master to get smaller and smaller as the
solution converged to the maximum. There was an increase of almost

- six at each major iteration number ten to number 20. After the 20th
iteration, the average increase was less than one. No iteration improved
the solution more than one after the 23rd iteration. The last 19 itera-
tions improved the solution in total less than eight.

Since the problem converged rapidly to over 99 percent of its final
value once a feasible solution to the master was obtained, an experiment
was performed to determine how difficult it was to obtain a feasible
solution fér a starting point. Ten sets of vectors from the 12th through
the 21st major iteration were introduced by pairs into the master.

(Only three of these vectors were in the final solution.) The results
are shown in table é-5. A feasible solution to the master was obtained
after what was equivalent to the third major iteration.

After the tenth solution, the objective function was 93.4 percent
of the maximum. Even at this stage, however, there is still a slack
in the constraint for week one. If at this point (or earlier) further
solutions to the subproblem for week one were obtained using objective
functions computed from the last solution to the master, the solution
value for the master would be considerably higher. This procedure

would be directly applicable to the solution of a decomposed problem
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with multiple objective functions. Aftef solving the problem for the
first objective function, there will be a number of solutions to each
subprogram. These solutions can then be used in the master when
maximizing the next objective function. If there are no changes to

the matrix or the right-hand side of the master, it will be feasible

and with a fairly high value for the objective function. When several
objective functions are to be used, this process can be done in sequence.
In these circumstances, if vectors which don't enter the solution to the
master are dropped from the files, it might be wise to retain them

and reintroduce them when starting work on a new objective function.
Week U-1, for instance never entered the solution to the master in the
test problem although it had a value of .192 in the last solution to

the master in table 6-5.

In the same manner, the repeated use of vectors will provide an
advanced start when using multiple right-hand sides in the master
program or making changes to the matrix of the master program. Even
if there are substantial changes to the right-hand side of the master,
the previous subproblem solutions might provide a feasible basis for
the master or at least reduce the number of infeasibilities that would

have to be worked out if starting with all new subproblem solutions.
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Table 6-1. Restrictions for the Test Master Program

Commodity Maximum Level Minimum Lgvel

Case Sigze Grade In 100 Case Units In 100 Case Units
24,/303 Choice 600
24,/303 Standard 250
24,/2% Choice 200
24/2% Standard 112
6/10 Choice 330
6/10 Standard 120
6/10 25% Paste 400
6/10 25% Paste (Week 1) - 100
6/10 25% Paste (Week 2) = 100
6/10 1.06 Puree 250
6/10 1.045 Puree 75
6/10 Extra Standard Catsup 250
6/10 Extra Standard Catsup

fWeek 1) - 10
6/10 Extra Standard Catsup

(Week 2) - 10
48/8 oz. _ Sauce 700
12/46 Juice 450
12/46 Juice (Week 1) - 50
12/46 Juice {Week 2) - 50

24,/303 Sauce 500
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Table 6-2. Objective Function Values of Subproblems

Iteration 260 Ton/Week 520 Ton/Week
1 1033.9 1541.3
2 842.8 1215.9
3 931.4 1316.6
4 976.8 1374.6
5 930.1 1303.3
6 817.9 1170.7
7 493.1 1186.3
8 737.4 1085.9
9 857.7 1207.3

10 738.3 1217.9




Table 6-3. Solutions to Master Program of Test Model

ltération Number

1 2 3 4 5 & 6L/ 7 10

Objective Function

Value 1567.413 1588.537 1642.781 2065.916 1949.803 2237.626 2257.692
Objective Function as

a % of Final

Value .683 .692 .716 .900 .850 975 984
w1l - - - - - 294,209 335.540
™2 - 373.102 229.655 - = 342.731 588.127
SLACK1 .96 .949 876 046 .000 - -
SLACK2 .01 - - .170 .305 - =
WEEK.1 .040 .038 124 .129 - .324 .R61
WEEK, 2 .990 .990 .895 .311 .538 .R22 .255
WEEKAL .014 - 264, .R62 .012 .185
WEEKA2 .010 .032 - - .084 -
WEEKB1 - .006 .205 .056 -
WEEKB2 073 .519 - .088 .120
WEEKC1 .555 458 469 -468
WEEKC2 - - - -
WEEKD1 .076 - -
WEEKD2 157 . 307 .255
WEEKE1 - - 045
WEEKE2 - .057 .016
WEEKF1 .139 .042
WEEKF2 R4 .288
WEEKGL -
WEEKG2 .045
WEEKH1 -
WEEKH2 .006
WEEKI1 -
WEEKI2 .015
CH.303 206 210 R32 600 485 600 600
SD. 303 245 250 250 167 250 250 250

(continued)

LTT
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Table 6-3. (continued)

Iteration Number

1 2 3 4 5&6 7
CH.212 185 189 200 200 156 179 200
SD,212 0 0 1 90 112 112 112
CH..10 185 190 186 222 302 323 330
SD. .10 69 70 75 120 120 120 120
P25.10 368 371 194 284 248 377 368
P25,10 WEEK1L na na na na 100 126 108
P25,.10 WEEK2 na na na na 148 251 260
P10610 220 224 226 220 191 250 250
P10410 31 34 39 75 75 75 75
XSDK10 2502/ 250 250 222 240 250 250
XSDK10 WEEK1 na na na na . 66 34 20
XSDK1@ WEEK2 na na na na 174 216 230
JUICLE 450 450 LT 450 450 450 450
JUIC46 WEEK1 na na na na 214 347 328
JUICL6 WEEK2 na na na na 236 103 122
.SAU8Z . 0 0 0 0 0 0 11
.SAU30 470 483 492 500 341 500 500

. l/Major iteration 5 was the first time the master program included minimum production
restrictions.

E/Uhderlined values indicate production is restricted at upper limit.
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(lacking in numbering only)
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Table 6-4. Optimal Solution to Test Problem (After 40 Major

Iterations)
Row Value
Objective Function 2294.732
Week 1 1.0 513.2212
Week 2 1.0 854..9285
Choice #303 600 .197
Standard #303 250 .480
Choice #2% 200 .266
Standard #2% 112 .610
Choice #10 330 .136
Standard #10 120 .569
25.5% Paste 372 -
Paste - Week 1 100 -
Paste - Week 2 272 -
1.06 Puree 250 151
1.045 Puree 75 .292
X Standard Catsup 250 .685
X Standard Catsup - Week 1 99 -
X Standard Catsup - Week 2 151 -
46 oz, Juice 450 .480
Juice - Week 1 149 -
Juice - Week 2 301 -
8 oz. Sauce 0 -

Sauce #303 500 .017




Table 6-5. Experimental Master Solutions

Maior Iteration

3rdl/ 4th 5th 6th 7th 8th 9th 10th

Objective Function "

Value 1510.582 1581.722 1675.014 1912.818 1921.314 1997.648 2135.31 2142.6475/
*1 15.670 43.187 138,595
w2 35.915
Slack 1 . 364 470 116 .016 .021
Slack 2 211 .096 . 295 .059 114 .108 .003
Week L1 .064
Week L2 .088 .084 .064
Week M1 571 440 .066 .004
Week M2 .035 024 262 .269
Week N1 .352
Week N2 701 .701 .108
Week P1 .091 091 ,080 .128
Week P2 .119 .596 .528 429 423 .029 .027
Week Q1 492 .728 764 841 544 . 589
Week Q2 .004
Week R1 .156 .156 154 .128
Week R2 .314 .169 .255 .330
Week S1 .149 .197
Week S2 .26/,
Week T1
Week T2 469
Week Ul .034 .192
Week U2 .50
Week V1 .199
Week V2 171
Choice #303 600
Standard #303 175
Choice #2% 200

(continued)

et



Table 6-5 (continued)

Major Iteration

3rd 4th 5th 6th 7th 8th 9th 10th
Standard #2% 56
Choice #10 304
Standard #10 81
25% Paste 400
Paste Week 1 105
Paste Week 2 296
1.06 Puree 250
1.045 Puree 59
X Standard Catsup 250
X Standard Catsup Week 1 68
X Standard Catsup Week 2 172
Juice 46 oz. 450
Juice Week 1 50
Juice Week 2 400
8 oz. Sauce 73
#300 Sauce 500

l/First feasible solution.

2/93.4 percent of optimal solution to test problem.

(AN



CHAPTER VIT

THE FULL-SCALE LINEAR PROGRAMMIIIG MODEL

The full-scale model was a model of the TriValley Growers tomato
packing operation for the 1965 season. Consequently, it was considerably
larger than the test problem previously described. There were approx-
imately 80 growers supplying tomatoes. The total number of different
raw product inputs was even larger since some growers grow more than
one variety or pick tomatoes both by hand and by machine. Instead of
a two-week season as in the test problem, the season may last as long
as 14 weeks. TVG had packed tomatoes in three separate plants in pre-
vious years, but the model included only the two plants which were
expected to be used in the 1965 season.

There were 32 possible machinery or capacity limitations considered
in the construction of the model of the larger plant and 15 potential
capacity limitations in the smaller plant. Upon investigation, it was
determined that some of these potential restrictions were redundant
based on the current machinery configurations. These redundant re-
stric%ions were not included after the initial stages of development
although it was recognigzed tha% these might have to be re-entered if
extensive post optimal analysis was desired.

The number of restrictions was reduced to 26 for the larger plant

and five for the smaller plant. Most of these remaining restrictions
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were actually binding in one or more of the various solutions to
the subprograms.

The total number éf unique products considered for the model was
larger than might be expected. Within each general category, such as
whole peel, juice, paste, and puree, and sauce and catsup, there are
numerous finished products due to differences in can size, grade, and
percent of solids. Initially, over 100 different products were iden-
tified from the price lists and data on previous packs. Some were of
such a small volume that they were consolidated with a similar product
reducing the number to be considered. Conversely, it was found that
some products were produced to such distinct specifications within a
standard that two or more unique products for modeling purposes existed
under a single standard. The final list contained 60 products.

The full-scale problem was reduced to 96 different tomato inputs
(one tomato input for each grower, variety, and method of picking com-
bination) and ten weekly time periods before solution was attempted.
(See Appendix A.) If the problem was to be solved by a standard for-
mulation of linear programming even at this point, the totél number
of rows would have exceeded 1,800 and the number of columns would have
been approximately 9,000.

Although it would be possible to further reduce the number of
rows required, this was thought undesirable because it would entail a
loss of information. In any event, it would be impossible to feduce
the number of rows down to the capacity of most large LP codes at the
time the model was formmlated and still have a realistic and detailed

weekly model of the tomato packing operation. In 1965 the ALPAC code
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of the Service Bureau Corporation would handle a maximum of 1,100
rows on an IBM 7094.1/ The Advanced Linear Programming System for
the Honeywell 800/1800 had solved low density problems with up to
850 rows with 16K of memory. Memory size was not a limiting con-
straint on these problems, but digital accuracy was.g/ The LP codes
for the Burroughs B 5500 computer ALPS-I and ALPS-III would solve
problems with up to 1022 rows.z/

In the decomposed formulation, there were ten subproblems with
dimensions varying from about 160 to 200 rows and 700 to 900 columns.
The difference in dimensions was due to the varying number of raw
product inputs. Each subproblem represented a week of the season and
incliuded both processing plants and all the grower-variety-pick-com-
binations with production during the week. In the initial formulation,
any product could be produced in any week. This was later changed
so that no whole peel products could be produced during the first and
last week of the season. Only one processing plant was assumed to be
open during these two weeks. These changes were made because it was
assumed that there would not be enough fruit of good peeling quality
to support the peeling operation during these weeks nor would there be
sufficient total fruit to justify keeping both plants open during those

weeks,

1/ALPAC Users Manual, The Service Bureau Corporation, Computing
Sciences Division, October 1965, p. I-1.

g/aneywell EDP Software Manual, H 800/1800 Advanced Linear Program-
ming System (ALPS) File No. 123.8300.000B. 0-171, April 15, 1966, p. 2-1.

3/Burroughs B 5500 Algol Linear Programming System ALPS-III, Burroughs
Corporation, Detroit, Michigan, 1967, p. I-1.
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The master program was composed of 78 rous and the objective
function. The number of columns varied with the continual addition
of new weekly product vectors. There were 66 rows which were restric-
tions on the amount of product that could be produced. Many of these
were ranges rather than simple upper or lower limits. Artificial
upper or lower limits were included for the other products in case it
was desired to change their restrictions from a single limit to a range.
There were eight requirements that part of the production of a product
be accomplished early in the season because of a short or out-of-stock
inventory position. There were ten rows devoted to the restrictions
that the sum of the weights for each week be less than or equal to one.

The first time the master was run, there were 62 dummy variables
entered as columns in the master so that the initial solution to the
naster would be leasible. This was more than twice as many as neces-
sary, but rather than attempt to determine which dummy variables
were essential beforehand, dummy variables were included corresponding
to all the > restrictions and to all the < restrictions which had
significant production in the subprogram solutions included in the first

run of the master.



APPENDIX A TO CHAPTER VII

DATA COLLECTION AND CONSTRUCTION OF THE FULL-SCALE MODEL

The collection of data for a model of this size was a task of
considerable magnitude. It required the use of several sources in-
cluding some outside of the firm, and, in a few instances, no accurate
data was available at all. In these instances, what appeared to be
reasonable estimates were generated and data collection programs
initiated if feasible. In other cases, although some data was avail-
able, further or more refined data collectiﬁn procedures were initiated.

Data sources within TVG incliuded the Field Department, the Indus-
trial Engineering Department, the Quality Control Department, and the
Sales Department. Standard cost data for such items as cans and labels
were obtained from the public accounting firm of Touche, Ross, Bailey
and Smart. Background information on items such as the evaporation
characteristics of tomato pulp and the effect of insoluble solids on
the consistency of tomato products were obtained from outside sources.l/

TVG Field Department was the source for the estimate of the quan-

tity of tomatoes which would be available from each grower., Data sheets

were obtained from the Field Department listing each grower and his

1/These sources included a conversation with Walter Krenz of the
firm of Oscar Krenz, Inc., manufacturer of evaporating equipment, and un-
published reports on Factors Affecting the Consistency of Tomato Concen-
trates of the Department of Food and Science Technology, University of
California, Davis.
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acreage of tomatoes by field and variety. The expected yields of each
field by pick, the expected dates of maturity, and the expected method
of picking were included. This information was converted into an
expected schedule of receipts by week. Each weekly estimate was further
broken down into estimates of the gquantity expected from each grower by
variety and picking method. This information formed the basic raw
product quantity estimates used in the model. The basic transportation
costs (i.e., trucking) from each grower to each plant were also obtained
from this source.

Besides the estimates of the quantities of raw tomatoes, the raw
product characteristics were needed. TVG had a continuing program of
obtaining raw product data by sampling loads of tomatoes upon receipt.
The information recorded for each sample included the grower's name, the
tomato variety, the sample weight (since the number of tomatoes in the
sample was constant, this is a measure of size), the percent solids,
the pH, and the percent of choice canning tomatoes. In_addition, the
percent of mold and percent of total defects were obtained from the
state inspection report.

Although this information was adequate in areas covered, further
information was needed. There was no continuing collection of data on
peeling losses. The percent of choice canning tomatoes was an estimate
based on the appearance of the tomatoes when they entered the yard. In
some cases, the appearance was markedly different after peeling several
hours later. Because of these shortcomings in the raw product data, es-
pecially as it pertained to peeled tomatoes, a sampling procedure was in-
stituted during the 1964 season to obtain extensive information about

peeling quality and peeling losses.
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The general procedure was for a given lot of tomatoes to be sampled
at several locations throughout the plant. Although the locations of
the sampling points varied somewhat depending on the type of peeling
machine and whether the tomatoes were being selected for peeling or
were all being peeled, the basic procedure was to collect a sample of
50 tomatoes from the same truckload of fruit at three locations. The
flow of tomatoes through the plant was carefully timed to enable the
samplers to obtain samples of just one grower's fruit. The first
location was before any selection (or rejection) of fruit occurred; the
next was just before entering the peeler; and the last location was
after peeling but before the tomatoes got to thé canning tables. Some
additional sampling points were included on some occasions for comparisons
and for special purposes. |

The 5C tomato samples were sorted by quality, counted and welghed.
The basic quality categories at the first locaticn were:

1. choice peeling tomatoes,

2. ‘tomatoes which could be canned without trimming although not
of choice quality,

3. tomatoes which would require trimming before they could be
canned, and

4. tomatoes which had defects or were of such small size that they
could not be cannsd.

At the next sampling station, just before peeling, the tomatoes were
separated on the basis of:

1. choice peeling tomatoes,

2. broken and cracked tomatoes,

3. standard tomatoes, and

4. those not suited for canning.



130

At the station after peeling the categories were:

1. choice peeling tomatoes,

2. standard peeling tomatoes,

3. tomatoes which should be returned for processing into products, and

4. those which were unfit for use.

During the course of the season, about 290 truckloads of round
tomatoes and 235 loads of hand-picked coreless varieties were sampled.

In addition to providing basic information on peeling losses and
the percent choice and standard canning tomatoes by grower and variety,
some of the other uses of these data were to determine peeling loss by
week, the correlation between broken and cracked tomatoes and peeling
loss, and the effect of selection on the quality of the peeled tomatoes.

