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Evaluating environmental policies under
uncertainty through application of robust

nonlinear programming

Graeme J. Doole and David J. Pannell†

Environmental policy evaluation is characterised by a paucity of information. The
novel technique of robust mathematical programming is introduced as a means to
proactively account for this uncertainty in policy analysis. The procedure allows
identification of expected bounds on the range of abatement costs associated with
environmental policy. It also has the advantage of not limiting conclusions to reali-
sations of specific point estimates or probability distributions. Empirical insights are
provided in an application to a New Zealand inland lake threatened by nitrate pol-
lution from dairy farming. Overall, this novel framework is demonstrated to have
several key advantages, including explicit treatment of severe uncertainty, capacity
to bound the range of expected abatement costs accruing to a given policy instru-
ment, and the opportunity to identify robust plans that are immune to parametric
variation.

Key words: nonpoint pollution, policy evaluation, water quality.

1. Introduction

Pollution of the world’s aquatic environments is now primarily attributable
to nonpoint pollution (United Nations Environment Program 2008) as point
sources are generally more easily identified and regulated. Eutrophication of
lakes and rivers following nutrient pollution is widespread, with more than
three-quarters of fresh water bodies in the United States of America exceed-
ing safe thresholds for total nitrogen and phosphorus, imposing a cost of
around 2.2 billion U.S. dollars annually (Dodds et al. 2009). Efficient regula-
tion of nonpoint pollution is often problematic given the ambiguity that
characterises the formulation of policy instruments. This uncertainty stems
from the diffuse nature of pollution, high number of polluters, nonmarket
characteristics of most regulatory benefits, presence of complex production
relationships (e.g. factor substitution), and the response of economic agents
to market and production uncertainty.
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There is a substantial literature exploring the implications of risk for non-
point pollution policy (Kampas and White 2004). However, the definition of
specific probability distributions for model parameters is difficult when mod-
elling complex systems, as (i) adequate information may be unavailable to
guide their estimation, (ii) additional data can be costly to obtain, (iii) infor-
mation gathering can be complicated by measurement error, and (iv) future
values (e.g. for market prices) are often difficult to estimate (Doole and King-
well 2010). Indeed, the evaluation of nonpoint pollution policies is character-
ised by uncertainty that can raise doubts about the validity of using standard
expected-value analysis considering risk (Shaw and Woodward 2008).
Mathematical programming (MP) is widely used for policy analysis given

its capacity to optimise; its ability to provide a consistent, coherent, and flexi-
ble framework for describing systems; and its ability to efficiently solve large,
complex problems. Inclusion of risk aversion in policy models has long been
recognised as an important means to inject greater realism and dampen the
elastic behaviour of linear optimisation frameworks (Hazell and Norton
1986). Indeed, applications of MP incorporating this feature, especially using
MOTAD (Minimisation of the Total Absolute Deviation) and target
MOTAD formulations, have been numerous over the last 30 years (e.g. Ade-
sina and Ouattara 2000). Economists have also widely applied the methods of
stochastic programming (Rae 1971; Kingwell et al. 1993), chance-constrained
programming (Zhu et al. 1994), and structured sensitivity analysis (Pannell
1997) to gain insight into the impacts of stochastic features on decision prob-
lems when distributional information is available. Nevertheless, the treatment
of pure uncertainty—where the distribution of key parameters incorporated
in the decision model is unknown—has not been considered in empirical
policy models given a lack of a suitable methodological framework.
Hansen and Sargent (2001) introduced robust control as an elegant means

to consider ambiguity in conceptual economic models. This approach was
subsequently adopted in the analysis of natural resource problems, with
applications to water management (Roseta-Palma and Xepapadeas 2004)
and species preservation (Woodward and Shaw 2008). Robust control is a
powerful technique for small and weakly nonlinear models, particularly those
typically used by economic theorists. However, this method does not natu-
rally extend to large empirical models of the type generally used for environ-
mental policy analysis. Thus, ‘‘development of appropriate frameworks for
decision making in light of [ambiguity] is an important challenge to econo-
mists today’’ (Woodward and Shaw 2008, p. 603).
In the light of this challenge, this study presents the first empirical applica-

tion of the robust nonlinear programming (RNP) framework introduced by
Doole and Kingwell (2010), which proactively deals with ambiguity. RNP
uses closed intervals to describe the variation of uncertain coefficients. Each
outcome is assumed to occur with the same probability, as there is insufficient
reason to believe one result is more likely than another in a state of uncer-
tainty (Jaynes 2003). RNP offers several benefits for environmental policy

