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This paper contributes to the normative literature on mitigation and adaptation by framing the question of 

their optimal policy balance in the context of catastrophic climate risk. The analysis uses the WITCH 

integrated assessment model with a module that models the endogenous risk of experiencing an economic 

catastrophe if temperature increases above a certain threshold.  

We find that the risk of a catastrophic outcome would encourage countries to reduce emissions even in the 

absence of a coordinated global agreement on climate change and to realign the policy balance from 

adaptation toward more mitigation. Our analysis also shows that adaptation transfers from and strategic 

unilateral commitments to adaptation in developed countries appear to provide weak incentives for reducing 

emissions in developing countries. Thus our first conclusion is that precautionary considerations, rather than 

the ability to reduce smooth damage increases, justify mitigation as a fundamental policy option. 

Accordingly, adaptation is needed  to cope with the non-catastrophic damages that countries would fail to 

address with mitigation Our second conclusion is that  supporting adaptation in developing countries should 

be considered primarily as a mean for ensuring equity or improving development, and very marginally as a 

mitigation incentive.     
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1. Introduction  

As emissions and temperature increase, there have been mounting concerns about the potentially 

adverse impacts triggered by the trespassing of thresholds and tipping points, which risk causing 

irreversible changes in the various components of the climate system. Adapting to possible 

catastrophic events can be very costly, while they can be prevented more effectively by directly 

addressing the source of the problem, GHG emissions (Pearce et al., 1996; Posner, 2004; 

Guillerminet and Tol, 2008; Lenton et al,. 2008).  

The scientific literature has explored how uncertainty and tipping points can motivate 

abatement even in the absence of coordinated climate policy architectures. Keller et al. (2004) show 

that climate thresholds can render significant abatement a utility-maximizing choice. More recently 

Lemoine and Trager, (2012) and Cai et al. (2013) suggest that mitigation becomes desirable if it 

reduces the probability of triggering tipping points, and that catastrophic climate risk can induce 

precautionary abatement (Gjerde et al., 1999; Roughgarden and Schneider, 1999; Yohe et al., 

2004). This literature has explored the potential for precautionary abatement on a global scale and 

without considering the interactions with adaptation policies to climate change, an issue of growing 

interest also in the policy arena. Parties to the Convention on Climate Change have acknowledged 

the importance of adaptation ever since, and the Warsaw Outcomes have perceived the need to deal 

with the losses and damages that are already being caused by climate change. Only a few theoretical 

contributions have analyzed how adaptation and mitigation can control the risk of climate change 

(Kane and Shogren, 2000; Ingham et al., 2005, 2007). These studies determine the theoretical 

conditions under which adaptation and mitigation are complements or substitutes and assess their 

optimal combination. Results are generally mixed and depend on a broad range of assumptions, 

including the marginal productivity of either strategy as well as the interaction triggered by direct 

and indirect effects. The theoretical frameworks proposed in those studies justify both 

complementarity and substitutability between the two strategies, indicating that possible solutions 

can be found in many different combinations. What can actually be the optimal mix (cost-efficient 

and/or cost-effective) between mitigation and adaptation has been investigated by means of 

empirical approaches based on Integrated Assessment Models (IAMs) (Agrawala et al., 2010; de 

Bruin et al., 2009; Bahn et al., 2010; Bosello et al., 2011). In a non-cooperative setting, mitigation 

remains negligible because of its public good nature. Conversely, since adaptation entails almost 

fully appropriable benefits, it is basically the only climate change strategy being pursued. In a 
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cooperative setting, Bosello et al. (2010) show that adaptation crowds out mitigation, but that 

analysis does not consider uncertainty and irreversibility. 

This paper contributes to the literature on the interlinkages between adaptation, mitigation, 

and precautionary abatement by developing a modelling framework that integrates mitigation, 

adaptation, and catastrophic climate change risk into a macroeconomic, hybrid IAM. We assume 

that countries do not sign a global agreement on emission reduction, but they perceive the risk that 

future global warming could cause heavy economic losses which adaptation would be unable to 

prevent. We define this outcome as a catastrophe, though it remains a reversible event, as it does not 

cause structural changes in the system (Wright and Erickson, 2003). We use the WITCH Integrated 

Assessment Model (Bosetti et al., 2006; Bosetti et al., 2009), augmented with endogenous 

adaptation investments (AD-WITCH, thereafter for brevity), as developed in Bosello et al. (2013), 

and Agrawala et al. (2010, 2011), and explore how the risk of a catastrophe influences the optimal 

mix between adaptation and mitigation policies, and to what extent the possibility of adapting to 

climate change weakens the motivation for precautionary abatement. We calibrate the probability of 

the catastrophic outcome by using the estimates from expert elicitation studies of the likelihood of 

large-impact, low-probability events (Lenton et al., 2008; Kriegler et al., 2009).  