Another investigation was attempted using the general sampling
method described above. It was desired to determine the effect on peel-
ing loss and general quality from leaving tomatoes in the receiving yard
for more than 24 hours. It was thought that an estimate of the loss due
to deterioration before processing could be obtained. After entering
the yard, one-half of a truck load would be dumped and peeled immediate-
ly and the other half of the load left approximately 24 hours before
peeling. The sampling and evaluation procedure was the same as above.
Unfortunately, the results were inconclusive, perhaps because the loads
selected were not from the same growers or of the same variety and/or
no attempt was made to select loads of the same general degree of ripe-
ness. Also, since only one load a day was designated for sampling,
weather conditions varied. As a result, some tomatoes imprcoved in peel-

ing quality while standing, while others remained about the same or
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deteriorated in various degrees. One load, in fact, was virtually

unfit for peeling the second day, although they were of fair peeling
quality the first day. This area of deterioration and losses (or as the
test showed, possible improvement in peeling quality) over time requires
more investigation since these are important considerations for the
optimal utiligzation of the raw fruit.

Another concurrent investigation was the evaluation of two methods
of handling tomatoes after peeling but before canning. By using the
sampling procedures described above imme diately after the peeler and
immediately before the canning table, it was determined that unnecessary
losses were occurring with one method.

An analysis was made to determine if it was possible to estimate
the difference in the quality of peeled tomatoes caused by selecting
the tomatoes before peeling rather than peeling all the tomatoes except
the culls. However, there was little, if any, difference in the percent
by count of choice peeling tomatoes before and after selection. The
samples of 50 selected tomatoes were significantly heavier than the
corresponding samples of tomatoes before selection. Although the
broken and cracked tomatoes were not counted in the before selection
samples, spot checks indicated that selection reduced the amount of
damaged fruit and the severity of the damage. The general conclusions
were that selection did not improve the peeling quality of the fruit
with regard to appearance except when the general level of choice
peelers was low. The tomatoes selected were of a more uniform size,
somewhat larger than the average of the load and less likely to contain

cracks or breaks. The latter would tend to reduce peeling loss and the
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former woula be indicative of possible savings in the coring and canning
operations. Unfortunately, these considerations are intangible and
very difficult to evaluate from a cost or operational standpoint. The
percents of tomatoes suitable for canning before and after peeling used
in the model are listed in table 7-3.

The question of how much effect the selection of tomatoes for
peeling has is compounded by the fact that it is possible to change the
rate of flow of tomatoes past a selection crew of fixed size. This
could cause extensive changes in the net effect of the selection.

At the time the model was constructed, data was not available by
grower or variety for two important raw product characteristics which
were incorporated in the model with the expectation that they would be
obtained by a continuing data collection system. These are the pulping
and finishing losses for product tomatoes and the insoluble solids
content, both of which can play an important part in the allocation of
raw material to commodity class. Similarly, peeling loss data was not
available for the pipe peelers from the 1964 data. Peeling losses in
the pipe peeler for the coreless varieties were assumed to be the same
as the peeling loss in the "Dole" peeler and peeling and coring losses
(from the use of the auto corers) for round varieties were assumed to
be the same as those of the FMC peeler. These assumptions should be
confirmed or modified by actual data.

The plant layout, machine capacities, labor standards, etc. were
required to develop the processing capacity restrictions and matrix
coefficients. This type of information was obtained from the TVG Indus-

trial Engineering Department. Development of this portion of the model
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started with construction of diagrams from the equipment descriptions
and floor plans. At the same time, a list of equipment capacities
was developed for both maximum rated capacity and full operating capa-
city. After the various possible product flows from the receiving
yard to the warehouse entry were outlined in Scematic form, the capa-
city of each equipment in the product flow path was evaluated. The
equipment with the smallest capacity in each flow was obviously a
capacity restriction and required a restriction in the plant LP matrix.
In addition, any equipment that could be used in two product flows con-
currently, either because of the divisibility of the equipment or because
two commodities had a common product flow path through part of the plant
also required the use of a capacity restriction. An additional group
of machinery restrictions outlined at this time were those which were
definitely not restricting but were of such a nature that if other
capacities were enlarged, the machines would be restrictive. An ex-
ample of this is the syrupers which were not restrictive since they had
more capacity than the continuous flow cookers which they preceded.
However, by adding cooker capacity until it exceeded the syruper capa-
city, the syruper would become the effective restriction. This type
of potential restriction was recorded and placed in the LP plant model.
(They were removed prior to the computer runs to reduce the size of the
plant matrix and computer running time.)

In developing the restrictions, one problem area was defining the
different possible product flows where there were several pieces of
equipment for the same task and several raw materials or finished prod-

ucts being processed. This is serious if the equipment units vary in
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size and the rates of product flow vary. If the product flow paths

are such that the alternatives are sharply limited, i.e., by physical
location, piping, or fixtures, it might be possible to represent all
the distinct alternatives in the model. This was done for the round
whole peel operation at plant four which is discussed in Appendix B.

On the other hand, if the number of combinations is large or if some of
the possible layouts are quite complex, it might be more desirable or
even mandatory that the number and complexity of the product flows be
somewhat simplified and the LP solutions be inspected to see if any
impossible combinations are required. If they are, either the solution
or the model should be corrected. It was necessary to take an approach
of this type in handling the evaporators at the larger plant. There
were six evaporators which could be used on various products either in
parallel or series. The model did not attempt to define all the pos-
sibilities; rather, evaporation was handled with two machinery restric-
tions. Although this was an oversimplification of the present system,
in this case the plant could be modified to handle many additional com-
binations if desired.

A somewhat similar problem was posed by the fact that for some
product changeovers a line could be stopped for a number of hours for
equipment adjustments. Although it would have been possible to include
down time in the model, this would have increased the complexity of the
matrix considerably, so it was deemed more efficient to leave line
changeovers out of the model and rely on inspection of the solution to

discover if the required number of changeovers would take too much time.
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Labor standards were obtained from the TVG Industrial Engineering
Department.l These were used in conjunction with the hourly wage rates
to obtain variable labor costs per unit for use in the objective func-
tion. In a few cases, these standards were used in determining the
product flow rate, for example, the coring rate on the autocorers.

Using the rated capacity of the evaporators as restrictions required
adjusting the evaporation coefficients in the matrix. The efficiency
of the evaporators depend on a number of factors, one of the most im-
portant being the density of the pulp. Tomato pulp evaporator capacity
is typically rated in pounds of water removed at a density of 13 percent
tomato solids. However, as a general rule, more water will be evaporated
per hour at a lower percent solids and less at a higher percent of solids.
Hence, the total amount of evaporator capacity utilized can vary when
an identical amount of water is evaporated when making different products.
Sauce has a content of 11 percent solids, so the evaporator is always re-
moving water faster than the stated rate for 13 percent solids. Paste
has about one and one-half times as much water removed after the pulp
reaches a density of 13 percent solids than before so the total capacity
when the evaporator is used for paste is less than the rated capacity.
These differences were accounted for by adjusting the coefficient in the
matrix representing the amount of water to be removed for each product
rather than adjusting the evaporator capacities. Cost of evaporation
was then considered a constant value per unit of evaporator capacity.

The information on the required fill weights and quality standards
was obtained from the TVG Quality Control Department. Target fill

weights and actual fill weights were inspected and compared. The model
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was constructed using the target weights as the basis for the matrix
coefficients. However, during some parts of the season, the targets
are more difficult to meet due to the guality or mix of available raw
product. Under these conditions, it might be necessary to either
change the coefficients to bring them more in line with what is prac-
tical or possible to attain or to increase the costs to account for the
increased labor required to reach the standards.

Production target quantities for the 1965 pack were obtained from
the TVG Sales Department. In addition to the target number, it was
determined whether the targets were considered minimum desirable amounts
or maximum desirable amounts. Target ranges rather than single target
quantities are desirable. Inventory position as such was not obtained,
but this had been considered in the formulation of the production tar-
get. However, it would be possible to obtain only the sales targets
for the coming year and adjust them for inventory position either in-
ternally in the master program or in the data development and maintenance
phase of the LP model. The out-of-stock items were also obtained from
the Sales Department and formed the basis for the production require-
ments in the early weeks. If there had been contracts with specific
delivery dates, this information would also be obtained from sales and
included in the model at this stage.

The expected sales prices of the commodities were obtained from
the TVG Sales Department. The gross sales price was adjusted for direct
variable costs for use in the model. Standard cost data for materials
such as tin cans and labels were obtained from industry cost estimates

made by the accounting firm of Touche, Ross, Bailey and Smart.
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Estimates of other expenses such as brokerage, cash discounts, and
selling expense were based on the percentages used by the same firm in
determining standard costs. A few items, such as drums for tomato
paste, were not available in the industry cost estimates. These were
obtained from the TVG Purchasing Department.

A continuing program to obtain the costs of material would improve
the cost figures in the model since the standard cost figures are based
on industry averages, and thereare undoubtedly differences in most
material costs between firms and in some cases between plant locations

of a single firm.



APPENDIX B TO CHAPTER VII

DETERMINATION OF MATRIX COEFFICIENTS

When the information on.the available raw product was analyzed,
it was found that fruit was expected from nearly 80 growers with 106
distinguishable grower-variety combinations. The total number of com-
binations was somewhat higher than this originally but was reduced by
eliminating strains of tomatoes for which little data on the raw
product characteristics existed and could not be obtained. Allowance
was made for this production by assigning it to that grower's dominant
variety. Similarly, a few growers with very small amounts of produc-
tion were combined with other growers with the same varieties in the
same area.

Using 106 grower-variety combinations would have resulted in 71
tomato inputs during one week of the season. This was larger than the
maximum of 60 inputs which was originally intended. Further consoli-
dation was accomplished by pooling the production of small growers of
popular varieties of round tomatoes with the same transportation costs
and similar picking schedules. Upon completion, there were 96 grower-
variety combinations. The largest number of tomato inputs in any week
was 64. The number of grower-variety combinations and the expected

tonnage of raw product in each week is shown in table 7-1.
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Next the raw product characteristics of each grower were de-
termined. The basis for estimating the characteristics was the infor-
mation obtained by sampling in 1964 as explained in Appendix A,
However, the sample size was not large enough to make estimates by
individual grower. To obtain a reasonable range and mix of raw product
characteristics, a random number generator was used and sets of random
numbers assigned to each grower. Table 7-2 has the means, standard
deviations, and ranges of each characteristic as well as deviations
from the means due to variety and/or week if applicable. Values fal-
ling beyond the allowed range were set equal to the value of the range
limit. Seasonal values are found in the first three lines of the
table. The next portion of the table has the varietal deviations for
the percent of solids and fruit sigze. The bottom portion has the de-
viations from the seasonal averages of the percent solids, percent
choice tomatoes and percent peeling loss by week. The percent of solids
is below the average at the beginning of the season and rises until
it is above average at the end of the season. The percent of choice
peelers is lower at the beginning and end of the season while the peel-

ing loss is higher at the beginning and end of the season.
Raw Product Input Vectors

Figure 7-1 is a general schematic of the LP models used for weeks
two through nine. The first section consists of the raw product input
vectors.

It was originally intended to generate a set of input vectors for

each week including all the grower-variety combinations produced during
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that week. However, since weeks four through seven all had identical
coefficients, only one set of vectors was generated for each grower-
variety combination for those weeks.

Since the IBM 1620 LP code allowed the use of column identifica-
tion files to select the vectors for a given problem from a larger
set of vectors on disk storage, this procedure was used to furnish the
raw product input vector portion of the matrix from the single set of
vectors for week four through seven. In addition to the reduction in
the necessary data handling, the problem loading time and the computer
storage area required were reduced.

As indicated in table 7-2, the other six weeks had different
average percent of canning tomatoes and solids so the input vectors
would not be identical. However, rather than generate six distinct
sets of vectors, one group of vectors was generated for the first
three weeks of the season and another group for the last three weeks.
The raw product characteristics for the grower-variety combinations
used in developing the input vectors were those for the week with the
largest expected production of that particular grower-variety combina-
tion. .

Each grower with round tomatoes had six possible input vectors.
Round tomatoes could epter the program through the FMC peeling opera-
tion at plant four (which always required seleétion before peeling),
through the pipe peeler at plant four with selection before peeling,
through the pipe peeler at plant four with no selection before peeling,
into the sauce and catsup operation at plant four, or into the paste,

puree, or juice manufacture at either plant three or plant four. If
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the percent of choice peelers was less than 20 percent, the three
whole peel input vectors were not used. There were three input
vectors for each grower of mechanically harvested tomatoes. These
were for the sauce and catsup operation at plant four, and the paste,
puree, and juiceooperation at either plant three or plant four. Those
coreless varieties which were picked by hand had each six input vectors.
In addition to the three product vectors listed above, they could be
peeled at plant four (without selection) or peeled at the plant three
with or without selection. Hand picked coreless varieties with less
than 20 percent choice peelers did not have the three peeling input
vectors. The total number of tomatc input vectors for individual weeks
ranged from 105 in the Tirst week to 306 in the fifth week.

Table 7-4 has a set of input vectors developed for a lot of round
tomatoes using the characteristics for week five, and table 7-5 has
the set of input vectors developed for the same tomatoes for using the
characteristics four week two. Table 7-6 has a set of input vectors
developed for a lot of handpicked coreless varieties during week five.
The raw product characteristics for each lot are fcund at the btottom of
the appropriate table.

These vectors and the coefficients are similar to those outlined
in the appendix to Chapter V, although a number of refinements have been
added. In this case, one unit of a vector is 1,000 pounds. In table
7~4, the first two rows are the objective function values. (Two
objective functions were needed because of the mauner in which the de-
composition technique was applied.) The differences among the six

objective function values are due to yard costs and transportation.
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The developﬁent of the objective function rows are covered in greater
detail in Appendix C.

The next row, titled Grower Restriction, is the restriction
limiting the amount of tomatoes which can be obtained from a grower.

The next three rows have entries only in the first input vector,
the one for tomatoes selected for the pipe peeler. The entries (as
are most of the entries pertaining to quantities of raw products) are
in 1,000 pound units. The .404 in the select choice row represents
404 pounds of choice tomatoes, the adjusted quantity available from
1,000 pounds of this lot of tomatoes. The .3131 in the staﬁdard row
represents 313.1 pounds of standard tomatoes ava£lable. The .0101 in
the correction row represents 10.1 additional pounds of standard peeler
tomatoes available. This entry and the last two entries are correction
factors to correct for the difference between this lot of tomatoes and
the "average" 40 percent peelers. The other two entries (.0028 in the
juice row and -.0l1 in the waste row) indicate that there will be 2.8
pounds more of tomato juice obtained from this 1,000 pounds of tomatoes
than the average and that there will be ten pounds less waste to dispose
of than the average.

The coefficients were obtained by the following procedure. The raw
product percent choice was rounded to the nearest ten percent value be-
tween 20 and 60 percent. In this case, the raw product had 35 percent
choice and was rounded to 40 percent. The basic value used for tomatoes
entering the 40 percent row was .4 or 400 pounds. The regular percen-
tage of standard tomatoes from a grower with 40 percent choice tomatoes

was 30 percent or 300 pounds which gave a coefficient of .3. However,
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these tomatoes had a peeling loss of 15 percent instead of the season's
average of 16 percent and a percent of standard tomatoes of 31 percent.

Tomatoes with a lower peeling loss than average will have a higher
weight after peeling. Since the identity of the tomatoes is lost in
the model before peeling because of the blending activities, an adjust-
ment for differences in peeling loss is made in the input vector. In
this case, the coefficients in the choice 40 percent and the select
standard rows are increased by the appropriate amount, one percent, to
404 and .3131. The select standard correction row sums across all the
select input vectors (FMC and pipe peeler selection activities) for the
week, to find the total adjustment for standard tomatoes. This is the
quantity greater or less than the amount of standard tomatoes available
if only the average was used. The entry in the juice row represents
the increase in the amount of juice available due to the increase in
tomatoes which are peeled but not canned. The-.0l in the waste row
adjusted the total waste to allow for the below average peeling loss.
A11 1,000 pounds of tomatoes are not represented here, i.e., the sum
of the coefficients is not equal to one. The remainder is accounted
for in the transfer activities to be discussed later.

The next two vectors are very similar to the first one. In fact,
the second vector is identical to the first except that entries are in
the non-select 40 percent row, the non-select standard row and the non-
select correction to standard row rather than the select rows of the
same names. Each peeling operation has a 20 percent choice row, 30
percent choice row, etc., through a 60 percent choice row, but there is
only one standard row and one correction to standard row for each type

of peeling operation.
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There are different coefficient values in the juice row and the
waste row for the FMC peeler input vector. This is because the FMC
peeler had a selection rate significantly different than the other
peeler. It was also necessary to make further adjustments for the FMC
peeler input. The most notable is the entry in the solids row. This
indicates that for every 1,000 pounds of tomatoes going to the selection
process for the FMC peeler, there were 35.11 pounds of tomato solids
available for products. (In the other peeling operations, it was as-
sumed that those tomatoes not selected or canned were converted to
juice. However, using this assumption with regard to the FMC peeler
would yield too much juice.) The juice and waste‘row coefficients are
also adjusted accordingly for the FMC peeler inputs.

The next input vector in the table is the paste, puree, or juice
input activity at plant four. The first three entries have the usual
interpretation. The entry of .0504 in the RSOL55 row (5.5 percent
tomato solids at plant four) indicates that 50.4 pounds of tomato solids
are obtained from 1,000 pounds of this lot of tomatoes. These tomatoes
have 5.6 percent solids and are entered in the corresponding (5.5 per-
cent) row. Since there is a ten percent pulping and finishing loss, the
amount of tomato solids available is 50.4 pounds per 1,000 pound input
of tomatoes. The .10 entry in the waste disposal transfer row represents
the 100 pounds of waste obtained from a ton of +tomatoes used in this
manner. The reason that this coefficient in the waste row is larger than
the corresponding waste coefficients in the whole peel input columns is
the fact that all of the waste from products is entered at this point,

while the entries in the whole peel inputs are only correction factors.
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The next two entries are in machinery restriction rows. The
right-hand side value of most of the machinery restrictions is expressed
in units of three and one-half hours corresponding to one-half of a
normal shift. (For those machines which operate continuously, a four
hour unit was used.) The usual right-hand side value for the machinery
restrictions was 36 corresponding to operating three shifts a day for
six days during the week. The .003937 is derived from the box dumper's
capacity of 36 tons per hour or 252 1,000 pound units per period. Each
1,000 pounds of tomatoes dumped in the box dumper utilizes .003927 of one
period. Similarly, the pulpers have a total capacity of 80 tons per
hour. Since they run continuously, one time period is four hours. A
total of 640 1,000 pound units can be handled in a four hour period so
the resulting coefficient is .001562.