470 G.J. Doole and D.J. Pannell

� 2011 The Authors
AJARE � 2011 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



evaluation, including the representation of uncertainty aversion, solution
using standard MP algorithms, and capacity to represent complex systems in
models incorporating thousands of equations. The utility of the procedure is
assessed in the context of a case study concerning the mitigation of nitrate
pollution of a New Zealand inland lake. Economic analysis of this problem is
pertinent because factor substitution and manipulation of the productive
characteristics of livestock can potentially offset abatement costs associated
with regulation.
The paper is structured as follows. Section 2 describes the modelling frame-

work. Section 3 describes the model used to evaluate various policy options
for the case study. Section 4 presents an empirical application of this model.
Section 5 concludes the paper.

2. Robust nonlinear programming

This section presents a concise description of RNP. More information is
available in the study by Doole and Kingwell (2010). A benefit of this formu-
lation is that any number of coefficients may be defined as uncertain in an
optimisation problem.
Suppose the decision-maker knows that the values of uncertain parameters

occur in a closed interval, C = [cL, cU], where cL and cU are respectively the
lower and upper bounds of the interval, without further information on the
probability distribution.
A generic nonlinear programming (NLP) problem can be defined:

maxx J ¼ pðxÞ, subject to g(x) £ 0 and x ‡ 0, where p(x) is a profit function
and g(x) denotes the constraint functions. Assume the functions g(x) and p(x)
are uncertain and hence described by closed intervals. The midpoint of such
intervals is CM = (cL + cU)/2, while their range is CR = (cU ) cL)/2. This
definition of the range is thus half of its conventional magnitude, in line with
its typical use in interval mathematics (e.g. Alefeld and Herzberger 1983).
Doole and Kingwell (2010) outline that the solution may be identified

through (RNP): maxx J ¼ ðpM0 � XLpR0 Þxþ ðpM0 þ XUpR0 Þx, subject to
ðgMðxÞþ KgRðxÞÞ � 0 and x ‡ 0, where X and K are exogenous trade-off
parameters (X = [0, 1] and K = [0, 1]) and the {L, U} superscripts represent
variations of the trade-off parameters defined for the objective function. The
objective function is linear additive in the case of parametric uncertainty.
However, the retention of the both lower and upper bounds in the objective
function in RNP ensures the identification of a nondominated solution to the
maximisation problem (Wu 2008) and provides the range of the objective
function for any given optimal solution.
Trade-off parameters specify the proportion of the variation in the uncer-

tain parameter (i.e. the difference between the midpoint and the range) that is
considered in the determination of the robust plan. Note that the addition of
the range to the midpoint in the less-than constraint in RNP is consistent with
maintaining feasibility if parameters vary within their closed interval. This is
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performed to the degree determined by the trade-off parameter. For example,
the plan is robust to all expected outcomes if the trade-off parameter is set to
unity. Trade-off parameters are a simple measure of uncertainty aversion as
they represent the degree of conservatism that a decision-maker wishes to
consider in formulating the optimal plan.
A pedagogical example of a deterministic MP problem is: maxx J ¼

3x1 � 2:25x2, subject to 1x1 ) 0.6x2 £ 10, x1 ‡ 0 and x2 £ 0. Assume that all
coefficients are subject to bounded uncertainty, with the interval-valued
programming problem stated as: maxx J ¼ ½2; 4�x1 þ ½�3:5;�1�x2, subject to
[0.9, 1.1]x1 + [ )0.7, )0.5]x2 £ 10, x1 ‡ 0 and x2 £ 0.
Transcription to the RNP formulation requires calculation of the midpoint

and range for each interval. The first interval [2,4] in the objective function
has CM = 3 and CR = 1. The second interval [-3.5,-1] in the objective func-
tion has CM = )2.25 and CR = 1.25. The first interval [0.9,1.1] in the con-
straint has CM = 1 and CR = 0.1. The second interval [)0.7,)0.5] in the
constraint has CM = )0.6 and CR = 0.1. This yields the RNP formula-
tion as: maxx J ¼ ð3� X1 � 1Þx1 þ ð3þ X1 � 1Þx1 þ ð�2:25� X2 � 1:25Þx2 þ
ð�2:25þ X2 � 1:25Þx2, subject to (1 + K1 Æ 0.1)x1 ) (0.6 + K2 Æ 0.1)x2 £ 10,
x1 ‡ 0 and x2 £ 0. Note how the negative and positive differences from the
midpoint are retained in the objective function to recover the bounds of this
function in the optimal solution.
Inherent conservativeness is justified in a state of uncertainty (Woodward