Using this framework, we analyse how the risk of a catastrophe shapes the combination 

between adaptation and mitigation in countries with different damages and emission reduction costs 

when there is no international coordination on mitigation policy. The second part of the paper 

explores the potential of adaptation transfers and unilateral adaptation commitments by OECD 

countries  for inducing greater abatement in non-OECD countries. This research question is inspired 

by three theoretical studies showing that adaptation can in fact influence the incentive to participate 

in climate change agreements. Barrett (2010) demonstrates that if more adaptation implies less 

mitigation, adaptation can increase participation in a mitigation agreement in a non-cooperative 

theoretical game set-up. The increase occurs because adaptation, by reducing the need to mitigate, 

pushes the environmental effectiveness of the agreement closer to the non-cooperative effort. 

Adaptation enhances participation by voiding the agreement of its mitigation content. In a non-

cooperative setting, Buob and Stephan (2011) show that, in principle, developed countries could 

provide adaptation funding to developing countries to foster their abatement efforts as well as 

global mitigation, if and only if mitigation and adaptation are complements. They also show 

however, that under strict complementarity it would be economically rational for developed 

countries to fund adaptation in developing regions only if in exchange the developed regions 

lowered abatement. But realistically, developing countries will not be willing to accept such an 

http://www.springerlink.com/content/?Author=Evelyn+L.+Wright
http://www.springerlink.com/content/?Author=Jon+D.+Erickson
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agreement. Auerswald et al. (2011) show that in a leader-follower game, early adaptation 

commitment from a group of countries can be used as a credible signal of low willingness to 

mitigate. This would induce other countries to increase their abatement effort. Total abatement 

effort can then increase or decrease according to the shape of the respective reaction functions. 

Marrouch and Chauduri (2011) offer an interesting perspective which links Barrett (2010) and 

Auerswald et al. (2011). They show that, at given conditions, the presence of adaptation can bolster 

participation in an abatement coalition. Moreover, if the coalition acts as a Stackelberg leader, total 

emissions can decrease. The intuition is the following. If a country can also adapt to climate 

damages, it may respond to higher emissions from another country with higher adaptation and 

lower abatement. On the one hand, this lowers the incentive to free ride on a mitigation agreement 

and consequently could increase participation. On the other hand, as emission reaction curves are no 

longer orthogonal, the abatement coalition may increase its abatement effort to lower the emissions 

in non-participatory countries. This paper evaluates the empirical relevance of the aforementioned 

theoretical results by investigating i) whether financial transfers for supporting adaptation 

investments in less developed countries can be used as leverage to increase their abatement effort 

and ii) whether a unilateral commitment to adaptation can induce other countries to emit less.  

The remainder of the paper is organized as follows. Section 2 describes WITCH and how 

catastrophic risk is modelled. Section 3 presents and discusses the results, and Section 4 concludes.  

2. An Integrated Modelling Framework  

2.1 Adaptation and non-catastrophic damages in the WITCH model  

The AD-WITCH is a Ramsey-Cass-Koopmans growth model with a breakdown of the energy 

sector into different uses and technologies. The economic system is fully integrated with a simple 

climate module that translates carbon emissions produced from the use of fossil fuels to radiative 

forcing and temperature increase. Regional reduced-form damage functions link the global 

temperature increase above pre-industrial levels to changes in regional gross domestic product 

(GDP). The model equilibrium is the solution of a non-cooperative game among twelve 

macroeconomic regions. Agents behave strategically with respect to major economic decision 

variables including adaptation and energy investments. A forward-looking social planner in each 

macroeconomic region maximizes his inter-temporal welfare by optimally choosing investments in 

a generic final good, energy technologies, energy R&D, and adaptation, subject to the budget 

constraint. The resulting Nash equilibrium is a constrained optimum, which however does not 
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internalize the environmental and technology externalities globally, but only within the boundary of 

each given region.
1
  

 At the core of the adaptation module introduced in the WITCH model there are three control 

variables that broadly represent different forms of adaptation strategies. For the sake of simplicity, 

the numerous adaptive responses that are actually available in the real world have been aggregated 

into three categories: building specific adaptive capacity, anticipatory adaptation, and reactive 

adaptation. Specific adaptive capacity accounts for the investments dedicated to facilitate adaptation 

activities, such as improvement of meteorological services, early warning systems, the development 

of climate modelling and impact assessments. Anticipatory adaptation describes measures requiring 

that a stock of defensive capital be operational before damage materializes, such as the construction 

of dikes. Reactive adaptation are actions implemented when or right after climatic impacts 

effectively occur, for the purpose of dealing with any residual damages that anticipatory adaptation 

or mitigation has been unable to obviate. Examples of these strategies include change in the use of 

air conditioning or hospitalization and use of health services (see Agrawala et al. 2010, 2011 for 

more details). We assume that a set of constant elasticity of substitution (CES) production functions 

aggregates the three different adaptation strategies into an adaptation service nest that reduces the 

damages caused by global warming as described in Agrawala et al. (2010, 2011).   