The sauce and catsup input vector is identical to the plant four
paste vector with two exceptions. There is an entry of .05544 in the
RSAU55 row. This corresponds to the entry in the RSOL55 row in the
paste input vector. The difference in the two coefficients results
from the fact that the insoluble solids as a percent of the total tomato
solids are higher than average. This results in higher than average
case yields when used in catsup or sauce. Tomatoes with 11 percent
insoluble solids were estimated to yield 110 percent as much sauce or
catsup as tomatoes with average insoluble solids. Because the identity
of the tomatoes is lost in the blending activities portion of the matrix,
the increased yield is accounted for by increasing the coefficient in
the sauce row. Instead of using the actual tomato solids available from

a 1,000 pound lot of tomatoes, the figure used is the amount of tomato
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solids with the average percentage of insoluble solids necessary to
yield the same amount of sauce or catsup as this lot of tomatoes.

The entry in the sauce evaporation row is a correction factor.

The total quantity of water which would be evaporated from this lot
differs from the amount required in the evaporation activities for
sauce because of the difference in insoluble solids. More water has

to be removed even though the yield is higher because more sugar solids
are added to the high yielding lots.

The last vector is for the input of tomatoes for paste and puree
at plant three. The first three entries have the usual interpretation
while the entries in the plant three solids row and waste row are
identical to the corresponding entries in the paste vector for plant
four. There are no machinery restriction entries necessary here be-
cause the capacity bottlenecks at plant three are in a different part
of the matrix.

Table 7-5 contains the input vectors for the same grower's tomatoes
during week two. The format of the table is the same as for table 7-4,
and many of the coefficients are the same. However, since the raw
product quality of the tomatoes changes during the season, those coeffients
directly related to the raw product quality characteristics are changed.

In the first input vector corresponding to the entry in the select
choice 40 percent row, in table 7-4 is an entry in the select choice 30
percent row. (The percent of choice tomatoes was reduced by five percent
in week two). This entry is .297 which is slightly less than the .3
which is the basic entry. There is a larger peeling loss in week two

than week five, resulting in less tomatoes being available after peeling.
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The entry in the correction to standard row is based on the difference

between the actual level of 31 percent standards and the computed

value of 35 percent standards. The -.0396 is the difference adjusted
for the 17 percent peeling loss in week two. The julce entry is based
on the increase in the quantity of tomatoes going directly to products
without being peeled because the total quantity of choice and standard
tomatoes is less than average. The .0l in the waste row is the addition-~
al waste due to the above-average peeling loss.

The entries in the column for non-selected tomatoes being peeled
in the pipe peeler are analagous to those just discussed. The entries
in the FMC column are also similar. However, the solids entry is in
the 5.3 percent solids row and is smaller than the entry in table 7-4.
The solids level of this lot of tomatoes was lower in week two than in
week five, which accounted for most of the change. The remainder of the
difference is due to the difference in the quantity of standard tomatoes
available for selection.

The only changes in the last three columns are the coefficient
values in the 5.3 solids and 5.3 sauce solid rows. These differences
are due to the tomatoes having 5.4 solids in week two instead of the
5.6 solids of week five.

Table 7-6 has a set of input vectors for a lot of hand picked core-
less tomatoes. (The vectors of mechanically harvested lots were similar
except that there were no input vectors for whole peel activities. Other
differences included a slightly changed objective function formula and
no dumper restriction as the bin dumper for mechanically harvested toma-

toes had surplus capacity.)
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The first three rows of all the columns are the usual objective
function rows and grower restriction. The next entries in the choice
rows are developed in the same fashion as for the rounds. In this
case, the .515 entries rather than .5 are due to the tomatoes having a
13 percent peeling loss. The additional yield of peeled tomatoes is
approximately equivalent to .515 units of 50 percent choice peelers.

The other entries in the column are obtained in the same manner as the
values in the whole peeled vectors. The coefficients in the next two
columns are identical to those in the first column although appropriately
entered in other rows. The entries in the three product input vectors

are obtained in the same way as the entries for the rounds.

Blending Activities

The next area on figure 7-1 is the blending activity area. There
were six sets of blending activities for the whole peel operation and
three for the products operation. These were:

1. Round select pipe peeler.

2. Round non-select pipe peeler.

Round select FMC peeler.
Coreless non-select at plant four.

Coreless non-select at plant three.

o v N~ W

. Coreless select at plant three.

7. Paste, puree, juice at plant four (rounds and 145's were blended
together).

8. Sauce and catsup (rounds and 145's were blended together) .

9. Paste and puree at plant three (rounds and 145's were blended
together).
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The blending was handled in the same manner as in the small test
problem. For numerical examples, see the appendix to Chapter V describing
the test problem which covers blending in detail. In the full-scale
problem more types of material were blended and there were more rows for
each type of material. There were five choice rows for each type of
whole peel input. There were only ten possible blends of two percentages
which would give another included even percentage level, i.e., 20, 30,
40, 50, or 60 percent. These ten blends were all included as activities.
However, there were 11 solids levels on .2 percent intervals between 4.5
percent and 6.5 percent, inclusive, for each of the three product cate-
gories. This meant that there would be 169 possible blends for each
product category. Originally, all the possible blends were developed
and placed in the matrix. However, machine storage capacity limitations
forced a reduction to about one-third of this number. This was done by
removing every second and third blending vector except that certain “key"
vectors which would be difficult or impossible to duplicate by using a
combination of two or more blends were left in. It has not been deter-
mined whether this had any particular effect on the solutions. However,
in retrospect, it seems reasonable that generally if matrix size presents
a problem, it would probably be more appropriate to reduce the number of
solids categories and include all the apéropriate blending activities.

It would seem that unless there were many distinct alternative product
lines, five general levels of solids content would have been sufficient
(although perhaps the absolute level of these categories should be changed

if the average level of solids changes during the season.)
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Peeling, Evaporation and Transfer Activities

The next area in the matrix illustrated by figure 1 includes the
peeling, evaporation, and transfer activities. There is a set of five
peeling activities and two transfer activities which peel the fruit,

consolidate it as raw material for canning and complete the corrections

= of each of the six types of whole peel inputs. Table 7-7 contains the

'sét of peeling and correction activities for the non-select rounds.

Each unit of an activity represents the peeling of 1,000 pounds of
tomatoes., All the coefficients in the table are also in units of 1,000
pounds of material. Choice and standard tomatoes, juice, and waste are
placed in the appropriate rows for transfer to the production activities.
In addition, the appropriate adjustments are made to yields based on the
previous entries made in the correction rows.

The objective function entries for this type of whole peel opera-
tion are based on the labor costs of operating the autocorers. Note
that the cost increases as the percent of choice tomatoes increases. This
is because there are more tomatoes suitable for canning, and therefore
more which must be cored per 1,000 pounds of input.

The next entries are in the various non-select rows. The entries
here, for example, -.2 in the 20 percent row, have the effect of re-
moving 1,000 pounds of 20 percent choice tomatoes from this input row
and peeling them. As a result of peeling and coring, there are 168
pounds of peeled choice tomatoes to be transferred to the canning opera-
tion. This is represented by the .168 entry in the row labeled RCHRDS.

The .168 pounds is the expected yield of peeled choice tomatoes from
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1,000 pounds of 20 percent choice, i.e., 200 pounds less the expected
16 percent peeling loss. The next two entries in the first column
represent the amount of standard tomatoes which are expected to be peeled
(.4 or 400 pounds) and the amount of peeled standard tomatoes to be
transferrsd to the canning operation. The entry in the juice row repre-
sents the quantity of tomatoes which will be sent to the products opera-
tion rather than the canning lines. The quantity of tomatoes which
were not of choice or standard quality is 400 pounds in the 20 percent
choice peeling activity. However, in addition to the 16 percent peeling
loss reduction, this quantity must also be reduced by the pulping and
finishing losses. A combined loss factor of 20 percent was used. This
resulted in a net amount of 320 pounds of tomatoes available for trans-
fer to the juice (products) operation. (For all types of peeling ac-
tivities except the FMC operation, it was assumed that it would be
adequate to put the non-cannable tomatoes directly in the juice row.

The FMC selection rate was low; hence, the quantity of non-selected
tomatoes would have resulted in more juice than required to support the
whole peel operation. The non-selected tomatoes in the FMC input
activities were converted to solids which could be used in the paste
activities.

The next entry is in the waste row; This is based on a 16 percent
peeling loss, plus an additional 4 percent pulping and finishing loss
for those tomatoes which were peeled but not canned. In the first column,
the waste was 176 pounds, 160 peeling loss and an additional 16 pounds

of loss in the pulping and finishing process.
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The last entries are in the machinery restriction rows. Note that
the ripe peeler (RPIPPL) row entries are the same for all the peeling
activities. This number is the portion of one three and one-half hour
time period that is required to peel 1,000 pounds of tomatoes so the
quality of the tomatoes has no bearing on the coefficient. However,
the other two restrictions have different values for each quality level
of tomatoes peeled. The corer coefficients increase as the number of
tomatoes to be peeled increases, and the pulper coefficient decreases
as the number of tomatoes sent to the products operation decreases.
Round tomatoes were considered to average 3.1 tomatoes per pound. In
the 20 percent choice peeling activity, there are 600 pounds of tomatoes
to be cored or 1,860 tomatoes. One autocorer operator can core about
8,400 tomatoes in a three and one-half hour period so 1,000 pounds of
these 20 percent choice will utilize .22143 cf a period. For those
tomatoes which were of a different size than 3.1 per pound, a correction
to the autocorer capacity row was included in the input vector. The
tomatoes used for an example in table 7-4 were of average size. If, for
example, they were heavier and were only three to a pound, there would
have been an entry of -.008331 in the RCORER row in the non-select
pipe peeler input vector in table 7-4 since a smaller number of tomatoes
would be cored per 1,000 pounds. The pulper coefficient is the amount
of pulper capacity utilized in processing the 336 pounds of tomatoes
which go to the juice operation.

The two columns on the right side of table 7-7 are the correction
columns which connect the "correction to standard" row with the "stan-

dard" peeled transfer row. In table 7-4 there was an entry of .0101
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in the "correction to standard" rows since the quantity of standard
quality tomatoes in the lot was higher than the usual quantity for 40
percent choice. In table 7-5 there was a negative entry in this row
since the quantity of standard quality tomatoes was less than usual. If
the total positive and negative quantities entries cancel out in the
final solution, there is no problem; but since this is unlikely, the
quantity of standards available for canning has to be adjusted. If the
net quantity of standard tomatoes available is less than that for which
the input activities have been computed, the NOSTCM vector will be forced
into the solution at a positive level. The positive level will be equal
to the total quantity of standard tomatoes of which the input vectors
are deficient. The 1.0 in the RNONSD row is necessary so the row can
meet the condition of equality but has no special significance. The
next entry, however, -.84 in the standard peeled tomato row, has the
effect of reducing the peeled standard tomatoes available for canning.
This coefficient is -.84 and not -1.0 because the yield of peeled stan-
dard tomatoes averages 84 percent because of the 16 percent peeling
loss. The next entry increases the quantity of tomato juice by 800
pounds since the non-standard tomatoes are available to the julce opera-
tion. The quantity of waste increases by 40 pounds since the tomatoes
sent to juice have a further pulping and finishing loss. The last

entry is the amount of pulping capacity utilized by 80 pounds of toma—
toes. The next column NOSTCP is for the situation when there are excess
standard tomatoes. This column has the effect of increasing the quanti-
ty of standard tomatoes available for peeling. The only difference in

these columns is in the signs of the coefficients.
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Table 7-8 contains the activities for peeling the selected rounds
in the pipe peeler. In determining the coefficients, it was assumed
that 15 tons of tomatoes were sent to the selection process per hour
and that a selection crew large enough to keep the autocorers opera-
ting at capacity was maintained. This meant selecting about 7.74 tons
per hour or that 1939 pounds of tomatoes were processed to obtain 1,000
pounds of selected tomatoes.

The -.388 in the select 20 percent peeling activity represents 388
pounds of choice tomatoes. This is the quantity of choice tomatoes in
1,939 pounds of 20 percent choice tomatoes. The other entries in the
choice input rows are obtained in the same manner. The entries in the
select standard (RSELSD) row are obtained similarly. The quantity of
choice tomatoes in 1,000 pounds of fruit selected from 20 percent choice
is assumed to be 320 pounds (see table 7-3). After adjusting for a 16
percent peeling loss, the quantity of choice tomatoes remaining is
268.8 pounds which has a coefficient value of .2688. Similarly, from
table 7-3, the percent of standard tomatoes selected is assumed to be
40 percent or a quantity of 400 pounds. Deducting 64 pounds peeling
loss gives a coefficient value of .336.

The value of the juice coefficient is determined from two factors:
the gquantity of tomatoes going directly to the peeling operation (which
has a ten percent pulping and finishing loss) and the quantity of toma-
toes which are peeled but not canned (which have a combined peeling and
pulping and finishing loss of 20 percent. The quantity going directly
to the peeler is 939 pounds for all levels of choice tomatoes. These

two quantities are combined to give the quantity of juice available.
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Similarly, the waste row coefficients are composed of three parts:
the portion from peeling 1,000 pounds of tomatoes, the portion from
the pulping and finishing of {the non-selected and the peeling and
finishing losses on the noncannable tomatoes.

The pipe peeler row coefficients are the same as in table 7-7 for
non-select tomatoes since 1,000 pounds of tomatoes are peeled. However,
the autocorer coefficient is larger because more tomatoes are suitable
for canning and cored. The pulper coefficient includes the capacity
required by the 939 pounds of tomatoes sent directly to the products
operation and the quantity of noncannable tomatoes sent to products.

The correction columns (SESTCM and SESTCP) to adjust for an above
or below average percent of standard tomatoes are similar to those in
the table 7-7. However, since all the tomatoes were not peeled, the
net effect of the correction is not as large. It was assumed that the
reduction or increase in the quantity of standards going to the peeler
was proportional to the quantity of tomatoes selected. In this case,
51.6 percent of the tomatoes were selected, so the adjustment in the
rows was based on 51.6 percent of the difference in quantity. The
coefficient in the standard rounds row of .433 is 84 percent of .516, i.e.,
the correction less +the peeling loss.

Table 7-9 has the peeling and transfer activities for tomatoes
peeled by the IMC peeler. The most important difference between the
vectors representing this peeling operation and the one just discussed
is in the selection rate. In determining the coefficients it was
assumed that the tomatoes were going to the selection table at a con-

stant rate of 15 tons per hour and that the FMC peeler had an average
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of 90 percent of its flights utilized. This meant that 4.55 tons of
tomatoes were selected and peeled per hour when the tomatoes averaged
3.1 per pound. The selection rate was considerably less than for the
previous set of peeling activities. In this case, 3,296 pounds of
tomatoes were input for every 1,000 pounds peeled. Using these factors,
the coefficients are determined in the same manner except for the juice
row entry. As was mentioned previously, to send all the tomatoes not
canned to juice would have resulted in more production of juice than
could be utilized in the whole peel operation. Consequently, the only
entry in the juice row was for those tomatoes which were peeled but not
canmed. The FMC input vectors contained an entry in the appropriate
solids row to account for the tomatoes which were not selected and sent
directly to products.

It should be noted that both of these sets of peeling activities
are based on fixed selection rates and the expected results of selection.
These rates are assumed to be close to the actual operation, but it
must be recognized that there are many possibilities for deviation
from these rates in practice. An investigation to determine how sensi-
tive the program is to changes in these rates could be accomplished by
running the problem with the peeling activities changed to allow for
different selection rates and comparing the results.

The peeling and transfer activities for the hand picked coreless
varieties are developed in the same manner as for the rounds. The
selected coreless peeling activities have the same general selection

rates as the rounds selected for the pipe peeler with the exception
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that the selection rates and costs are based on an average of 4.2 toma-
toes per pound. Because of the similarity, a detailed explanation of
the coreless peeling vectors is not included here.

The next group of transfer activities are the juice activities.
There is one set of activities for each plant. The juice transfer ac-
tivities are of the same form as those in the test problem matrix
illustrated in the appendix to Chapter V. As was noted there, these
columns are used to reduce the total number of activities required in
the overall plant matrix, and there is no objective function value.

One change (in addition to the increase in number to 11 categories)

was necessary. The quantity of juice obtained from the tomatoes which
were sent to products after having been peeled was sometimes substantial.
In order to maintain the juice row as an equality and not be fared with
the possitility of disposing of juice either as waste or a free good
under some conditions, an activity was included to transfer juice to
the solids rows. This was done by merely making an entry of -1 in the
juice row and entering .045 in the 4.5 solids row. (It was necessary
to use a low solids content to eliminate the possibility of tomatoes
with low solids being put into the solids rows, transferred to the
juice row, and then transferred back to products, but into a higher
solids row, effectively increasing the solids content of the tomatoes.)

The next activities are the evaporation activities which are also
very similar to those in the test problem discussed in Chapter V. There

were 12 sets of evaporation activities. These included sets for 1.045
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puree, 1.06 puree and 25.5 percent paste at plant four and a set of
activities for 25.5 percent paste at plant three. 1In addition, there
were separate evaporation activities for the three grades of catsup,

for three levels of sauce, and for chili-sauce and for pizza sauce.