and Shaw 2008). This framework simultaneously considers the lower and
upper bounds between which all outcomes of the objective function are
expected to lie during the optimisation, for given values of X and K. The
worst-case (minimax) outcome is the lower bound of the objective function
when all trade-off parameters are set to unity and the constraint functions
are positive.1 The best-case (maximax) outcome or other situations where K
are negative (i.e. constraint parameters are estimated to fall between the
midpoint and their most optimistic bound) are not considered as this opti-
mistic approach is seldom justified in a state of uncertainty (Hansen and
Sargent 2001). The possibility of irreversible environmental degradation
further motivates the adoption of a conservative view (Pindyck 2007). The
formulation of constraint functions in RNP ensures that the robust plan
remains feasible in the light of any variability when K = 1. However, the
worst-case approach can be relaxed through changing the value of trade-off
parameters away from unity. For example, the model in which uncertain
variables are defined as their medians is recovered when K = X = 0. (This
is called the midpoint model throughout the rest of the paper for simplicity.)
In a geometric sense, these trade-off parameters determine the placement of

1 Whether ranges are added to or subtracted from the midpoint for the constraint functions
depends on their sign and the direction of the constraint. See Doole and Kingwell (2010) for
more information and examples. Also, see Appendix S1 for a discussion in the context of the
case study application.
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the constraints that delineate the feasible region between their lower and
upper bounds.
Trade-off parameters should be estimated to provide a robust plan that

meets the requirements of decision-makers. Indeed, results in Sections 4.4
and 4.5 show that the use of a trade-off parameter of unity for all uncertain
coefficients in the empirical model incurs a substantial cost. This highlights
the need to estimate trade-off parameters using the best information possible.
Various means may be used to estimate trade-off parameter values:

1. Search procedures can be applied to identify the values of the trade-off
parameter which calibrate model solutions to reported behaviour. For
example, the degree of uncertainty considered by farmers with respect to
pasture production is identified in this paper through the use of a global
search metaheuristic (Section 3.3).

2. Model solutions may be generated for a range of values of the trade-off
parameter(s). The optimal solution may then be chosen by a decision-
maker (Candler and Boeljhe 1977; Weersink et al. 2002).

3. Worst-case analysis is performed where trade-off parameters are set to
unity. This approach is justified when a high level of conservatism is war-
ranted (Hansen and Sargent 2001; Woodward and Shaw 2008).

4. Trade-off parameters may be subjectively elicited through surveys or focus
groups. These should focus on the identification of what proportion of
outcomes that decision-makers want to ensure against when robust solu-
tions are implemented. (For example, for what proportion of outcomes
should we ensure that the optimal plan does not violate the target for the
level of nitrate leaching?) These proportions directly yield the values of the
trade-off parameters.

These methods are based, in part, on those strategies used to estimate risk
aversion parameters listed by McCarl and Spreen (2007). The numerical
application presented in this paper utilises the first three of these methods.
The developed method is a practical and useful extension of classical

methods of considering parametric variation in economic models. Chance-
constrained programming involves the definition of probability distribu-
tions for constraint coefficients and allows the infeasibility of these restric-
tions to be tolerated with some probability (Prekopa 1995). RNP is
conceptually similar in that the model involves specification of the propor-
tion of total variation in the uncertain parameter that is insured against in
the identification of an optimal solution. However, RNP has a number of
distinct benefits. First, the definition of uncertainty using a bounded set
with RNP offsets the need to estimate a more detailed, but potentially inac-
curate, probability distribution. Second, the solution of models involving
chance constraints is typically difficult, as it is rare for problems to be both
convex and possess probabilities that can be efficiently computed (Nemirov-
ski and Shapiro 2006). In contrast, the solution of RNP models is straight-
forward.
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A common alternative approach to modelling risk in decision models is to
define conservative estimates of coefficients (Rae 1971; McCarl et al. 1977;
McCarl and Spreen 2007). RNP formalises this approach, while also incorpo-
rating the degree of parametric uncertainty that a decision-maker wishes to be
insured against in the identification of robust plans. Moreover, RNP differs
from both chance-constrained programming and the definition of conservative
estimates through simultaneous consideration of both the lower and upper
bounds of the objective function during solution through employment of the
concept of nondominated solutions from multiobjective programming (Doole
and Kingwell 2010). Minimisation of total absolute deviations (MOTAD)
modelling has been broadly applied in agricultural economics as a linear
approximation of expected value-variance modelling (McCarl and Spreen
2007). MOTAD in its typical form involves identification of an optimal solu-
tion that restricts the deviation of objective function values from their expected
value (McCarl and Onal 1989). RNP is highly disparate from the MOTAD
formulation, as it considers bounded uncertainty rather than the definition of
more detailed probability distributions, incorporates the definition of uncer-
tain coefficients in the constraints, and identifies a nondominated solution
using both lower and upper bounds of the objective function.