 While the previous versions of the AD-WITCH model have calibrated the regional damage 

functions on Nordhaus and Boyer (2000), this study uses more recent estimates of climate change 

impacts. Estimates of the market impacts are from the ClimateCost project (Bosello et al. 2012), 

which has quantified the physical and economic impacts of climate change on the rise in sea-levels, 

energy demand, agricultural productivity, tourism flows, net primary productivity of forests, floods, 

and reduced work capacity due to thermal discomfort resulting from a high-warming scenario. The 

economic impacts used as input for the regional damages used in this study have been quantified 

using the recursive-dynamic computable general equilibrium (CGE) model ICES (Eboli et al. 

2010). As a consequence, the market impacts represented in the present version of the AD-WITCH 

model are net of autonomous (or market-driven) adaptation. Non-market impacts include the 

potential impacts of climate change on ecosystems and health, and they have been monetized by 

using a willingness-to-pay approach as described in the Appendix. 

 

                                                           
1
 For further insights on the treatment of technical change in the WITCH model see Bosetti et al. (2006), Bosetti et al. 

(2009), De Cian et al. (2012). The WITCH model is continually updated, and the latest versions of the models have 

been used in a number of publications listed on the model website, witchmodel.org.  
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2.2 Risk of a catastrophic economic outcome 

We introduce an endogenous probability of a catastrophic event by linking the probability of a very 

large loss in GDP to the increase in global average temperature above pre-industrial levels. The 

temperature increase is also endogenous to the model, which has a simple climate module linking 

forcing to emissions, which are determined by the energy mix chosen by the regions in the model. 

Catastrophic risk affects economic activities directly and utility indirectly. Decision makers, namely 

the regional social planners, interact strategically and do not cooperate on greenhouse gas emission 

reduction. They maximize their regional social welfare, defined over the expected realization of 

output actually available for consumption, which also depends on the size and distribution of the 

climate change damages. For each region n, at each point in time t, Eq. (1) describes the interaction 

between the expected damage net of adaptation (CCDA) and the total value of economic production 

(YGROSS): 

 

 
𝑌𝑁𝐸𝑇𝑛,𝑡 =  

1

1 + 𝐶𝐶𝐷𝐴𝑛,𝑡
 𝑌𝐺𝑅𝑂𝑆𝑆𝑛,𝑡 

(1) 

 

The expected damage in Eq. (2), CCDA, is a weighted sum of the non-catastrophic component 

(CCD) and of the catastrophic (CCR) realization. Weights are given by the probability of the 

catastrophic occurrence, p(Tt): 

 

 
𝐶𝐶𝐷𝐴𝑛,𝑡 =  [1 − 𝑝(𝑇𝑡)] 

1

1 +  𝐴𝐷𝐴𝑃𝑇𝑛,𝑡
 𝐶𝐶𝐷𝑛,𝑡 +  𝑝(𝑇𝑡) 𝐶𝐶𝑅𝑛,𝑡 

(2) 

 

We assume that the catastrophic component of the expected damage in Eq. (2), CCR, is associated 

with 25% GDP loss in each region, when such catastrophe occurs. The non-catastrophic component 

is the standard damage described above. We assume that a catastrophe is outside the system coping 

range and therefore adaptation (ADAPT) only reduces the non-catastrophic damage component. The 

risk of the catastrophic economic loss can be reduced by controlling GHG emissions. Following 

Gjerde et al (1999), Bosello and Moretto (1999), and Bosello and Chen (2011), we describe the 

probability of the catastrophic event, p(Tt) by a hazard rate that follows a Weibull distribution: 

 

 
𝑝(𝑇𝑡) = 1 −  

1

𝑒𝜑𝜂(𝑇𝑡−𝑇0)1.5 
 (3) 
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where Tt – T0 is the temperature increase relative to the pre-industrial level, T0. Eq. (3) states that 

keeping the atmospheric temperature at the T0 level would eliminate the possibility of catastrophic 

events. The probability of a catastrophe grows when temperature increases above T0.  Each regional 

social planner can control the probability of the catastrophic event by decarbonizing the energy 

portfolio through appropriate investment in clean technologies, thus reducing emissions and 

temperature increase. In our cost-benefit analysis, the benefit of endogenously controlling 

temperature comes thus at the cost of lower short-run consumption. Optimizing agents choose the 

optimal balance of the two (see Section 3). 