Miscellaneous Activities

The next activities are grouped under the heading of "miscellaneous"
in figure 7-1. These included several machinery transfer activities
similar to those in the test problem described in the appendix to Chap-
ter V. There are also activities to downgrade choice tomatoes to stan-
dard and standard tomatoes to juice. In addition, there are activities
to dispose of juice as waste. This activity is not necessary to obtain
a realistic solution and probably would not be in an optimal solution
if the product prices are realistic. However, it was included under the
assumption that it would allow major changes in the product mix to occur
very soon after the product prices were changed in the subproblem. How-
ever, there was no practical way to test this hypothesis and the actual
effect is unknown, although these vectors were included in some non-
optimal solutions.

Another activity in the miscellaneous category was used to produce
puree at plant three. This vector activity took material out of the
25.5 percent paste row and put it in a 1.045 puree row. There were posi-
tive values in the objective function since the cost of evaporating to
puree would be less than the cost to evaporate to paste. In addition,

there was a negative entry in the evaporator row since the evaporator



capacity used would be less. This column was used in place of a set
of activities to evaporate solids to 1.045 puree since it was not ex-
pected that puree would be produced in large quantities at plant three,
but there was a requirement for using puree in at least one product
that,could only be produced at plant three. The objective function
values and the evaporation row entry in this activity were based on a
solids level of the raw product of 5.5 percent. This is, of course,
an approximation and could be misleading, especially if the solids
content of tomatoes going to plant three was considerably lower. (For
the products that required 1.06 puree at plant three, an appropriate
entry was made in the 1.045 puree row and asjustments were made to the
objective functions and *o the evaporator row in the production vectors.
The last portion of the model as diagrammed in figure 7-1 included
the production activities. There were a total of 89 production activi-
ties for 58 different products. These activities were very similar to
those described in the test problem. Upper bounds equal to the seasonal
restriction were placed on any activities that could produce the pack
target for the season in one week. However, no rows were used to
restrict products that could be produced by two or more activities be-

cause of the size limitations of the LP codes used.



APPENDIX C TO CHAPTER VII

DETERMINATION OF THE OBJECTIVE FUNCTION VALUES

The objective function values can be divided in the same general
categories as the overall matrix in figure 7-1. In the model the actual
values were scaled by $100 before being placed in the LP matrix. The
objective function values for the grower inputs in the problem were
based on the following costs:

1. The raw product cost.

2. The trauasportation cost to the plant.

3. The cost of handling in the yard and any special handiing
charges for boxes, bins, etc.

The determination of the objective function values for the input
vectors illustrated in tables 7-4 and 7-5 is shown in table 7-10. The
raw product cost is the actual cost that is paid for the product. In
the problem, this was always $35 per ton. However, this price would
also reflect adjustments for different lots of tdmatoes if these were

\known ahead of time. The transportation cost is the charge for hauling
the tomatoes to the plant. In the problem, the two plants were located
in the same general vicinity and although the trucking cost varied be-
tween growers, the costs to each plant were equai from any given grower.

Yard costs were the variable costs for unloading trucks and dumpiné

tomatoes. It was impossible to determine these varigble costs exactly
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since minimum crew sizes are generally necessary. Some labor costs,
like the scale men and foremen, were considered fixed and not included.
The remaining labor costs required at the level of operations assumed
for the processing activities were divided by the total tonnage to
obtain the yard and receiving costs per ton. In addition, if there
were any special treatments or handling of the tomatoes in the yard, the
costs would be included here.

The next group of objective function values are the peeling and
evaporation activities values. (The blending activities have no costs
associated with them in the model.) The objective function costs as-
sociated with the peeling activities are composed of the direct labor
costs of selecting and handling the tomatoes. It would also be possible
to include any direct costs due to peeler operation or differences in
the costs of operation of two peelers if sufficient detailed information
was available.

The objective function value for the non-select rounds peeling ac-
tivities are determined by the number of tomatoes per 1,000 pounds
which will be cored on the autocorer. For example, a lot of 20 percent
choice tomatoes will have about 1,860 tomatoes to be cored. The auto-
corer operator will core 2,400 tomatoes per hour. At this rate, it
will take .775 hours. At an average cost of $2.58 per hour, the cost
of this activity will be $2.00 per 1,000 pounds. Similarly, if the lot
is of 60 percent choice tomatoes there will be about 2,480 tomatoes per
1,000 pounds to core. This will take about 1.033 hours or a cost of
$2.665 per 1,000 pounds peeled. The cost for peeling the selected rounds

in the pipe peeler is based 6n the costs of coring and also on the cost
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of selecting. The coring costs are determined in the same way as for
the non-selected tomatoes. It was estimated on the basis of crew size
that it would cost about $2.153 to select 1,000 pounds of tomatoes if
they were 40 percent choice or better. The cost is higher if they are
of poorer quality since it takes a larger crew size to select out the
same quantity of tomatoes. The cost of peeling tomatoes selected from
40 percent rounds is $4.736 of which $2.583 is coring cost and $2.153
is selection cost. The FMC costs are figured similarly. There is no
coring cost since the tomatoes are cored by the peeler, but there is
additional cost besides selection since the tomatoes must be positioned
stem end down before the peeling and coring operation.

There are no objective function costs for the non-select coreless
tomatoes since there is no coring involved. The cost of the peeling
activilies for the coreless select tomatoes was based only on the costs
of selection which were somewhat higher per 1,000 pounds than for the
rounds. The total number of tomatoes which must be selected to obtain
an equal weight of the coreless variety is higher.

There are no costs associated with the juice transfer activities.
The costs associated with the evaporation activities are based only
on the cost of evaporation. It was computed on the basis of $1.06 for
every thousand pounds of water (or the computed water equivalent for
the sauce and catsup evaporation activities) to be removed.

The most complex objective function values were those of the finished
products. These included the following items:

1. Expected sale price.

2. Variable labor cost associated with the production activities.
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3. Warehousing, freight and delivery costs.

4. Material costs for cans, cases, labels, condiments, etc.

5. Allowances for brokerage, discounts, swells, etc.

The expected sales price was obtained from the Sales Department.
The last three items were obtained from the industry cost estimates of
Touche, Ross, Bailey and Smart for tomato products for all the products
included in these reports. Those items which were not available from
that source were obtained from Purchasing Department records. Since an
individual firm's costs will vary from the industry average, this is an
area where further work is needed, either to develop the firm's own
costs from purchasing records and accounting data or to determine whether
the firm's costs vary sufficiently from the average to make the cost
data collection worthwhile.

The most difficult factor to determine was the variable labor cost.
This included all the labor that could be isolated by product after the
coring operation (or after peeling for coreless tomatoes) and before
warehousing for whole peel products. For the products operation, 1t
included all the labor expended after the dumping operation until ware-
housing. When a worker might be involved in two qperations at once,
(for example, running a cooker processing two grades at once,) the costs
were prorated on the basis of effective capacities. (Maintenance and
repairs were regarded as fixed costs and not considered in this analysis.)

For example, the direct labor costs of canning #10 cans at plant
four on line five were determined in the following manner:

The joint labor cost of preparation of tomatoes and handling empty

cans, etc., per hour for peeled tomatoes is $56.90. The capacity
of line five (#10 cans) is 7.5 tons per hour. The total capacity
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of the 'whole peel operation is about 2 tons per hour. The direct
labor cost associated with line five is $11.53 per hour. The
production rate is 300 cases per hour.

#10 share of joint cost 7.5T x 56.90 $20.32
Direct labor cost 11.53
Total cost per hour $31.85

Labor cost per case = hourly labor cost =+ 300 $ .10617

This figure was increased by 15 percent to include the costs of
fringe benefits which averaged 15 percent of the hourly wage costs so
the final direct labor cost per case was $.1221.

The direct labor costs for products are generally not as involved
as for whole peel tomatoes. Joint cost did not enter the computations
since the only labor cost considered was the cost of manning the product
lines which accounted for the major portiop of the labor costs. The
total labor cost per hour for a product line was divided by the number

of cases of expected production per hour to obtain the cost per case.
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Table 7-1. Available Raw Product by Week

Week
1 2 3 4 5 6 7 8 9 10
Number of Grower 20 35 47 56 6/, 58 55 L4, 55 37
Variety Combinations
1,000 1b. Units
of Tomatoes 10171 32477 33047 33266 47398 38063 29696 28757 30151 18222

991



Table 7-2. Raw Product Characteristic Distributions

Percent Percent Percent Percent Percent
Percent Insoluble Tomatoes Choice Peeling Pulping Standard
Solids Solids per Pound Peelers Loss Loss Peelers
Season Average 5.5 1.0 35 16 10 v
Standard Deviation A .1 10 3 1 5
Alowed Range 4.5-6.5 ©.8-1.2 To 602/
Deviation by Variety
(Rounds) A .2(.18)3/ 3.1
B .51 4.1
C -.2(.26)3/ 3.1
I .0 4.2
K -. 2.9
% .13 3.1
Al 3.0
0 2( 19)y 3.1
P (pear- 0 1.2(A11 7.7
shaped) Lots)
(145's) D -.15 4.2
F 46 4.6
G -.05 4.5
H -.32 4.2
Deviation by Week
1 -.2 =10 +
2 -.2 -5 +2
3 -.1 -5 +1
L 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 +.1 -5 +1
m 9 +.2 -5 +2
10 +.2 -5 +3

L9T

(footnotes on next page)



Table 7-2. (continued)

l/Percent standards equals 50 minus 4 of the percent choice.
2/Tomatoes with less than 20 percent choice were not considered for whole peel products.

3/Varieties A, C, and O were combined. Actual deviation is shown in parentheses.

891
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Table 7-3. Percent of Cannable Tomatoes

Before Selection After Selection
Choice Standard Choice Standard
20 40 32 40
30 35 40 35
40 30 48 30
50 25 56 25

60 20 64, 20




Table 7-4. Input Vectors for Lot GLOA - Week Five (Rounds)

oelected Not Plant 4
for Selected FMC Paste Sauce Plant 3

Restrictions Row ID Pipe for Pipe Peeler Puree Catsup Paste

Peeler Peeler Juice Puree
Objective Function 1 OBJEC1 -.200165 -.200165 -.200165 -.199780 -.199780 -.204610
Objective Function 2 OBJEC2 -.200165 -.200165 -.200165 -.199780 -.199780 -.204610
Grower Restriction G-10A 1.0 1.0 1.0 1.0 1.0 1.0
Select 40% Rounds RSEL4O0  .4040
Select Standard Rounds RSELSD L3131
Select Standard Correction RSESTC .0101
Non-Select 40% Rounds RHONA0 4040
Non-Select Standard Rounds RNONSD L3131
Non-Select Correction to Standards RNOSTC L0101
FMC Peeler 40% Rounds RFMC40 .4040
FMC Peeler Standards RIMCSD L3131
FMC Standards Correction RI'MCST .0101
Juice Row RJUICE .0028 .0028 .00085
5.5% Solids Row at Plant 4 RSQL55 .03511 .0504
5.5% Sauce Row RSAU55 .05544
Waste Disposal Row at Plant 4 RWAST4 -.01 -.01 -.003034 .10 .10
Box Dumper Restriction RBOXD2 .003937  .003937
Pulper Restriction RPULPR .001562  .001562
Sauce Evaporation Restriction REVAPS .0009
5.5% Solids Row at Plant 3 RYOL55 .0504
Waste Disposal Row at Plant 3 RWAST3 -
RAW PRODUCT CHARACTERISTICS OF LOT GlOA IN WEEK FIVE
Percent Choice = 35
Percent Solids = 5.6
Insoluble Solids as a Percent of N

Total Solids =11 3

Percent Standards = 31
Percent Peeling Loss = 15
Pulping Loss = 10



Table 7-5. Input Vectors for Lot GlOA - Week Two (Rounds)

Selected Not Plant 4
for Selected FMC Paste Sauce Plant 3
Restrictions Row ID Pipe for Pipe Peeler Puree Catsup Paste
Peeler Peeler Juice Puree

Objective Function 1 OBJEC1 -.200165 -.200165 -.200165 -.199780 -.199780 -.204610
Objective Function 2 OBJEC2 -.200165 -.200165 -.200165 -.199780 -.199780 -.204610
Grower Restriction G-10A 1.0 1.0 1.0 1.0 1.0 1.0
Select 30% Choice Rounds RSEL30  .297000
Select Standard Rounds RSELSD . 3069
Correction to Select Standard RSESTC -.0396

Rounds
Non-Select 30% Choice Rounds RNON30 .2970
Non-Select Standard Rounds RNONSD .3069
Correction to Non-Select

Standard Rounds RNOSTC -.0396
FMC Peeler 30% Choice RIMC30 .2970
FMC Standard Rounds RFFMCSD . 3069
Correction to FMC Standard Rounds REMCST -.0396
Juice Row Plant 4 RJUICE 043 043 .001305
5.3% Solids Row at Plant 4 RSOL53 .033855  .0486
5.3% Sauce Row RSAU53 .05346
Waste Disposal Row at Plant 4 RWAST4 .01 .0l .003034 .10 .10
Box Dumper Restriction RBOXD2 .003937  .003937
Pulper Restriction RPULPR .001562 .001562
Sauce Evaporation Restriction REVAPS .0009
5.3% Solids Row at Plant 3 RYOL53 L0486
Waste Disposal Row at Plant 3 RWAST?3 .10

RAW PRODUCT CHARACTERISTICS (ADJUSTED

Percent Choice

Percent Solids

Insoluble Solids as a Percent of
Total Solids

Percent Standards

Percent Peeling Loss

Pulping Loss

30
5.4

11
31
17
10

It an

FOR WEEK TWO)

TLT



Table 7-6. Input Vectors for Lot Gl6FA Week Five (Hand Picked Coreless)
Non- Non Paste
Select Select Select Puree Sauce Paste
Restrictions Row ID Peelers Peelers Peelers Juice Catsup Puree
Plant 4 Plant 3 Plant 3 Plant 4 Plant 3

Objective Function 1 OBJEC1 -.202135 -.205885 -.205885 -.199780 -.199780 -.204610
Objective Function 2 OBJEC2 -.202135 -.205885 -.205885 -.199780 -~-.199780 -.204610
Grower Restriction G16FA 1.0 1.0 1.0 1.0 1.0 1.0
50% Choice, Plant 4 R14550  .5150
Non-Select Standards R1455D  ,2472
Correction to Select Standards,

Plant 4 R145SC .0103
50% Choice, Plant 3 RY4550 .515
Non-Select Standards RY45SD LR4T2
Correction to Non-Select Standards,

Plant 3 RY/.5SC .0103
50% Choice Selected RYS550 .515
Selected Standards RYSESD L2472
Correction to Selected Standards,

Plant 3 RYSESC .0103
Juice Row, Plant 4 RJUICE  ,0081
Juice Row, Plant 3 RYJUIC .0081 .0081
Waste Row, Plant 4 RWAST4 -.03 .09 .09
Waste Row, Plant 3 RWAST3 -.03 -.03 .09
5.3% Solids, Plant 4 RSOL53 .04823
5.3% Solids, Plant 3 RYOL53 .04823
5.3% Sauce Row RSAU53 .043407
Pulper Restriction RPULPR .001562 .001562
Sauce Evaporator Restriction REVAPS .000910
Box Dumper Restriction RBOXD2 .003937  .003937
RAW PRODUCT CHARACTERISTICS
Percent Choice = 49 Percent Standards = 24
Percent Solids = 5.3 Percent Peeling Loss = 13
Insoluble Solids as a = ¢ Percent Pulping Loss = 9

Percent of Total Solids

CLT



Table 7-7. Peeling and Transfer Activities for Non-Select Rounds for Pipe Peelers at Plant 4
Peel Selected
Restriction Row ID 20% 30% 4L0% 50% 60%
Choice Choice Choice Choice Choice NOSTCM NOSTCP

Objective Function 1  OBJEC1 -.02 -.02167 -.02332 -.025 -.02665
Objective Function 2 OBJEC2 -.02 -.02167 -.02332 -.025 -.02665
20% Non-Select Choice

Rounds RNON20 -.2
30% Non-Select Choice

Rounds RNON30 -.3
0% Non-Select Choice

Rounds RNONAO -4
50% Non-Select Choice

Rounds RNON50 -.5
60% Non-Select Choice

Rounds RNONAO -.6
Choice Rounds

Transfer Row RCHRDS  .168 252 .336 42 . 504
Non-Select Standard

Row RNONSD -.4 -.35 -.3 -.25 2 1.0 -1.0
Standard Rounds

Transfer Row RSDRDS .336 .29/ .252 .21 .168 -.84 .84
Juice Transfer

Row Plant 4 RJUICE .32 .28 .24 2 .16 .8 -.8
Waste Disposal

Plant 4 RWAST4 176 174 172 17 .168 .04 -.04
Correction to Non-

Select Standards RNOSTC 1.0 -1.0
Pipe Peeler Restric-

tion RPIPPL 007143 .007143 .007143 .007143 .007143
Corer Restriction RCORER LR2143 .24 25829 . 27686 .2951/,
Pulper Restriction RPULPR  .000525  .000475  .000394  .000328  .000263 .00131 -.00131

ELT



Table 7-8. Peeling and Transfer Activities for Select Rounds for Pipe Peelers at Flant 4
Peal Selected
Restriction Row ID 20% 30% 4L0% 50% 60%
Choice Choice Choice Choice Choice SESTCM SESTCP