3. Application

3.1. Nitrate pollution of New Zealand freshwater resources

The New Zealand dairy industry is the country’s dominant agricultural indus-
try, with dairy products valued at $7.5 billion comprising 21 per cent of total
merchandise exports in the year ending June 2007 (Statistics New Zealand,
2007). The high prices received for dairy products over the last decade have
promoted significant intensification of what historically was a low-input,
pasture-based system. However, intensification has led to greater nitrate
leaching and subsequent nutrient pollution of freshwater bodies (see Mona-
ghan et al. (2007) and references therein).
Lakes Karapiro and Arapuni are hydroelectric dams on the Waikato River,

New Zealand’s longest watercourse. (These lakes are referred to collectively as
‘the lake’ from here onwards.) As well as electricity generation, these lakes are
important for recreation and tourism. Algal blooms have been observed in the
lakes in recent years, as nitrate discharges from dairy farms in the surrounding
catchment have decreased water quality (Environment Waikato, 2008). Dairy
farming currently covers 42 938 ha of the catchment for these two lakes, nearly
three-quarters of agricultural land in this area. Accordingly, there is a need for
the regional environmental agency to establish appropriate regulatory tools to
manage nutrient pollution. This analysis contributes to this goal through the
use of RNP to identify the potential costs of emission standards. This study is
also of international relevance given the increasing global awareness of the
environmental impacts of dairy production, especially in China and India.
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The parameters subject to uncertainty in this model are selected based on
data availability, critical importance to the problem, discussions with experi-
enced modellers of New Zealand dairy farming systems, previous modelling
work, goals of the application, and a priori computation of sensitivity indices
(Pannell 1997) to highlight the correlation between model output and pertur-
bations of different coefficients. RNP is applied to proactively deal with
uncertainty surrounding nitrate leaching, variable costs, and pasture produc-
tion (see Section 3.3).

3.2. Model description

This section presents an overview of the RNP model used in the case study. It
extends the individual farm model used by Doole (2010) to the catchment
scale and to represent uncertainty. A brief description is provided here, with
more information presented in Appendix S1.
The equilibrium model describes a management year consisting of 26 fort-

nightly periods. Cows consume grazed pasture and supplementary feeds: con-
centrates, grass silage and maize silage. Farm area in each period is grazed,
harvested for grass silage, or rested for future use within a rotational grazing
system. Grazing or silage production can only occur between pasture biomass
thresholds that ensure the maintenance of seasonal feed quality and maximise
opportunities for subsequent regrowth. Moreover, silage can only be pro-
duced at certain times of the year when pasture supply is excess to livestock
requirements. Nitrogen fertiliser application increases pasture biomass in
subsequent periods.
The supply of metabolisable energy (ME) for allocation between livestock

classes is the sum of all feed sources available in a given period. Feed pools
are allocated between livestock classes, each of which requires a given level of
ME in each period. There are 216 different sets of cow attributes that may be
possessed by individual cows. Each has different temporal energy demands
given disparity in calving date, cull status, lactation length and productivity.
Feed intake constraints ensure that cows do not consume unrealistic amounts
of energy.
Total nitrate load from a given farm is defined as a function of nitrogen

fertiliser application, livestock intensity and maize silage consumption. Stock-
ing rate is the primary driver of nitrate leaching in New Zealand dairy farming
systems as grazed pastures typically provide more nitrogen than cows require
and this is expelled in urine (Monaghan et al. 2007). Nitrogen fertiliser plays
an indirect role, increasing pasture production and hence stocking rate. In con-
trast, the lowN content of maize silage decreases the N excreted by cows.
The objective function defines the maximisation of farm profit. Total reve-

nue is earned from the sale of milk, culled cows and excess calves. Total cost
is the sum of variable costs incurred for each cow, fixed costs incurred per
hectare of farm area, cost of silage production, cost of maize silage, cost of
concentrates and cost of nitrogen fertiliser.
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3.3. Parameter values

Parameter values are taken from scientific publications, expert opinion and
survey data. Key sources are summarised by Doole (2010).
There is no experimental information regarding pasture production and its

variability in the study region. Also, there is no available information regard-
ing the distribution of variable costs or nitrate leaching. For these reasons,
the uncertain coefficients treated in this paper describe pasture production,
nitrate leaching and variable costs. Of course, with sufficient investment of
resources, detailed distributions could be estimated for all three variables.
The paper is about how modellers might cope in the absence of such
resources. Its value is reinforced in that the definition of more specific distri-
butions can limit the relevance of model output.
The OVERSEER model (Monaghan et al. 2007) is used to estimate leach-

ate burdens for multiple combinations of nitrogen fertiliser, stocking rate
and maize silage for different soil types in the study region. OVERSEER
output is regressed to form a metamodel for each soil type using SHAZAM
econometric software (Whistler et al. 2004). Pasture production for
1986–2006 is determined using meteorological data from NZCD (2008) and
a variant of the model described by Moir et al. (2000). This process provides
much guidance to the temporal distribution of pasture production. However,
bounded sets are still used to describe the uncertainty inherent in estimating
pasture production given intrinsic measurement and modelling errors and a
lack of suitable validation data. Variable costs are estimated for a series of
years using positive mathematical programming (PMP) (Henseler et al.
2009). These are characterised as ambiguous parameters given the use of
PMP.
The lower and upper bounds for each coefficient are determined using a

structured system of generation and review. Estimates for each parameter are
first generated using the empirical processes outlined in the previous para-
graph. The final estimates are then broadened to account for errors inherent
in the estimation process:

1. The lower and upper bounds were decreased and increased by 10 per cent,
respectively, for nitrate leaching. This low rate reflected the extensive vali-
dation of the OVERSEER model (Monaghan etal. 2007).

2. The lower and upper bounds were decreased and increased by 25 per cent,
respectively, for pasture production. This high rate is motivated by the
lack of data for the pasture model that complicated validation, measure-
ment error associated with the climate inputs, and error because of the
inherent inability of the pasture growth model to describe reality, espe-
cially as it is not process-based.

3. The lower and upper bounds were decreased and increased by 25 per cent,
respectively, for the parameters of the variable cost function. This high
rate is motivated by the uncertainty that characterises the estimation of
cost functions using PMP (Henseler etal. 2009).
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The suitability of the estimated lower and upper bounds for all model coef-
ficients were then discussed with experienced agronomists and modellers and
updated where appropriate. The rates at which bounds were inflated reflect
subjective opinion. However, they provide the best available information
regarding how much parametric variation should be considered. The empiri-
cal estimation of data was important to inform this process and guide discus-
sion with agronomists and modellers. It is important to consider that the use
of very disparate bounds can complicate the application of RNP as they can
(i) reduce the information obtained from the resultant bounds within which
the values of the objective function are expected to lie and (ii) lead to infeasi-
bility in the constraint set.
Trade-off parameters for the pollution meta-model and quadratic cost

function are set to unity. This indicates that maximum levels of nitrate leach-
ing and variable costs associated with agricultural production are considered
in the formulation of the optimal plan. Conservative estimates of these ele-
ments may often be appropriate for four reasons:

1. There is broad uncertainty surrounding both variable costs and nitrate
leaching, and lower values of uncertainty aversion would disregard this
ambiguity in the optimisation.

2. Conservativeness is justified in a state of uncertainty (Woodward and
Shaw 2008).

3. The focus of the study is estimating the potential range of abatement
costs.

4. A worst-case approach could be taken with respect to environmental deg-
radation (i.e. nitrate leaching) given the possibility of irreversible environ-
mental degradation (Pindyck 2007).

However, a decision-maker may prefer a lower level of conservatism in
some circumstances. Thus, Section 4.4 presents the implications of variation
in the trade-off parameters for leaching load and quadratic variable costs.
The trade-off parameter for pasture production requires careful estima-

tion, as high values lead to unrealistic management plans incorporating high
levels of supplementary feed or infeasible models. It is therefore estimated
using a combinatorial search algorithm. The trade-off parameter for pasture
production is treated as an unknown, and a simulated-annealing procedure
(Doole and Pannell 2008) is coded in GAMS Distribution 22.8 (Brooke
et al. 2008)2 to identify that value which minimises the absolute difference
between observed and optimal levels of herd size and milk production. This
identifies a value consistent with historical management and also reduces
some of the burden placed on the quadratic cost function as a calibration
instrument. The estimated trade-off parameter for pasture production is 0.8.