Objective Function 1  OBJEC1 -.0563 -.05192 -.04736 -.04852 -.04952 O. 0
Objective Function 2 OBJEC2 -,0563 -.05192 -.04736 -.04852 ~.04952 O. 0
20% Choice Rounds RSEL20 -.388
30% Choice Rounds RSEL30 -.582
0% Choice Rounds RSEL4O -.776
50% Choice Rounds RSEL50 -.97
60% Choice Rounds RSEL&0 -1.163
Choice Rounds

Transfer Row RCHRDS  .2688 .336 L4032 4704 .5376
Standard Rounds

Transfer Row RSDRDS .336 . 294 252 .210 .168 433 -.433
Select Standard

Row RSELSD -.776 -.679 -.582 -.485 -.388 -1.0 1.0
Correction to

Standard Row RSESTC 1.0 -1.0
Juice Transfer Row RJUICE 1.10666 1.08266 1.05866 1.03466 1.01066 L4157 -.4157
Waste Disposal RWAST/, .R2754 22634 L2251/ . 2239/ LR2274 .0173 -.0173
Pipe Peeler Restric-

tion RPIPPL .007143 .007143 007143 007143 .007143
Corer Restriction RCORER .26 . 276857 .286 .298857 31
Pulper Restriction RPULPR .001817 .001795 001742 .001705 .001667 .000677 -.000677

LT



Table 7-9. Peeling and Transfer Activities for FMC Peeled Selected Rounds At Plant
Peel Selected
Restriction Row ID 20% 30% 40% 50% 60%
Choice Choice Choice Choice Choice FMSTCM FMSTCP

Objective Function 1  OBJECL -.04334 -.03796 -.03257 -.03257 -.03257
Objective Function 2 OBJEC2 -.04334 -.03796 -.03257 -.03257 -.03257
20% Choice Rounds RFMC20 -.659
30% Choice Rounds RFMC30 -.989
40% Choice Rounds RFMC.0 -1.319
50% Choice Rounds RFMC50 ~1.649
60% Choice Rounds RFMC60 -1.978
Choice Rounds

Transfer Row RCHRDS  ,2688 .336 .4032 4704 .5376
Standard Rounds

Transfer Row RSDRDS .336 .294 .252 .210 .168 L2548 -.2548
FMC Select

Standard Row RFMCSD -1.319 -1.154 -.989 -.824 -.659 -1.0 1.0
Correction to FMC

Select Standard RI'MSTC 1.0 ~1.0
Juice Transfer RJUICE .224 .2 176 .152 .128 .RL46 -, 2446
Waste Disposal RWAST/, .3032 .3020 .3008 .2996 . 2984 .0102 ~-.0102
FMC Peeler Restriction RFMCPL .03144 03144 03144 03144 .03144
Pulper Restriction RPULPR .003783 .003745 .003708 .00376 .003633 .000398 -.000398

QLT



Table 7-10. Computation of Objective Function Values of Input Vectors from Lots 10A and 16FA

104 (Rounds)

16FA (Handpicked 145's)

Whole Peel Products Products Whole Peel Whole Peel Products Products

Plant 4 Plant 4  Plant 3 Plant 4 Plant 3 Plant 4 Plant 3
Cost of Raw Product Per Ton $35.00 $35.00  $35.00 $35.00 $35.00 $35.00  $35.00
Transportation Cost 3.90 3.90 3.90 3.90 3.90 3.90 3.90
Yard Cost 1.133 1.056 2.022 1.527 2.277 1.056 2.022
Total Cost Per Ton 40.033 39.956  40.922 40.427 41.177 39.956  40.922
Total Cost Per 1,000 Lbs. 20.0165 19.978 20.461 20.2135 20.5885 19.978 20.461

9LT



CHAPTER VIII

SOLUTION OF THE FULL-SCALE TOMATO PROBLEM
Introduction

As stated in previous chapters, the full-scale model for the sea-
son was composed of ten LP models (subproblems) which contained the
plant and raw product restrictions for each of ten weeks and an additional
LP model (the master program). The master program contained the seasonal
limitations on the production (maximum, minimum, and when required) of
individual products. It also contained the requirements that the sum
of the weights for each subproblem be less than or equal to one.

Subproblems B through I (representing the second to the ninth week)
has 150 to 18C rows and 700 to 1,000 columns each. Subproblems A & J
representing the first and tenth week had 66 and 83 rows and 445 and
522 columns. These two models were substantially smaller because their
production activities were limited to a single packing plant and did
not allow production of peeled tomato products. The number of growers
was also substantially less than for most weeks. The subproblem di-
mensions are listed in table 8-1.

The total size of the equivalent LP problem in non-decomposed form
would have been approximately 1,550 rows and 7,750 columns. (The initial

model was about one-third larger, and was reduced in size after results



178

indicated that various activities and constraints were redundant for
practical purposes).

The linear programs were initially solved on an IBM 1620 computer.
This equipment was converted to an IBM 1130 prior to the completion of
computations and later solutions were obtained on that machine. Both
configurations were disc-oriented and equipped with single disc drives.
The standard IBM linear programming programs 1620 LP and 1130 LP-Moss
were used. Fortran programs were used in conjunction with the LP 1620
output (punched cards) to construct revised objective functions for the
subproblems and to convert subproblem output to the proper format for
input to the master program. These operations could have been pro-
grammed to be performed automatically without operator intervention,
but some of the problem files were off line on another disc-pack at all
times. In a situation where sufficient on-line storage exists, there
would be no need for operator intervention between major iterations other

than to communicate solution strategy.

The Solution Process

The first requirement for an overall solution is a feasible solu-
tion to the master. Although there would normally be a feasible solu-
tion to a properly constructed problem of this nature, infeasibilities
could occur under various conditions. For example, the minimum pro-
duction restrictions may be too large to obtain from the available raw
product or the available machinery capacity inadequate to meet specific
pack targets. In order to determine if there is a solution to the over-

all problem and to furnish simplex multipliers to revise the objective
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functions of the subproblems, it is desirable to obtain a feasible
solution to the master at an early stage.

This master program had many minimum production requirements and
restrictions requiring a portion of the season's production to be
produced during the first three weeks of the season. Consequentlj, it
was necessary to decide on a course of action to obtain the first
feasible solution to the master.

The procedure used in the test problem was to generate a series
of subproblem solution vectors by changing the relative prices in the
subproblems according to plan. This would have been virtually impos-
sible for the full-scale problem because of the large number of restric-
tions and the large number of subproblems.. The development of a plan
was hampered by the lack of knowledge about the interrelationships
prior to the start of éomputation. For example, it was not known what
price differences are required if choice grades of commodities are de-
sired rather than standard grades or if more catsup is desired with a
decrease in paste. In fact, throughout the computations it was difficult,
if not impossible, to predict the products which would be in a new sub-
problem solution from knowledge of the changes in the price vector.

Another approach to obtaining a feasible solution to the master
is through the insertion of dummy variables in those rows which might
cause infeasibilities. In this master program only the "greater than"
restrictions could cause infeasibilities. These dummy variables are
given negative objective function values (in the revenue maximization
case) so they are not considered a free good and will be driven out of

the basis by revenue producing activities. (The use of dummy variables
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with negative prices with zero prices assigned to all legitimate
variables in the master will guarantee a feasible solution the the
master or prove that one does not exist.l/ This precaution was not
taken as it was assumed that there was a feasible solution to the
problem and that such a Phase I-Phase II procedure would be computa-
tionally wasteful.)

A third approach used was to develop vectors which are "favorable"
to the master through the elimination of products in long supply in
previous subproblem solutions by deleting the activity, applying an
upper bound of zero or by changing its price. Conversely, products in
short supply can be brought into the subproblem sclutions by using pos-
itive lower bounds or increasing the objective function values. Al-
though increasing or decreasing the level of production activities may
seem to imply that some other production activities will decrease or
increase, this is not always true. For example, the tomato model did
not require that all of the raw oroduct be utilized. Consequently,
some products may never have been produced regardless of the production
level of the other products if their production cost was greater than
the objective function value. In any event, it is quite conceivable
that it might be advisable to limit production of some products while
encouraging production of others.

Both dummy variables and the development of favoratle vectors were
used in the full-scale problem although the dummy variable method was

used more extensively.

1/Hadley, op. cit., p. 406.
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The first subproblem solution was obtained for the fifth week of
the season. This subproblem was selected to be solved first because
it had the largest input of raw tomatoes. The initial solution had no
upper or lower bounds on the quantities of finished products to be pro-
duced. All other bounds including those on machinery and raw products
were included. The prices used were the expected product prices for
the season. This procedure determined if the plant models as formulated
had sufficient machinery capacity to handle the expected crop. This
was more than a simple check on the model, as the cooperating firm had
utilized three plants in the past but was planning to only operate two
in the crop year under investigation. A feasible solution indicated
that the plant capacity was adequate.

The next solution obtained was for the same subproblem but in-
cluded the seasonal production restrictions as upper bounds for the
individual products. This was a further test to determine if the plants
had sufficient capacity to handle the peak week raw product and stay
within the season pack target for the firm. A feasible solution again
indicated this would be possible. (This solution utilized all the raw
product available, although there were slack activities for the raw
product input restrictions.)

Next, four additional subproblems (weeks) were solved using the
expected finished tomato product prices for the season. Prior to solving
each new subproblem upper bounds of zero were placed on products which
had entered a previous solution at the seasonal upper bound or were in
two or more subproblem solutions and had a total production of more than

the seasonal upper bound. This was an attempt to develop "favorable
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solutions". This procedure was successful as all four solutions were
in the final solution to the master 96 major iterations later. Three
of the four were in every solution to the master.

By the time the solution was obtained for the fourth subproblem,
more than two-thirds of the products had been given upper bounds of
zero. One more subproblem was solved (without any upper bounds of
zero although upper bounds equal to the seasonal restrictions were
used). The master program was then run for the first time with these
seven solutions to six subproblems. Both maximum and minimum season
production restrictions were included in the master. The early season
production restrictions were not included at this time because subprob-
lems for two of the first three weeks had not yet been solved. Dummy
variables were used in the master to insure feasibility. There were
2/, dummy variables included in the first solution. When using this pro-
cedure those dummy variables not in the basis to the master should be
removed each time the master is run. If not, they can reenter the
basis. At this point in the solution process a feasible solution to
the master is desired more than an increase in the objective function
value of the master. The objective function value of thé master is not
applicable as long as there are large numbers of dummy variables in the
solution.

The simplex multipliers from this solution to the master were used
to compute a new price vector for the subproblems. Another subproblem
was solved and the new product vector was added to the master. (The sub-
problem solution was feasible but not optimal with respect to the re-

viséd set of prices. Feasible, non-optimal solutions were used frequently
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throughout the solution process.) This new vector was then added to
the master, and the master was reoptimized. (The usual procedure was
to solve just one or a few of the subproblems rather than all of the
subproblems. This is discussed in Appendix 8-4.)

At that point in the solution process, all seven weeks were in
the solution at the 1.0 level along with 21 dummy variables. A new
price vector for the subproblems was developed using the simplex multi-
pliers from the master. After an inspection of the product vectors in
the master, several prices were not changed from their previous revised
level. The corresponding products were at an intermediate level in the
basis but were very near their upper or lower bounds. Consequently,
their status had really changed very little from the previous solution.
This procedure was not followed during most of the solution process
because the price revisions were done routinely by computer programs
and the revised prices were examined quite infrequently. During the
fifth major iteration , the early season production restrictions were
added to the master program. Additional dummy variables were added at
this time to maintain the feasibility of the master.

After nine major iterations (with a total of 16 different solutions
to seven subproblems), there were still a relatively large number (29)
of dummy variables in the solution to the master. Many of these were in
place of early season production. The subproblems for the second and
third week were optimized using revised prices, but when the product vec-

tors were placed in the master program they did not enter the solution.g/

2/This was one of the few times that there was no change in the master
after the inclusion of a new subproblem vector. Considering the early
stage of solution and the apparent need for those products in those weeks,

it is surprising, but probably indicates that the early season restrictions
were relatively unprofitable.



184

At this poiﬁt the value of the objective function for these dummy
variables was changed from -5 to -20. Normal prices ranged from +1
to +8. This caused several of the dummy variables to drop from the
solution to the master.

After the tenth major iteration there were 14 dummy variables left
in the basis to the master. These fell into two categories. One cate-
gory consisted of dummy variables for products which exceeded the
season production target. These were generally products that were
produced in abundance even at low prices. The other dummy variables
were for products which were not in solutions to the model until their
assigned prices were substantially higher than the actual expected
prices. These products were relatively uneconomical to produce, possibly
even in an absolute sense,

To remove the group of dummy variables with excess production
from the master, several feasible subproblem vectors were constructed
by modifying previous subproblem solutions. Selected products which
were exceeding the seasonal restriction in the master were removed from
the previous solution vectors. The objective function value of the
subproblem solution was reduced by the full amount contributed by that
product; i.e., the product quantity times its objective function value.
(This is a larger reduction in the objective function than would actually
occur, as no allowance was made for the production of alternative products
or the reduction in raw material costs because of a reduced production
level.) After four major iterations which included 16 of the modified
vectors and six new subproblem solutions, there were only three dummy

variables remaining. All three were required to meet minimum production
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requirements. The remaining three dummy variables were eliminated

after three more major iterations. (These three products, along with

a few others were never in any subproblem solution unless their objec-
tive function value in the subproblem was greater than the eipected
price for the commodity indicating their relative unprofitability in
the model). The modified subproblem solution vectors eventually dropped
out of the master as more profitable solutions were obtained. However,
since they were feasible (although interior) solutions, they might have
legitimately stayed in the solution.

Obtaining the feasible solution to the master required 28 major
iterations. There were 63 solution vectors from the subproblems avail-
able (including 17 which were constructed from other feasible solutions)
when the first feasible master was obtained without the use of dummy
variables. 31 of the subproblem vectors were in the solution to the
master. The objective function value of the master at this time was
$35,165, 73.1 percent of the final value of $48,137.6 and 57.8 percent
of the computed Dantzig-Wolfe upper bound of $60,910.5.

The feasible solution might have been obtained sooner if the master
had been solved using dummy variables after the solution to the first
subproblem. This would have reduced the problems caused by products
with production greater than the seasonal restrictions. Another pos-
sible aid in obtaining a feasible master would have been the limiting
of the total production of each product in the subproblems to the
seasonal restriction when a product is produced in two plants or on
two or more lines. This was not done because of the size limitations

of the LP code. Once a feasible master is obtained, however, there
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are undoubtedly times when it would be advantageous not to bound the
subproblem production activities at all so that the new subproblem
solutions will have the activities most favorable to the master.

After a feasible master was obtained, 68 major iterations were
performed which included 160 new subproblem vectors. A majority of the
major iterations were performed with the addition of only one subprob-
lem vector. Most of the subproblem vectors were feasible but non-optimal.
The procedure was terminated when the solution value was 48,137.6 and the
computed Dantzig-Wolfe upper bound was 60,910.5. The solution 1s ex-

hibited in table 8-2.

Suggested Solution Procedures

After considering the total number of major iterations needed,
the difficulties in obtaining a feasible solution to the master (in
spite of efforts to avoid them) and the problems of finding a realistic
upper bound and determining when to stop iterating the suggested solu-
tion procedures are somewhat different from those just described.

For a problem similar to the tomato problem, it is suggested
that the procedure be initialized by optimizing each subproblem using
the expected prices and -the seasonal production restrictions as upper
bounds. In addition to furnishing an initial basis for each subproblem,
an upper bound for the overall solution can be obtained. In a problem
such as the tomato problem, the sum of the solutions of the subproblems

optimized independently with each subproblem subject to the seasonal
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restrictions will provide an upper bound.z/ The upper bound is needed
in determining when it is economically desirable to stop computing. The
Dantzig-Wolfe procedure for determining an upper bound described in
Chapter IV requires a considerable amount of computation which is wasted
as far as the overall solution is concerned and is of no value to the
firm's management. It appears that the upper bound that would have
been obtained by optimizing all the subproblems would have been lower
than any computed Dantzig-Wolfe upper bound until after more than 90
major iterations. (See Appendix 8-B.) It would appear that problems
of similar structure would also take a large number of major iterations.
(In the test problem with only 92 restrictions and two subproblems,
it required 40 major iterations to obtain the overall optimum.) The
solution of all the subproblems may also be of interest for investi-
gating plant capacities and determining which, if any, activities
dominate throughout the season or whether shifts occur in production,
allocation, or machinery utilization as the season progresses. Such
information can then be utilized in forming solution strategies by
selecting the subproblems whose original optimal solution most closely
corresponds to a favorable input to the master.

Finally, the optimum solution to a given subproblem should be of
interest to management for the consideration of questions such as:

How does the proposed plan or schedule (final overall solution)

differ from the "most efficient" way I can operate during
that time period? Is the difference significant and if it is,

2/in the case where the subproblems are not independent, this will
not be true; i.e., where the finished product of one time period or
plant becomes the raw material for another.
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can action be taken via sales promotion, machinery changes,

or a revision of pack targets to operate more nearly like the

optimal solutions?

The master program should then be run immediately using dummy
variables to obtain a feasible solution. The number of dummy var-
iables should be kept to the minimum possible. In the tomato problem,
this would mean running the master as soon as all of the ten subproblems
had been solved but without including any dummy variables for the "less
than" restrictions. If it is not desired to solve all the subproblems
with the original prices, then the master should be solved using dummy
variables as soon as it is desired to stop using the original prices.

The procedure of running only a small proportion of the sub-
problems in any major iteration should be followed. BExperience on the
tomato problem indicated that initially vectors from more than one sub-
problem will enter the master solution on each major iteration. However,
unless the number of subproblems is small, they will not all enter.