2 A combinatorial search algorithm is required since the presence of numerous logical condi-
tions in the complex constraint set of the model precludes the identification of this parameter
using MP in GAMS.
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This signifies that the average producer constructs their management plan
such that it would be expected to remain feasible in 8 years of each decade.
A value of zero indicates that the range of uncertain coefficients is not con-
sidered at all in the optimisation, while values between zero and 0.8 indicate
consideration of less ambiguity than the base case. The impacts of varying
this parameter are explored in Section 4.4 given that a different value may
be appropriate in some situations.

3.4. Solution of model with robust nonlinear programming

The RNP problem contains 4349 variables and 6407 constraints. The corre-
sponding GAMS program is available from the authors on request.
The base solution contains output for the standard parameter values used

in the model. Environment Waikato currently uses emission controls else-
where to improve water quality in a lake. So, the primary focus of the study is
exploring the abatement cost of emission standards defined between 0 and 50
per cent of current levels under different circumstances. The model is used to
investigate a number of scenarios:

1. Abatement costs are determined for the base case.
2. The impact of decreasing/increasing the milk price by $500/t is explored.
3. The implications of defining trade-off parameters for pasture growth of

K = {0, 0.5, 0.8, 1} are investigated.
4. Monte Carlo simulation is used to explore the implications of subsequent

variability in annual pasture growth for the profitability of cow herd com-
positions formulated through RNP. Hedging against this source of uncer-
tainty is costly because supplementary feeding is required. For each level
of the trade-off parameter listed for the third scenario, this involves the
following:

a. Optimising the model.
b. Fixing cow herds at their optimal levels.
c. Re-optimising the remaining decision variables for 100 scenarios in

which pasture growth in each period is represented as a uniform ran-
dom variable defined between the lower and upper bounds identified
using the process described in Section 3.3.

4. Results and discussion

4.1. Base solution

The base solution closely describes production behaviour in the study region.
The optimal stocking rate is 2.69 cows/ha, 2 per cent higher than the reported
2006/07 stocking rate. Milk production in the optimal solution is 334 kg/
cow, 5 per cent higher than mean New Zealand production over 2003–2008
(Livestock Improvement Corporation, 2008). Production results in nitrate
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leaching of 33.1 kg N/ha/year, a typical load observed in New Zealand dairy
systems (Monaghan et al. 2007). Hence, the model provides a sufficient
description of reality to allow useful insight into the value of alternative envi-
ronmental policies.

4.2. Restriction of nitrate emissions

The optimal stocking rate and the level of nitrogen fertilisation decrease line-
arly with the stringency of the emission standards (Table 1). Moreover,
although low-protein feeds can decrease leaching load, their overall impact is
insufficient to warrant significant factor substitution to increase environmen-
tal mitigation. Model output also demonstrates that milk production does
not improve substantially under simulated scenarios. Milk production varies,
but is never more than 3 per cent of its base value (Table 1). Furthermore,
lactation length is never adjusted by more than 2 per cent of its standard mag-
nitude (data not reported). Thus, the best response of producers to emission
standards is to unequivocally decrease production intensity without manipu-
lating per cow production, at least given the agronomic, economic and techni-
cal reality described by the model.
The interval-valued function delineating the trade-off between optimal

profit and the stringency of emission standards is shown in Figure 1. The
bounded profit function represents all expected realisations of profit for a
given set of trade-off parameter values. In contrast to a stochastic MP model,
no probabilistic statement can be made regarding the realisation of a given
value, apart from membership in the set of expected outcomes. This arises
directly from the description of input data using bounded uncertainty sets,
rather than standard probability measures.
The trade-off between environmental improvement and producer profit is

not large, especially for decreases in nitrate leaching below 30 per cent. For
example, a 25 per cent decrease in nitrate leaching lowers optimal profit from
[$1211, $1478] to [$1117, $1382] or by 7.8–12.4 per cent (Figure 1). However,

Table 1 Key model output for proportional reductions in nitrate leaching load

N leaching
reduction (%)

Profit range
($/ha)

Stocking rate
(cows/ha)

N fertiliser
(kg N/ha/year)

Maize silage
(kg/ha)

Milk solids
production (kg/cow)

0 [1211, 1578] 2.69 120 132 334
5 [1210, 1557] 2.62 106 156 333
10 [1195, 1523] 2.54 92 160 332
15 [1178, 1484] 2.45 80 155 330
20 [1154, 1442] 2.38 65 149 327
25 [1117, 1382] 2.28 54 144 325
30 [1066, 1301] 2.15 47 110 325
35 [1008, 1213] 2.01 40 67 325
40 [936, 1110] 1.85 37 17 327
45 [833, 975] 1.68 36 0 330
50 [711, 827] 1.51 34 0 333
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the profit function decreases as greater percentage reductions in nitrogen are
simulated, with abatement costs increasing markedly at emission standards
approaching 50 per cent of unregulated levels. Importantly, model output
shows that nitrate regulation will incur a cost, even in the long-run when the
hypothetical producer has had sufficient time to adjust their farming system
in response to regulatory policy.