The average number that will enter each time should be determined from
observation, and that number of subproblems or less run for each major
iteration. It was observed that vectors that don't enter the solution
to the master when first generated seldom enter the master later. Of
those that do enter later, few have a significant impact on the progress

of the solution. The number of subproblems that will have vectors enter

4/The tomato pack target or production objective is based on the
sales objective which is derived from knowledge or past history and
current and expected market conditions. If the firm has unique pro-
duction advantages for a product or group of products, it should con-
sider pricing, promotion, or sales efforts to change market conditions.
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the master solution, on each major iteration will probably decrease

as the solution progresses.j/ The number of subproblems solved for
each major iteration should be cﬁrrespondingly reduced. There was some
evidence in the tomato problem that vectors from several subproblems
increased the solution value of the master more than vectors from a
single subproblem. It is not clear at what point additional subproblem
solutions in a major iteration are warranted. It will depend to a
larée extent on the relative time spent in solving the subproblems and
the master.é/

There are advantages to using prices other than those obtained
using the simplex multipliers in the early stages of solution. Prices
of products at upper or lower bounds should be changed, but products
that were at a bound in the previous master solution and are still near
the bound, but with a simplex multiplier of zero, can be left with the
same price as they previously had or be given an arbitrary price. The
usefulness of this procedure in the tomato problem was limited to the
earlier stages when most of the products were not yet restricted in
the master. As the solution progressed, few products which were bounded

on one iteration were not bounded on the next.

5/There was not sufficient opportunity to observe this in the

large problem. However, it was apparent in the test problem. See
Chapter VI.

&/as the overall optimum is approached, some vectors will not
enter the solution to the master at all, and non-optimal solutions
will be less likely to enter the master. A solution strategy at
this point depends to a large extent on the relative running times
of subproblems and master. Solution of the tomato problen was terminated
before this became a consideration and no observations were obtained.



190

There is no need to completely optimize the subproblems each
time.Z/ More than one non-optimal solution can be obtained from the
same subproblem with the same revised objective function. In a prob-
lem like the tomato problem, this has the advantage of having a
greater variety of products in the new vectors since the first vector
with new prices will have some products from the previous solutions.

In the full-scale problem, the least optimal solution frequently came
in at the exclusion of more optimal vectors.

There is no need to obtain new vectors from a different subproblem
each major iteration. The same subproblem was used for two or more
major iterations in succession with no apparent difficulties. The
ability to use the same subproblem will allow savings of computer time
in some operating environments. A procedure for determining which sub-
problem or subproblems will improve the solution to the master the most
would be of benefit, but no such procedure was developed. One pro-
cedure that was used throughout the tomato problem was the bounding of
the activities in the subproblems to be less than or equal to the re-
striction on the season's product. These bounds were originally in-
cluded to aid in obtaining a feasible master but were not changed when
a feasible solution to the master was obtained. However, it may be
that unbounded solutions cause the solution to the master to increase
more rapidly than bounded ones. There will be larger quantities of

fewer products produced if the production activities are not constrained.

Z/Assuming that the number of iterations required to go from a
good solution to an optimal solution is significant.
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In that case the products that are produced are generally not at the

upper bound in the master or at least have low simplex multipliers.

Termination of Computation

The decision whether to obtain an optimal solution to the overall
problem or whether to terminate prior to that point will depend on the
circumstances, but in an applied problem such as the tomato problem,
it would be unrealistic to attempt to oblain an overall optimum. There
will be a point where the cost of computation exceeds the average in-
crease in the solution to the master. However, computations should
generally be terminated before that point is reached.

One reason is that the day-to-day variations in raw product quanti-
ties and characteristics and in the performance of labor and machines,
as well as the imprecise measurements and approximations incornorated in
any model will negate the value of a statement that any one solution is
the cptimal solution.

Another reason for not attempting to obtain an overall optimum
to a very large problem is that there are subjective considerations that
are extremely difficult if not impossible to incorporate in a model.

A solution must be acceptable to management. An unacceptable solution
cannot be optimum. The labor supply, company employment policies, and
union regulations have to be considered in detail in the final schedules.
Similarly, the sequencing of products and practical limitations on
changeovers have to be considered before drawing up final production

schedules.
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Criteria for estimating how "good" the current solution is are
discussed in Appendix 8-B. None of these can really be considered
satisfactory. More empirical analysis is required to determine which
are valid. Lacking an adequate theoretical criteria, the decision to
terminate must be based on the knowledge and judgment of the analyst
and management.

Once the decision has been made to stop iterating, the weekly
production quantities are obtained by eplying the weights from the
master program to the subproblem solutions. These weekly production
quantities should be used as lower bounds in obtaining new solutions to
the subproblems to determine the allocation of raw product and machinery
requirement for each week's pack.g/ Although a feasible solution for
the week could be obtained by multiplying the entire subproblem solu-
tions by the appropriate weights, the product yields will be increased
by optimizing with the lower bounds.a/ (This procedure also relieves
the firm of maintaining a large number of complete solutions either
on hard copy or in computer storage. Some decomposition computer codes
complete this procedure automatically.)

The final step in developing allocations and schedules is to de-
termine the sequencing of products on multiproduct lines and making
adjustments to meet run length or labor criteria. (This might be done

in two steps with large adjustments being done before solving the

8/Some of the product levels would be equalities or free variables
if circumstances warrant. .

9/This is true only if the decomposition solution process is
terminated before reaching the overall optimum.
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sﬁbproblems with lower bounds and making the final adjustments to the
schedule afterwards).

Computations in the tomato problem were terminated after 97 major
iterations. During the last major iteration, all of the subprograms
were solved, and the Dantzig-Wolfe upper bound was computed. The final
solution value and the value of the Dantzig-Wolfe upper bound are dis-
cussed in Appendix B to Chapter 8, along with other methods of obtaining
an estimate of the upper bound.

At that time, the solution value was 77.9 percent of the computed
value of the Dantzig-Wolfe upper bound and 88.3 percent of an estimate
of the upper bound obtained by one of the other methods. One of the
reasons it was decided to terminate computation at that point was that
virtually all of the products were being produced at the upper limit of
the seasonal pack restrictions. It appeared that improvement in the
solution walue achieved by further computations would be due to minor
shifts in the production of commodities between weeks. It appeared that
sufficient information had been obtained to allocate the lots of toma-
tbes to the proper plant and to the appropriate finished products.
Information was also available to schedule the plants as accurately as
possible within their limitations imposed by institutional factors and
the day-to-day changes in product quality and availability.

After the computations were terminated, a production schedule was
developed for the season. This production schedule is displayed in
table 8-3. The method by which the schedule was developed is discussed

in Appendix C to this chapter.



APPENDIX A TO CHAPTER VIII

COMPUTATIONAL CONSIDERATICNS

Subproblem Solutions

After obtaining a feasible solution to the master program of a
large decomposed problem, it is desirable to obtain a satisfactory
overall solution with the least expenditure of resources. This is not
equivalent to minimizing computer expenditures, as there may be human
resources involved in waking decisions such as:

1. Selecting the number of subproblems to be run in each major

iteration and the selection of the individual subproblems
to be included in that major iteration.

2. Delermining whether individual subproblems should be op-
timized using the revised objective function or whether they
should be terminated at some point less than the optimum.
Similarly, should more than one solution be obtained from

a subproblem for a given set of prices?

3. Determining when a satisfactory overall solution has been
obtained.

One approach is to optimize each subproblenm during each major
iteration. This is what was done in some of the initial computer de-
composition algorithms. However, this is generally inefficient, as all
of the subproblem solutions do not enter the solution to the master.

An improvement will be made in the master when a solution vector from
any one of the subproblems is added to the master if the revised objec-

tive function value of the subproblem (whether optimal or not) is
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greater than the value of the simplex multiplier corresponding to the
restriction on that subproblem in the master. Some computer codes now
allow the selection of one or more subproblems for use in the next major
iteration. A method is needed to determine how many and which subprob-
lems to solve in the next major iteration to get the largest improvement
in the master.

An analysis was made of the solutions to 23 major iterations which
included solutions from more than one subproblem. Solutions to the
master included new vectors from two subproblems in just over half of
those major iterations with new vectors from two or three subproblems.
In the limited number of cases where there were more than three sub-
problems with new vectors in a major iteration, the largest number of
new subproblem solutions that entered the solution to the master was
three.

In general, those major iterations with new vectors from more than
one subproblem had larger increases in the solution value of the master
than thoge with new vectors.

The usual procedure for the generation of new subprogram solution
vectors was to use a revised objective function until the solution was
substantially changed rather than optimal. The structure of the sub-
problems was such that 25 percent or more of the computing time could
be devoted to increasing by only five percent the value of the objec-
tive function. (For example, one problem was solved in 389 iterations.
The last 100 iterations increased the objective function from 3679.611
to 3690.058. The problem was feasible after 36 iterations with an ob-

jective function value of 2315.289.)
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In the tomato problem there was no advantage to be gained by
solving subproblems to their optirmum value. A non-optimal solution
from one subproblem was just as likely to enter the master as an
optimal one from another. A subproblem solution further from optimum
was just as likely to enter the master as one from nearer optimum with
the same prices.

This observation should be modified by the following considera-
tions:

1. The distribution of the optimal solutions was heavily weighted

with the smaller problerms since they took less time to solve.
These subproblems were less profitable and so were at a dis-
advantage when compared to the subproblems with more raw toma-
to inputs.

2. The problem was not near its optimum overall solution when

some of the solutions were obtained. It is to be exvected
(as was indicated in the test problem) that fewer subproblem
vectors will enter the solution to the master as the overall
solution is approached. In addition, it might be necessary

to bring the subproblem solutions closer to optimal to get
thein to enter the solution to the master.

Computer Size

During the solution of the full-scale problem, there were many
difficulties encountered because of the small size of the computers
used. It is true that using the decomposition principle of linear
programming allows the solution of problems that normally would be too
large for a particular computer configuration because only a portion
of the model, i.e., a subprogram, is being solved at any given time.
However, the computer configuration must be powerful enough to solve
that particular subprogram efficiently if decomposition is to be ef-

fective, since each subprogram must be solved numerous times. Several
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of the subprograms which represented weeks of the season in the full-
scale tomato model, had dimensions very close to the upper limit of
the computer equipment and LP code. Consequently, solutions frequently
required a large amount of computer time along with computational dif-
ficulties because all the computer resources were being used. This
would not have been a major problem if each subprogram was solved once
or a very limited number of times. The difficulties came because each
subprogram has to be solved many times before obtaining an overall
optimum.

There are alternatives which may avoid problems of this kind. One
is to insure that all the subproblems are small enough that they can be
handled efficiéntly within the size and scope of the computer equipment
and LP codes available. In some cases, 1f the indicated size of the
matrix 1s large but it can be delermined through exploratory studies
that there are a relatively small number of restrictions, it might not
be necessary to model the entire plant but just the effective machinery
restrictions. Another possibility is to reduce the total number of
columns. For example, if there is a lot of tomatoes which from past
experience or preliminary study is demonstrated to always be assigned
to a given end product, it could be left out of the matrix with a re-
duction in the number of input columns.

Another alternative would be to use a larger computer system. The
feasibllity of this alternative depends, of course, on a relative cost
and availability to the firm of various computer systems. Some firms
have a hierarchy of computer systems which include small computers in

plants and larger systems in division or corporate headquarters. Some
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have access to service bureaus at a cost. An alternative would be a
compromise between these two methods whereby the problem or at least
those portions of the problem which are too large for a small computer
would be solved on a larger computer. The results would then be studied
and the subproblems tailored so that they contain all the meaningful
restrictions but are of reasonable size for the smaller equipment.

In some cases, it might be advisable to go to a large computer,
solve the entire program and use the results of this solution for a
tentative schedule for the entire year. Then, portions of the problem
could be resolved when prices change, raw product characteristics
change, or it was desired to evaluate machinery or other capacities.
Many computer LP codes include methods to construct submodels from large
models stored in mass storage.

In general, the increasing power of computer systems along with
improved computational methods and file handling techniques make these
considerations outdated for a problem the size of the full-scale tomato
problem. However, as data pertaining to product characteristics is
developed and refinement in plant and machinery modeling occur, it is
probable that such models will increase in size and continue to exceed
computer or code limits.

One specific area which caused computation problems was the lack
of flexibility in LP codes available when the problem was first formulated.
Problem setup required so much time that it was necessary to include 211
possible restrictions and activities at the time of initial formulation
of the problem. This, of course, added to the size of the LP matrix.

The increased flexibility of codes available now allows the addition of
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rows, columns, bounds, and in some cases, individual elements, etc.,
essentially at will. Consequently, one can start with a much smaller
matrix and make additions as questions arise or if there is a need to

investigate a given area further.



APPENDIX B TO CHAPTER VIII

UPPER BOUNDS

The solution process was terminated after 97 major iterations. At
that time, the objective function value of the master was $48,137.6.
The Dantzig-Wolfe upper boundl/ was computed during this major iteration
and was found to be $60,910.5. The solution value at this time was 77.9
percent of this upper bound.

Optimal solutions to all ten subproblems are required to obtain
the Dantzig-Wolfe upper bound, so this was the first time ﬁhat it had
been computed. However, the simplex multipliers for the restrictions on
the weights of the subproblem vectors and the values of the revised ob—
jective functions were compared frequently to make a rouéh estimate of
the value of the upper bound. With the possible exceptions of two of
the last major iterations, this computed Dantzig-Wolfe upper bound is
lower than any that could have been computed previously. (Even these
two major iterations are estimated to give higher Dantzig-Wolfe upper
bounds. ) |

After computing the upper bound, it should be possible to make
relatively good estimates of the upper bound for several iterations

without solving all the subproblems. In the tomato problem, the difference

1/The Dantzig-Wolfe upper bound is described in Chapter IV.
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in the optimal solution values of two subproblems solved with the same
objective function was relatively constant. An estimate of the upper
bound can be determined by estimating the value of the revised objec-
tive function of each subprogram. This is computed by adding or sub-
tracting the difference between the subprogram objective function value
for the last solution and its solution value when solved with the same
objective function as the subprogram being estimated. This value is
an estimate of the subproblem solution using the current prices. We
can then proceed with a pseudo Dantzig-Wolfe upper bound computation.
If it appears that a substantial reduction in the upper bound can be
made, the decision whether or not to solve all the subproblems to com-
pute a new upper bound is made at that time.

The Dantzig-Wolfe upper bound computation method did not provide
a satisfactory tool for determining when to stop computation. The final
computed value of the master was probably much closer to the actual
optimum solution value than indicated by its being 77.9 percent of the
Dantzig-Wolfe upper bound.

| In a completely decomposed problem like the tomato problem, the

solution for the season with no finished product quantity restrictions
is equal to the sum of the solutions of the individual weeks. This is
an upper bound. Similarly, a solution based on the sum of the Indivi-
dual weeks solved with the seasonal pack restrictions applied to each
week is an upper bound.

The optimal solutions to all of the subproblems using the seasonal
bounds on production and the expected season prices are not available.

A1 of the weeks were not solved with the expected season prices.
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However, the sum of the largest objective function values obtained for

each week is available. This is $60,232.6. Most of these objective
function values are for solutions obtained early in the solution process
before relatively unprofitable commodities were being forced into the
solution. They should approximate the optimal solution values for

those weeks. These values are substantially higher than those obtained
later in the solution process and are from solutions which are generally
not in the solution to the final master.

The sum of the largest objective function value for each subproblem
solution included in the last solution to the master was $54,598.3. In
the ten previous iterations, this sum ranged from $58,123.9 to $54,863.3
and was generally decreasing. Considering the structure of the tomato
problem and since many commodities were being produced at their upper
bounds, each increase in the value tc the master solution meant that
more of the relatively unprofitable products were being included in the
solution. This indicatss that the overall optimum solution will be less
than the $60,232.6 and probably less than the sum of the highest sub-
problem solution values in the last solution to the master.

Most of the subproblems had one or two solutions which had high
weights in the final solution and several previous solutions to the
master program. These weeks with high weights do not in general have
relatively high objective function values. Two have the lowest objective
function value of vectors for that week in the solution to the master.
Three have the highest objective function value of the vectors that are
in the solution to the master for that week, and five have neither the

highest or lowest value. In no case was the vector with the highest
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objective function value obtained for that week during the course of

the study in the final solution to the master. In the case of week
three, the dominant vector in the solution to the master had a weight

of .536 or over half of that week's weight in the master. That vector
had the lowest objective function value of all the feasible solutions
which had been included for that week. In week two, cost ranging inci-
cates that a very small change in the objective function of the heaviest
weighted vector in the solution with a weight of .28 would have increased
the vector's weight to 1.0. This particular solution vector had one of
the lowest objective function values for week two.

The computed Dantzig-Wolfe upper bound almost 70 major iterations
after the master became feasible was still greater than the sum of the
largest solution values to the subproblems and approximately 10 percent
larger than the sum of the values of the largest solution vectors which
entered the last solution to the master. In this particular application,
the sum of the largest colution values to the subprogram is a more practi-
cal way to compute an upper bound than the Dantzig-Wolfe computations.

The final computed objective function value of the master was
$48,137.6. This was 88.3 percent of the sum of the largest objective
function values of each subproblem in the last solution to the master.

Solution values of the master during the last ten major iterations
increased from $46,842.4 to $47,997.8, a total of only $1150 or an
average of $115 per iteration. The average gain is decreasing, but
since the objective function is scaled by 100, more iterations might be
economically feasible if one felt there was sufficient accuracy in the

models and that the institutional factors would allow such gains to be
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obtained. 'In terms of the tomato problem, it is highly doubtful that

gither of these requirements is present.