4.3. Impact of different milk prices

A standard 2008/09 milk payment of $5000/t milk solids (MS) is used in the
base model. This could be bounded, but a single value is used because the
inclusion of a conservative range of $500/t MS leads to substantial ambiguity
surrounding the abatement-cost curve (Figure 2b), compared with the use of
a point estimate (Figure 2a). The abatement-cost curves for $4500/t MS and
$5500/t MS scenarios have a similar breadth and curvature to that computed
in the standard solution (Figure 2a). This arises because the optimal manage-
ment plan derived for the base case is very robust to output price uncertainty.
For example, stocking rate and milk production change by <1 per cent, rela-
tive to the base case, for each scenario. Furthermore, use of nitrogen fertiliser,
a key productive input, varies by only 7–8 per cent.
Profit decreases by 46–53 per cent, 41–48 per cent and 39–45 per cent as

emission standards are increased from 0 to 50 per cent for output prices of
$4500/t MS, $5000/t MS and $5500/t MS, respectively. Thus, although the
breadth and curvature of the abatement-cost curves are similar, higher output
prices intuitively dampen the cost of environmental regulation, ceteris
paribus.

4.4. Manipulation of trade-off parameters

A trade-off parameter of unity for pasture growth specifies a robust solution
that remains feasible in the light of all uncertainty regarding biomass produc-

Figure 1 Interval-valued profit function derived for given reductions in nitrate emissions for
the standard parameter values.
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tion. This greatly reduces profit relative to the base case (Figure 3), highlighting
the inherent conservatism of the worst-case formulation. Moreover, the com-
puted range is narrow as variable cost declines as total herd size almost halves,
compared with the standard solution. Profit increases, relative to the base case,
as the trade-off parameter is reduced to 0.5 and 0 (Figure 3), as these latter sce-
narios incorporate more optimistic specifications of pasture growth compared
with the worst-case scenario. Nonetheless, the range of the profit function
increases in response to inflation of the stocking rate from 2.69 cows/ha in the

(a) (b)

Figure 2 Interval-valued profit functions derived for given reductions in nitrate emissions
with (a) discrete prices of milk solids (MS) and (b) a range of prices. Note scenario a2 is the
standard case presented in Figure 1.

Trade-off parameters for pasture 
growth (ΛP) 

1=ΛP worst-case scenario

8.0=ΛP standard case

0=ΛP deterministic case

ΛP = 0.5

Figure 3 Interval-valued profit functions given trade-off parameters for pasture growth.
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base case to 3.29 cows/ha when the trade-off parameter is 0.5 and 3.61 cows/ha
when the trade-off parameter is 0. Model output is very sensitive to the magni-
tude of the trade-off parameter defined for pasture growth. This highlights the
importance of careful consideration of the level to which decision-makers give
weight to parametric uncertainty.
Trade-off parameters for nitrate leaching and quadratic costs are set to

unity, but lower values could be appropriate in different scenarios. Figure 4
presents bounded profit functions for alternative levels of N reduction. The
breadth of the profit functions narrows as quadratic costs are considered
more certain across all N reductions. The profit function is single-valued
where the trade-off parameter for quadratic costs is zero, as quadratic costs
are the only term considered uncertain included in the objective function.
Expected profit intuitively increases as the regulator becomes tolerant of
greater variability in nitrate leaching around the catchment goal. Decreases
in profit associated with increases in the trade-off parameter are greater as
goals for mitigation become more stringent (compare Figure 4a,c). This
reflects the convex cost of abatement evident in the profit functions computed
for the region (e.g. Figures 1 and 2).

4.5. Stability of income associated with robust plans

Figure 5 highlights a trade-off between the level and stability of income. The
{mean, standard deviation} of profit is {1937, 422}, {2020, 195}, {1819, 155}

Figure 4 Interval-valued profit functions for different levels of the trade-off parameters for
nitrate leaching (TOP leach) and quadratic costs (TOP costs) for reductions in N emissions of
(a) 10 per cent, (b) 30 per cent and (c) 50 per cent.
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and {714.6, 0.5} for trade-off parameters (KP) of 0 (midpoint solution), 0.5,
0.8 and 1 (fully robust solution), respectively. These yield coefficients of varia-
tion (the ratio of the standard deviation and the mean) of 0.22, 0.1, 0.09 and
0.0007 for trade-off parameters of 0, 0.5, 0.8 and 1, respectively.
Mean profit for the midpoint scenario is only 6 per cent higher than that

for the base case (KP = 0.8), mainly because of the high variance of the for-
mer (Figure 5, compare Scenarios 5a and 5c). The stocking rate for the mid-
point scenario is 25 per cent higher than that for the base case. Thus, profit
varies substantially (Figure 5, Scenario 5a) as high levels of supplementary
feeding are required when pasture growth is lower than expected. Further-
more, the midpoint of the distribution obtained for KP = 0.8 is greater than
that computed for the midpoint case, and its range is 2.7 times smaller. The
cost of the robust formulation used in the standard model is therefore negli-
gible, primarily reflecting its greater stability in the light of subsequent
uncertainty. In contrast, the mean and midpoint of the base case is lower
than that generated for a trade-off parameter of KP = 0.5. Nevertheless, the
base value is retained, as it provides a better description of observed produc-
tion given the use of formal calibration of this parameter, as described in
Section 3.3.
The fully robust solution, immunised against all uncertainty, is character-

ised by a minimal variance, but a mean well below that of the midpoint sce-
nario (Figure 5, compare Scenarios 5a and 5d). Moreover, the output
generated for this production plan is first-degree stochastically dominated
by that of the base and KP = 0.5 solutions. This illustrates the severe con-
servatism, and hence limited utility, of the worst-case formulation in this
application.

Figure 5 Cumulative distributions of profit given stochastic pasture growth when cow herds
are fixed at levels from the optimal plans determined for trade-off parameters for pasture
growth (KP) of (a) 0 (consistent with the midpoint model), (b) 0.5, (c) 0.8 (standard case) and
(d) 1 (consistent with the worst-case model).
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5. Conclusions

Policy evaluation conducted using economic optimisation models suffers
from parametric uncertainty given the large size of models, cost of informa-
tion acquisition, measurement error, and a weak correlation between histori-
cal and future states. Economists are slowly beginning to consider such
ambiguity in the analysis of natural resource issues (e.g. Roseta-Palma and
Xepapadeas 2004). However, the development of appropriate decision frame-
works remains an important challenge (Woodward and Shaw 2008), particu-
larly given the limited capacity of robust control to model large, complex
systems.
This paper is the first empirical application of the robust nonlinear pro-

gramming framework of Doole and Kingwell (2010), which allows the expli-
cit treatment of bounded uncertainty in empirical policy models. It has
multiple benefits, including (i) removal of the assumption that decision-
makers base their plans on certain knowledge, (ii) provision of a precaution-
ary approach to natural resource management, (iii) capacity to bound the
range of expected abatement costs accruing to a given policy instrument, (iv)
chance to identify robust plans that are immune to parametric variation
within the specified bounds, (v) straightforward solution in a MP context and
(vi) endogenous stability that can provide more realistic simulation behav-
iour.
Nonetheless, there is a direct relationship between the conservativeness of

the optimal solution and the magnitude of the trade-off parameter(s) that
describe the maximum specification error that decision-makers are willing to
tolerate. This highlights the need to carefully estimate these parameters
through calibration or qualitative methods. Moreover, robust optimisation
does not naturally incorporate correlations between random variables and
distributional information. Nonetheless, these can be incorporated in a
robust optimisation model using stochastic programming if sufficient infor-
mation is available.
This method is applied to an illustrative example involving regulation of

nitrate pollution of two New Zealand lakes. Model output displays that low-
protein supplementary feed is not a profitable mitigation practice, even when
uncertainty in feed supply is accounted for. Moreover, this analysis highlights
that improving per cow milk production through genetics or lactation length
is of little or no value in offsetting abatement cost. This reflects the inability
of more productive cows to derive sufficient nutrition from a pasture-based
diet. Consequently, a cautious approach to policy formulation is recom-
mended.
A number of extensions of this analysis are worthy of further research.

First, using robust MP to calibrate individual farms in a catchment context
could provide insights into the value of spatially differentiating environmen-
tal policy. Second, the trade-off parameter has implicit linkages with the con-
cept of uncertainty aversion and Choquet expected utility theory (Epstein
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1999). Formalising these relationships with a focus on estimating the trade-
off parameter for empirical work is conceptually interesting and may be prac-
tically important.
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