APPENDIX C TO CHAPTER VIII

THE DEVELOPMENT OF A PRODUCTION SCHEDULE BY WEEXS

Linear programming computations were terminated after 97 major
iterations. At that time, the final solution to the master had 46 of
the 58 products at their upper bounds for the season. There were no
products at their lower bound for the season. One of the eight products
which had an early season production requirement was at the lower bound
for early production. The product levels in the final solution to the
master are found in the next to the last célumn of table 8-2.

There were 55 subproblem solution vectors in the final solution
with weights ranging from .OOZl/ to .835. The number of subproblem
vectors for each week in the solution ranged from three to eight.

The tentative weekly production schedule displayed in table 8-2
was developed by multiplying the weights from the solution to the
master by the appropriate subproblem solution vectors and summing to
form a composite vector for each week. The composite vectors are re-
produced without any adjustments in table 8-2. The first column of
the table gives the product name and description and plant location for

production if the product is produced at more than one plant. The next

l/The vector with the .002 was not used in forming the schedule.
The next smallest weight was .007 which was used.
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columns labeled one to ten are the composite vectors for the respective
weeks of the season. The following column labeled ten week total is the
total of the composite vectors for all ten weeks. This is followed by
the level of that product in the last solution to the master program.
The last column is the maximum pack target or the seasonal restriction
on production for that product or group of products. The weekly and

ten week total have more entries since the same production is produced
on different lines or different plants and, consequently, have overall
production restriction in the master program. The total of the composite
vectors over all weeks in the table does not equal the maximum pack tar-
get for those products at their upper bounds because the computer out-
put (i.e., the weights obtained from the solution to the master program)
were truncated rather than rounded.

The usual procedure at this point would be use the quantities from
these composite product vectors as lower bounds on the product activities
for their respective weeks and optimize each subproblem subject to these
lower bounds with the expected prices for the season. This procedure
will provide the optimal solution to each subproblem that meets the
lower bound conditions. The total yield should increase and/or other
production efficiencies should result because some of the vectors included

2/

in the composite were feasible but not optimal.

2/It would also be possible to construct an entire composite
solution vector in the same way as the composite product vector.
However, this is not normally done as all the solution vectors to
the subproblems are not always available.
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However, the tentative production schedule has a large number
of items listed for production each week. The usual subproblem solu-
tion vectors have from 15 to 30 production activities indicating that
to be the optimum number of production activities for any particular
set of prices. However, because of the composite nature of the vectors,
the tentative schedule has up to 60 production activities in one week.g/
The largest number of production activities were generally in the peak
weeks of the season when product changeovers are least desirable.

Considering the tangible and intangible costs of changeovers and
short run lengths, too many products were scheduled in each week.
Fortunately, many activity levels in a given vector were quite low. It
was determined that if one could combine or drop activities that had a
production level of less than 20 units or 2,000 cases in any given week,
the nunber of sutries in the table would be reduced to 247.

The 2,000 case cut-off was chosen arbitrarily, but for most products
it was reasonable as it represented less than one shift of production on
most lines. Consequently, these activities were dropped from the sched-
ule for that week. In some cases compensating adjustments were made in
the level of similar products. This procedure had little impact on those
products with a season target of more than 200 units or 20,000 cases.
After dropping small entries for these products, their activity level

was still substantially more than 90 percent of the ten week total in

3/There are 800 production activities by week positions in table 8-2
as there are 90 production activities possible in weeks two through nine
and 40 production activities possible for weeks one and ten. There are
422 entries in the table, a density of over 50 percent.
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most cases and in all cases above the lower bound for the season for
those items. Those with production targets of 200 units or less were
examined individually as the production remaining after the small
entries were dropped varied from zero to 100 percent of the original
ten week total. Those with less than 80 percent of the master solution
remaining were annotated to be adjusted later.

Many small production quantities that are impractical to schedule
would appear to be a problem in decomposition models (as well as any
LP allocation and scheduling model of this type). It can not be de-
termined whether the overall optimum solution would have had 2 reduction
in the number of production activities in the composite vectors,é/ but
gince it isn't practical to obtain the optimum, some procedure such as
the one above is necessary to reduce and/or consolidate to a reasonable
level for final scheduling.

An alternative to inspection would be to limit the number of sub-
problem vectors allowed in the composite vector for each week. For ex-
ample, rerun the master with just the vectors with a weight of ten per-
cent or more. This would have reduced the number of solution vectors
to 28 or half the number of those included in the final solution to the
master. Anothsr alternative would be to rerun the master program with
only the two or three most heavily weighted vectors for each week from
the last master solution. The first alternative would have had at most

298 entries in the tentative schedule. The use of only three vectors

4/Further "optimization" will tend to increase the number of
production activities as each individual lot of tomatoes is assigned
to that product for which it is best suited.
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for each week in the solution to the master would have resulted in at
most 294 entries in the tentative schedule. The use of vectors with
weights of at least .1 but no more than the three most heavily weighted
vectors would have resulted in at most 266 entries in the tentative

schedule.

The next step in the development of the production schedule is to
examine the remaining entries in the tentative production schedule in
detail. Table 8-3 is the resulting schedule after modifications were
made based on this examination. The following changes were made to
the schedule (the numbers in parentheses in table 8-3 are the original

values from table 8-2 if the quantity has been increased due to a com-
bination of activities).

1. Production of all grades of coreless tomatoes in #2% cans at
plant four should be discontinued and that production con-
solidated at plant three. There is very little volume in
the tentative schedule for coreless production in #2% cans
indicating larger costs or lack of capacity at plant four.
The volume in the tentative schedule is too low to justify
production at two locations.

2. Production of labeled round tomatoes in #2% cans should be
discontinued and the volume transferred to coreless #2%
cans at plant three. Only six percent of the pack target
was allocated to rounds in the tentative schedule indicating
the round #25 cans are relatively uneccnomic packs compared
to the coreless. (The season pack target did not distinguish
between round and coreless for this particular product.)

3. Production of labeled #303's (round and coreless) should be
consolidated with choice #303's and produced in weeks two,
five, and six at management discretion. The total volume
in labeled #303's is too low to justify separate scheduling
in several different weeks.

L. Several minor consolidations of choice #303's were made.
These are high volume items and the cut-off of 2,000 cases
per week was too low.
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11.

12,

13.
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Production of coreless standard #303's should be consolidated
at plant four. The volume is not sufficient to justify
lines running at both plants.

Production of standard coreless in #10 cans should be
dropped at plant four and consolidated at plant three.

Diced tomatoes should be produced only during weeks two and
five. The week eight volume of 2,100 cases exceeds the arbi-
trary cut-off of 2,000 but is too small to justify a production
run in week eight,

Production of labeled stew tomatoes in #303 cans should be
consolidated with fancy stew tomatoes and scheduling left
to the discretion of management. However, round stew toma-
toes and coreless stew tomatoes can be scheduled separately.

Production of stew tomatoes in #10 cans should be con-
solidated with the production in #303 cans and scheduling
left to the discretion of management. This change is not
reflected in table 8-3. The nature of the canning line makes
this particular change of relatively small consequence in the
scheduling procedure.

Production of all grades of whole tomatoes packed in paste
or puree should be consolidated. Rounds should be canned at
plant four and the coreless varieties canned at plant three.

Paste production in #10 cans is necessary at plant three only
during week five when the availability of raw product is at
its peak. There is no reason to produce more than one grade
of paste at plant three for #10 cans.

Production of less than 2,000 cases a week of #10 paste
products at plant four, catsup products and #303 - eight-ounce
Sauces were consolidated with other grades frequently rather
than completely dropping that capacity requirement from the
schedule. These are minor changes that can be adjusted
throughout the season by management,

The production of appropriate quantities of 1.045 puree

in picnic cans, #10 sauce, #10 pizza sauce, and various
sizes of juice and tomato cocktail were assigned to week
one. (Week one had plenty of raw product and capacity as
the sum of the weights on its vectors in the final solution
of the master was only .138.) These products were in the
week one composite vector but at less than the 2,000 case
cut-off for scheduling. Several did not meet the pack tar-
get in the tentative schedule because they were in too many
weeks at a level of less than 2,000 cases and were dropped
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in'those weeks. Consequently, to insure that the minimum
production targets were met, these items were included in
the production schedule for week one.

The adjusted production schedule in table 8-3 can be used to fur-
nish lower bounds to the subprograms just as the original composite
vectors in table 8-2. The subproblems should be optimized with these
lower bounds using the expected prices for the season. This will
furnish the allocation of raw product to finished product and the
allocation of raw product to the appropriate plant as well as indicating
the appropriate blending activities. It will then be necessary for
management to exercise its discretion in scheduling those products as
indicated above. In some instances, it might be necessary to reduce the
production of a commodity if the total that will be produced during the
season is greater than the seasonal pack target. This final optimiza-
tion was not carried out for the full-scale tomato problem because of

the lack of time and computer facilities.
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Table 8-1. Final Subproblem Dimensions

Number Number Number of  Number of

Week of of Growver Input

Rows Columns Inputs Columns
1 66 445 20 90
2 150 786 35 155
3 162 834 47 203
4 171 877 56 246
179 899 64 268
6 173 877 58 246
7 170 866 55 235
8 159 821 4, 190
9 170 842 55 199

10 83 522 37 167




Table 8-2. Tentative Production Schedule by Week

Week Ten Master Maximum
Product Name 1 2 3 . 5 6 7 8 9 10 week _ ,Solution Pack
' totall/ Total Target
1. Choice
Round #2% 30.0 146.9 129.7 28.2 42.9 140.4 154.5 672.5 675 675
2. Choice
Coreless #2%
Plant 4 1.2 7.7 11.2 20.1
3. Choice
Coreless #2% 300 300
Plant 3 10.1 80.4 39.7 48.0 67.4 31.5 1.4 278.6
4. Labeled
Round #2% 17.3 8.4 4.3 30.0
5. Labeled
Coreless #2%
Plant 4 14.8 8.2 2.2 55.7 81.0 525 525
6. Labeled
Coreless #2% .
Plant 3 140.5 28.8 20.9 19.0 46.3 148.1 £12.7
7. Standard
Rounds #25 147.7 39.8 87.0 139.4 141.¢ 75.9 187.3 3.9 822.7 825 825
8. Standard
Coreless #2%
Plant 4 17.6 33.1 50.8
9., Standard Coreless
Coreless #2% 225 225
Plant 3 6.3 42.0 78.8  21.5 24.3 1.0 173.8
10. Choice i
Rounds #303 82.6 101.4 123.5 332.4 116.9 51.9 49.6 294.0 1152.3 1155 1155

11. Choice
Coreless #303
Plant 4 83.7 81.4 39.4 102.3 22,4 20.6 59.3 419.1

(continued)
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Table 8-2. (continued)
Week Ten Master Maximum
Product Name 1 2 3 4 5 6 7 8 9 10 week Solution Pack
total Total Target
12. Choice (419.1)
Coreless #303 825 825
Plant 3 118.6 116.7 9.3 129.7 7.4 21.1 402.8
13. Labeled
Rounds#303 26.4 10.8 8.1 45.3
14. Labeled
Coreless #303
Plant 4 26.5 13.5 10.6 1.5 2.6 .3 55.0 150 150
15. Labeled
Coreless#303
Plant 3 2.8 13.5 10.6 48.9
16. Standard
Round #303 63.6 111.1 115.0 €4.5 58.6 15.0 4L48.7 450 450
17. Standard
Coreless #303
Plant 4 6.3 6.3 1.2  66.4 80.2
18, Standard 150 150
Coreless #303
Plant 3 4.9 6.6 69.5
19. Choice
Round #10 181.4 69.2 168.8 230.1 213.3 165.4 328.8 4.3 1361.2 1367 1380
20. Choice
Coreless #10
Plant 4 74.7 101.3 24 .6 7.3 1.0 209.0
21. Choice
Coreless #10 1041 1050
Plant 3 41.5 206.0 67.8 175.7 107.4 212.6 14.6 825.6
22. Standard
Rounds #10 16.8 185.7 113.1 107.8 &£1.2 127.9 39.2 359.2 1031.0 1033 1050

(continued)
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Table 8-2. (continued)

Ten Master Maximum

Product Name 1 2 3 A 5 6 7 8 9 10 week  Solution Pack
total Total Target

23. Standard

Coreless #10

Plant 4 5.8 21.8 .6 28,
24 . Standard

Coreless #10

Plant 3 11.0 51.8 16.7 10.6 29.7 1.5 121.3
25. Round

Stew #303 10.5 107.1 121.5 34.4 21.4 112.3 407.
26. Coreless

Stew #303 162.2 41.4 30.2 16.6 2.4 12.0 264,
27. Labeled

Round Stew #303 32.8 7.2 40.
28. Labeled

Coreless

Stew #303 32.8 1.1 .9 34.
29. Round

Stew #10 23.9 9.4 8.1 .9 42,
30. Coreless

Stew #10 16.4 9.4 6.8 32.
31. Rounds

-1.06 Puree 8.6 12.8 12.3  34.5 61.
32. Coreless

~-1.06 Puree )

Plant 4 45.2 4L5.2
33. Coreless

1.06 Puree

Plant 3 41.6 5.7 12.2 211.2 270.5
34. Rounds

1.045 Puree 14.4 16.5 2.5 33.4

150 150

LD

N

675 675

(0]

O

75 75

o

N D D& DN Y

75 75

N

385 525

(continued)
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Table 8-2. (continued)
Week Ten Master Maximum
Product Name 1 2 3 4 5 6 7 8 9 10 week Solution Pack
total Total Target

35, Coreless (33.4)

1.045 Puree

Plant 4 14 .4 2.5 16.9 75 75
36. Coreless

1.045 Puree

Plant 3 7.6 SVAYA 2.5 24.5
37. Heavy Pack

Rounds 4.2 24.0 1.1 29.3
38, Heavy Pack

Coreless

Plant 4 4.2 1.1 5.3 70 75
39. Heavy Pack

Coreless

Plant 3 .5 24.0 3.7 7.2 35.4
40. Coreless

Diced #10 104.4 119.6 15.2 20.6 259.8 261 300
41. Paste Goz. 207.7 403.2 332.9 349.6 261.6 266.6 338.3 375.6 290.6 2846.0 2850 2850
42. Paste #303 91.4 10.2 382.0 154.6 11%.7 119.6 109.8 13.5 994.3 1000 1000
43. Paste 25%

#10 Plant 4 73.3 18.1 167.3  72.3 12.6 3.5 347.1
4l.. Paste 25% 400 400

#10 Plant 3 52.4 52.4
L5. Paste 26%

Plant 4 10.3 116.5 36.3 39.7 26.8 47.1 111.3 388.0
L6. Paste 26% 400 400

Plant 3 10.6 10.6
7. Paste 30%

Plant 4 L6.4  23.6 24,9 71.9  34.5 .3 3.9 122.1 327.6
48. Paste 30% 350 350

Plant 3 11.1 5.4 2.5 2.0 20.9

(continued)
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Table 8-2. (continued)

Week Ten Master Maximum
> 10 Week Solution Pack
Total Total Targebt

it
[0
~2
o
O

Product Name 1 2 3 4

L9. Paste 32%

Plant 4 34.7 16.1 23.2 29.8 31.6 135.3
50. Paste 32% 166 200

Plant 3 21.5 8.4 29.9
51. Paste Drums

26% 516 8 524, 527 3,000
52. Paste Drums

32% 3165 3304 1874 3498 2909 2320 3116 3390 23,576 23,635 25,000
53, Paste Drums

36% 1572 350 537 432 54 2,985 3,000 3,000
54. Puree 1.06

#303 26.8 1.4 31.2 4.9 64.3 64 75
55, Puree 1.045

#2% 10.0 213.6 223.6 225 225
56, Puree 1.06

#2% 1.7 86.0 107.2 5.4 74.8 " 12.4 10.0 1.4 298.9 300 300
57. Puree

Picnic 5.5 9.2 19.1 1.4 10.1 6.1 23.6  74.8 75 75
58, Puree 1.045

#10 Plant 4 5.6 57.5 37.6 5.7 33.1 1.9 49.5 16.4 7.2 188.4 402.9
59, Puree 1.045 600 600

#10 Plant 3 13.9 40.1  73.2 49.4 16.9 193.5
60. Puree 1.06

#10 Plant 4 89.0 63.4  54.2 1.8 338.3 55.0 601.6
61. Puree 1.06 825 825

#10 Plant 3 119.0 94.6 3.2 216.9
62. Puree 1.07 2.6 50.3 29.9 104.8 105 105
63. Fancy Catsup 137.1 8.2 77.8 9.1 103.5 40.5 71.7 447.8 450 450

(continued)
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Table 8-2. (continued)
Week Ten Master Maximum
Product Name 1 2 3 A 5 6 7 8 9 10 Week Solution Pack
Total Total Target
64. Extra Standard
Catsup 26.7 28.8 209.7 78.7 26. 4.5 15.0 58.3 449.3 450 450
65. Standard
Catsup 4.2 217.8 18.4 143.0 140. 224..2 748.3 750 750
66. Sauce #10 15.9 23.7 96.9 13.2 149.7 150 150
67. Chili Sauce 7.0 307.1 17.6 147.3 19. 498.3 500 500
68. Pizza Sauce 8.1 49.6 .7 19.2 17.3 103. .6 199.4 200 200
69. Concentrate /9.8  24.9 5.0 8.1 87.8 a8 100
70. Sauce A
Line 2 8oz. 22.7 8. 291.9 319.3
71. Sauce A } 850 850
Line 3 8oz. 1.7  12. 517.0 530.6
72. Sauce A
Line 2 #303 59.3 45. 105.0
73. Sauce A 375 375
Line 3 #303 7.5 8.2 175.5 60. 16.1 268.1
74. Sauce B
Line 2 8oz. 5.6 175.0 60.0 .7 142 08.8 482.2
75. Sauce B } 850 850
Line 3 8oz. 13.3 63.5 73.6 H0.1  82. 72.8 365.3
76. Sauce B
Line 2 #303 27.0 282.0 309.0
77. Sauce B 375 375
Line 3 #303 27.0  39.8 66.8
78. Sauce C
Line 2 8oz. 7.1 152.8 206.3 366.2
79, Sauce C 625 625
Line 3 8oz. 8.2 152.7 26.1 68.6 R55.5

(continued)
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Table 8-2. (continued)

Week Ten Master Maximum
Product Name 1 2 3 4 5 6 7 8 9 10 Week Solution Pack
Total Total Target
80, Sauce C
Line 2 #303 163.2 29.6 8.2 2.6 203.7
81. Sauce C 250 250
Line 3 #303 39.4 5.3 44.7
82, Juice 5%oz. 21.9 48,0 88.2 141.3 299.4 300 300
83. Juice #122 13.3 2.0 10.9 4.9 5.1 A 13.2  49.7 50 50
8. Juice #303 3.3 9.1 16.5 16.7 2.1  69.6 70 70
85, Juice 2T 27.3 6.0 4.1 78.5 7.5 26.1 149.4 150 150
86. Juice Lboz. 51,7 405.2 162.2 6.4 4.0 0.3 658.3 1298.2 1300 1300
87. Juice #10 4.8 17.0 6.8 20.0  48.7 49 50
88. Tomato
Cocktail .7 21.5 13.4 12.0 16.5 34.8 .9  99.7 100 100
89. Tomato
Cocktail A4boz. 36.6 8.0 19.2 17.2 66.9 51.2 199.1 200 200

1/Schedule totals are less than pack target maximum because of truncation in LP code.

E/Product was at intermediate level in final solution to master.

612



Table 8-3.

Final Production Schedule by Week

Week Adjusted Master
Name 2 3 4 5 6 7 8 9 10 Schedule Solution
Total Total
Whole Peel Tomatoes
Choice Round 2% 30 147 130 29 43 141 155 675 675
Choice Coreless 81 40 56 79 32 288 300
2L Plant 3 (48)  (é8)
Labeled Coreless 155 29 39 22 47 204, 496 525
2% Plant 3 (141) (30)  (19) (149)
Standard Round 2% 148 40 88 140 142 76 188 822 825
Standard Coreless 60 112 22 25 219 225
2% Plant 3 (42)  (79)
Choice Rounds #303 110 102 124 34 125 52 50 315 1,201 1115
(83) (333) (117) (294)
Choice Coreless 110 82 49 116 53 32 81 523
#303 Plant 4 (84) (40) (103) (24) (30) (60)
975
Choice Coreless 144, 117 145 406
#303 Plant 3 (119) (130)
Standard Round #303 A 112 116 85 59 436 450
Standard Coreless 131 131 150
#303 Plant 4 (67)

(continued)
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Table 8-3. (continued)
Veek Adjusted Master
Name 1 2 3 A 5 6 7 8 9 10 Schedule Solution
Total Total

Choice Round #10 182 70 169 230 213 165 . 328 1,357 1,366
Choice Coreless 75 102 0 177

#10 Plant 4 (25)

1,042

Choice Coreless 42 206 68 176 108 213 813

#10 Plant 3
Standard Rounds #10 186 114 108 82 128 40 360 1,018 1,033
Standard Coreless 58 38 30 126 150

#10 Plant 3 (52)  (16)
Stew Round #303 141 122 42 22 113 418

(Produce #10's (107) (35)

in Week 4) 7502/
Stew Coreless #303 163 42 A 269

(Produce #10's (31)

in Week 4)
Diced #10 105 120 235 261
Rounds Packed in 2/ 27 53 104 134

Paste or Puree #10
Coreless Packed in 58 55 A2 217 372 3908

Paste or Puree #10 (9) (27) (214)

Plant 3

(continued)
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Table 8-3. (continued)
Week Adjusted Master
Name 1 2 3 A 5 6 7 8 9 10 Schedule Solution
Total Total
Products
Paste 60%z. 228 403 333 350 262 267 339 376 291 2,849 2,850
Paste #303 92 382 155 114 120 110 973 1,000
Paste 25% #10 84 167 73 324,
Plant 4 (74)
400
Paste 25% #10 74, 74,
Plant 3 (53)
Paste 26% #10 117 37 40 (38) 48 112 392 400
27
Paste 30% #10 47 58) 25 72 35 122 359 350
(24
Paste 32% #10 35 45) 30 32 142 166
(24
Paste Drums 26% 516 516 527
Paste Drums 32% 3,166 3,304 1,874 3.498 2,908 2,320 3,116 3,391 23,577 23,635
Paste Drums 36% 1,572 330 537 432 2,871 3,000
Puree 1.06 #303 27 32 59 64,
Puree 1.045 #2% 214 214 225

(continued)
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Table 8-3. (continued)

Weelt

Adjusted Master

Name 1 2 3 A 5 6 7 8 9 10 Schedule Solution
Total Total

Puree 1.06 #2% 86 108 75 269 300
Puree 1.045 PIC 51l/ 24 75 75
Puree 1.045 #10 58 38 23 52 189 370

Plant 4 (50) 600
Puree 1.045 #10 40 74 50 164

Plant 3
Puree 1.06 #10 a0 64, 55 355 55 619

Plant 4 (339)

825

Puree 1.06 #10 120 95 215

Plant 3
Puree 1.07 #10 25 50 30 105 105
Fancy Catsup #10 142 78 104 46 72 442 450

(138) (41)

Extra Standard 56 210 88 27 59 440 450

Catsup #10 (29) (79)
Standard Catsup 217 143 141 240 741 750

#10 (225)
Sauce #10 531/ 0 97 150 150

(24)

(continued)
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Table 8-3. (continued)

Week Adjusted Master
Name 1 2 3 4 5 6 7 8 9 10 Schedule Solution
Total Total
Chili Sauce #10 308 148 456 500
Pizza Sauce #10  46Y 50 104, 200 200
Juice 5%oz. 22 48 88 142 300 300
Juice #12 50%/ 50 50
Juice #300 451/ 25 70 70
Juice 2T 28 78 27 133 150
Juice 4boz. 52 405 163 658 1,278 1,300
Juice #10 5ol/ 50 49
Cocktail #12 651/ 100 100
Cocktail #46 wr 37 67 35 52 200 200
Concentrate 50 25 75 88
Sauce A Line 2 202 292
8o3.
850
Sauce A Line 3 517 517

8o0z.

(continued)
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Table 8-3. (continued)
Week Adjusted Master
Name 1 2 3 4 5 6 7 8 10 Schedule Solution
Total Total
Sauce A Line 2 68 46 114
#303 (60)
375
Sauce A Line 3 179 61 240
#303 (176)
Sauce B.Line 2 175 60 151 99 485
8oz. (143)
850
Sauce B Line 3 64 73 60 95 73 365
8oz. (83)
Sauce B Line 2 36 282 318
#303 (27) 375
Sauce B Line 3 27 40 67
#303
Sauce C Line 2 153 207 350
8o0z.
625
Sauce C Line 3 166 26 69 261
8oz. (153)
Sauce C Line 2 164 30 194
#303
250
Sauce C Line 3 48 L8
#303 (40)

(footnotes next page)
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Table 8-3. (continued)

1/Production arbitrarily assigned to week 1.
2/Includes production of labeled rounds #303.

3/Includes production of labeled stew #303.

4/Includes all products packed in paste or puree.
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CHAPTER IX

CONCLUSIONS
Decomposition

The decomposition principle of linear programming has substan-
tial usefulness as a management tool under a variety of situations. Its
first and most obvious use is in obtaining solutions to linear program-
ming problems that afe too large to solve with available computer equip-
ment and codes. The nature of the program determines whether decompo-
sition is suitable as a means of solution for such problems.

In addition, some problems can be solved as one large linear
program, but can be solved more efficiently if decomposed. One set of
observations indicated that the running time for large decomposed prob-
lems goes up linearly (plus a fixed amount per problem) rather than as
the cube of the number of equations expected from the standard (unde-
composed) linear program.l/

In addition, some special structures of problems such as those which
can be handled as a set of transportation or weighted transportation
problems subject to a set of overall restrictions are very amenable to
decomposition and frequently offer computational advantages even if the

problem could be solved in a regular LP format. This is also true of

l/Hellerman, op. cit., p. 0.
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some problems where the parts are essentially independent of each other
except for a few overall restrictions. The structure of the problem and
its actual formulation are quite important as it is a general rule of
decomposition that the fewer restrictions in the master, the fewsr major
iterations necessary.

An important conceptual application of the decomposition principle
is as a management control tool for the centralized control of decen-
tralized operations. The most obvious example is a multiplant firm
where each plant management has developed a linear programming model
of its own operation. Plant management uses the linear programming model
of their plant to operate at maximum efficiency as they are responsible
for the leaslt-cost operation of the plant. Planning and goal setting
are the functions of the firm. The firm provides a master program to find
optimal solutions to the problem of utilizing the resources available to
all their plants. Firm restrictions could take a variety of forms, in-
cluding total capital availability, geographic limits, and raw product
restrictions.

Another use of the decomposition principle as a management control
tool is the utilization of facilities, capital or materials over time.
The subproblems could be independent (the simplest case) or related, for
example, the output of one period is used in the next.

A potential advantage of the decomposition approach is that the
discipline of modeling can be installed and maintained at various levels.
This approach will insure that appropriate models are available for the
plants or other organizational units at all times. The models will be

available for the plant's own use as well as for the use of the firm.
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It is not necessary to use the plant models or other subproblems only

in conjunction with the full model of the entire firm. Plant manage-
ment and analysts can use the models at any time to investigate proposed
changes in technology and resource utilization to improve plant operations.
This includes the extensive application of parametric programming and
cost ranging on the individual models if necessary. These tools cannot
generally be applied to the solution of the decomposed problem. This
capability coupled with the knowledge of the analyst of specialized tech-
nology of the plant and other local conditions should result in improve-
ments to operations at individual plants that would bte missed at higher
levels.

There can be drawbacks to the use of decomposition rather than
ordinary iinear programming or other types of solution methods to large-
scale preblems. It is not a panacea for solving all large LP problems
as it can take longer to solve a poorly formulated decomposition pro-
gram than it would by a standard linear program. Problems that are to
be solved by decomposition should be formulated with the computation
procedure in mind. This requires consideration of both the problem and
the characteristics and capacities of the particular computer programs
to be used.

Post—optional analysis of the solution to the original problem is
generally not available (although the master and each subproblem can be
analyzed independently). In some applications, the information obtained

from cost ranging and right-hand side ranging is used extensively.
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Problem Formulation and Computation Procedures

Decomposition provides a workable method for solving large linear
programming problems. Because of the size and probable complexity of
problems for which decomposition-is appropriate, preliminary analysis of
the problem followed by careful model building is required. Knowledge
of both the problem and the computer algorithms by the analyst is a
necessity as each problem has unique characteristics and the current
state of the art is such that manual intervention (in computerized
procedures) will frequently speed up the solution process.

In general, the analyst should attempt to hold the number of
constraints in the mastzr to a minimum even if it means adding to the
number of rows in the subproblems as the number of major itsrations
increases with the number of master constraints.

When formulating subproblems, consideration should be given to
the ccmputational efficiencies of ﬁhe computer programs with respect to
such things as scaling and specialized algorithms available.

Knowledge about the problem or previous solutions to all or part
of the problem will frequently allow the analyst to submit trial pro-
posals (subproblem solutions) initially or at intermediate stages, which
will reduce the total computation time required.

Knowledge of the problem and experience with the problem will aid
the analyst in answering such questions as whether the subproblems should
be optimized at each major iteration or whether computation should be
terminated after a fixed number of iterations. Should solutions from

one, all, or several subproblems be obtained during each major iteration?
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Should more than one solution be obtained from a subproblem during a
major iteration? Should the decomposed problem be optimized or should
computations terminate at a given percentage of the upper bound? Each
problem is different, and comprehensive rules are not yet available
for the above and other procedural questions. Consequently the judge-

ment of the analyst is required.

Applications

Linear programming including the decomposition principle provides
great promise for applications in fruit and vegetable processing. A4s-
signment of raw product to the optimum finished product is a very impor-
tant application that should result in major increases in total yields
of finished products. Increases in yields through linear programming
have been demonstrated in the past in areas such as meal packing, flour
milling and in the similar application area of o0il refining. However,
the relative increase in finished product yields should be greater in
fruit and vegetable processing. The finished product is not perishable
like meat or even flour, so that relatively uneconomic assignments do
not have to be made in response to short term or seasonal supply-demand
imbalances. For example, the tomato pack is for a one year period and
takes place over about ten weeks at a given location. If the optimal
raw products for making a particular finished good comes from a single
farm during a one week period, with sufficient plant capacity that raw
product can all be assigned to that specific finished good and produced
for distribution over the coming year. The maximum yield possible for
the year is attained. This is, of course, impossible with a perishable

product such as meat.
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In addition, the perishability of the raw product forces the proc-
essing firm and the grower into a closer relationship than, for example,
the wheat grower and the flour miller. The processor can consequently
exert greater influence on the expected characteristics of the raw prod-
uct. Linear programming models provide a tool for the processor to de-
termine what characteristics are needed throughout the season to optimally
utilize the plant while fulfilling the pack target. He can then attempt
to obtain raw products with these characteristics.

Linear programming can also provide a tool to aid in scheduling a
plant to get the maximum throughput or the most profitable level of
throughput during the seasonal peak in availability of raw product. The
latter was demonstrated in the tomato study. If the most profitable
level of throughput is less than the quantity of raw product available,
then the technique of linear programming can aid management in the
selection of which available lots of raw product to purchase or if the
raw product has been contracted in advance, which lots to process and
which lots should be disposed of because they are uneconomical to process.

Another application is the evaluation of different methods of proc-
essing with the same or with different kinds of equipment. An example
in the tomato study was the determination of whether tomatoes should be
selected for canning before peeling or if all tomatoes should be peeled.
A similar example was the inclusion of two types of peeling equipment in
the moael to determine which should be used, and when both were used
which lots of tomatoes to peel on each type.

Linear programming can determine the proper blends of lots of raw

product such as peeling tomatoes or other types of raw product to
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minimize preparation costs. One specific application in this study is
the increase in yields through the blending of solids for the best
operating conditions and best total yields.

A fifth application of linear programming for fruit and vegetable
processing firms is the determination of equipment requirements. In
particular, it can be used to find bottlenecks within the plant and to
evaluate what costs are being incurred by operating with the existing
equipment. It can be used to evaluate proposed cavital expenditures for
new equipment by changing the restrictions on the plant capacity or the
elements within the model which relate to the productivity of a given
piece of equipment. |

Linear programming can be used to evaluate the type and quantity of
raw products in terms of plant capacity aﬁd in terms of the sales target.
It can be used to evaluate expected changes in raw product quality or ex-
pected price changes of raw products to aid in changing production targets
for the year. It can be used to aid in evaluating proposed bids for raw
product and to aid in determining what the characteristics of the raw
products are that would be most desirable to get into the firm's mix of
raw product. That is, it can be used to answer the questions: How does
our raw product supply fit in terms of our sales target and our plant
capacity? Should we change our sales targets or should we attempt to
change the amount or type of raw product that we buy? Should we change

the price we pay for raw products or should we change our plant capacity?
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The Tomato Model

A large number of activities and restrictions were included in
this model for testing and demonstrating specific applications. On
analysis it was determined that a large number of blending activities
were not needed for allocation or scheduling in either the whole peel
operation or for product cperations. There were many activities included
originally in the model to maintain the identity of the tomatoes and
their characteristics. However, there were not a large number of blend-
ing activities that actually had a major impact on the solution. Unless
one can direct disposition of all the specific lots of tomatoes (which
is very difficult considering actual yard operations), it is probably
sufficient to have just enough blending activities to give general guide
lines of what the optimum production schedule would be. Lots of toma-
toes could generally be classified based on their characteristics for
input to groups of finished products each week. This is particularly
true in the case of peeling tomatoes. In the configuration of the model,
blending of lots of different percentages of choice peelers did not
occur except to meet the restrictions of the model.

There were too many finished products included in the model. More
products should have been combined so that the minimum pack target of any
one product grouping would have been equal to a larger quantity such as
one week's production on its line. A particular problem in using linear
programming to schedule by week develops if the volume of any given com-
modity is too small. This causes the model to schedule uneconomic runs

in each of several weeks. It would be advantageous to have enough volume
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in each group of finished products so that the model could allocate the
raw product to the group. FEach week one or two of the finished products
are scheduled to be produced instead of having several very short procd-
uction runs. This means that some other method is used to do the sched-
uwling of the finished product within each group. The linear programming
model should be used to allocate the lots of raw product to the products
from that particular group of the finished goods each week.

In general, the use of the tomato plant model for planning and
operations purposes requires that it be solved at least two and possibly
three times a year. It should bte solved once prior to finalization of
acreage and variety to determine what types of raw tomatoes are desired.
It should be solved once during the growing season to develop a production
plan and a tentative schedule after the size and nature of the crop be-
comes evident. It should be solved a third time during the packing sea-
son if the expected characteristics of the fruit or expected selling
prices change substantially.

In addition to the full solutions outlined above, the solutions of
subprograms or parts of the matrix might be necessary in case of machine
breakdown during the middle of the packing season. Other reasons for
resolving the subproblems would include the raw product characteristics
being changed drastically because of a damaging rain storm or a long
delay in getting crops out of the fields. A large order for specific
commodity obtained during the packing season could be cause for resolving
the problem. It would be advantageous in some instances to resolve the
model to investigate how to bid on a sale of a large amount of a specific
commodity not in the original pack target if the sale can be made during

the packing season.
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