The relationship between temperature increase and catastrophic probability in Eq. (3) 

depends on the two parameters φ and η. The parameter η takes the value of 2.5 to maintain the 

convexity of the hazard rate function. The parameter φ is calibrated such that the probability of a 

catastrophic occurrence is 16% when the global average temperature increase hits 3°C above the 

pre-industrial period (φ=0.021). This value has been suggested by a number of recent studies that 

have elicited the opinion of experts about the likelihood of catastrophic outcomes or of the 

trespassing of tipping points (Lenton et al., 2008, Kriegler et al., 2009). In the model this occurs at 

the end of the century. Figure 1, left Panel depicts damages if the catastrophic event does not occur, 

while Figure 1, right Panel shows the expected damage in the presence of the catastrophic risk. 

Even if the catastrophic economic outcome is a 25% loss of regional GDP, the expected damages in 

2100 vary between 6% and 14% of GDP. 

 
Figure 1: Regional climate change  damages in the AD-WITCH model without (left) and expected 

damage with (right) catastrophic risk 
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3. Results 

3.1 Mitigation and adaptation under climate risk 

In a world without catastrophic risk and with no global agreement on climate policy, our numerical 

results confirm the findings of the theoretical and empirical literature discussed in the introduction. 

Figure 2, top panel, shows that the mitigation effort that would result from the cost-benefit analysis 

of each optimizing region is negligible and that the free-riding incentive dominates. Conversely, 

adaptation contributes almost entirely to damage reduction, especially after 2050. When regional 

planners internalize the risk of a catastrophic damage in their optimization choice, substantive 

abatement becomes optimal even in the absence of a global agreement. The perception of the risk of 

a catastrophe weakens free-riding incentives (Figure 2, top panel, red line). The optimal Nash 

abatement almost stabilizes CO2 emissions, flattening after 2050 and dropping to 58 as opposed to 

84 GtCO2 in 2100. The resulting global emission profile is incidentally close to what a weak 

commitment to climate policy, such as a continuation of the Copenhagen Pledges throughout the 

century, would imply (Luderer et al. 2013). 

Figure 2 (bottom panel) shows the allocation of investments between mitigation and 

adaptation. When regions perceive the risk of a climate catastrophe, increasing resources are shifted 

to mitigation, more precisely to investments in energy saving R&D, renewable energy sources, 

nuclear, and coal with Integrated Gasification Combined Cycle (IGCC) with carbon capture and 

sequestration (CCS). Globally, adaptation investments are reduced relative to the no-risk case 

because of the damage-reducing effect of higher mitigation and of the binding budget constraint. 

When internalizing the risk of large losses, mitigation investments become the main item 

throughout the century and adaptation reaches a budget allocation equal to that of mitigation in 

2085 rather than in 2050.  

The introduction of catastrophic risk modifies the size of the crowding-out effect between 

mitigation and adaptation. Adaptation reduces cumulative abatement by 48% and 1% throughout 

the century without and with risk, respectively. Mitigation reduces cumulative adaptation 

expenditure by 1% and 4.5% without and with risk, respectively. Some degree of reciprocal 

crowding-out between the two strategies remains because part of the mitigation effort still responds 

to the smooth climate-change damage component and continues to be influenced by adaptation 

measures, and vice versa. 
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Figure 2. Impact of catastrophic risk on CO2 emissions (top panel), adaptation and mitigation 

investments (bottom panel), including wind, solar, nuclear, and coal IGCC with CCS power, energy 

efficiency R&D, and breakthrough R&D. 

 

 

 

 The introduction of the catastrophic risk induces a different distribution of the emission 

reduction effort. Given the non-cooperative setting, abatement is mostly driven by the effective 

ability of a country to reduce average global temperature, which directly controls the catastrophic 

risk. Figure 3 shows that maximum reduction of emissions occurs in major emitters in regard to the 
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share of CO2 emissions in 2010 (black bar). Greater abatement occurs in China, the United States, 

Western Europe, Canada-Japan-New Zealand and South Asia, whereas moderate reductions occur 

in the Middle East, North Africa and Latin America. As stated, the free-riding incentive is 

weakened but does not disappear completely.  When the catastrophic risk augments mitigation, 

adaptation decreases in response to the reduced country-specific damage, though to a different 

extent in different countries. For instance, Europe increases its cumulative mitigation expenditure 

throughout the century by roughly the 57% and reduces its cumulative adaptation expenditure by 

the 34%. Conversely, the Middle East and North Africa increase their mitigation expenditures by 

the 5.8%, but still reduce their adaptation expenditures the 28%, since they also enjoy the climate 

benefits caused by the greater emission reductions effected in other countries.  

 
Figure 3. Regional abatement in 2020 and 2050 relative to the baseline without risk. Black bars 

show the 2010 regional emission shares. 

 

In summary, in a world characterised by smooth and reversible climate damages, if countries 

can play strategically, mitigation is a marginal option. Although viable and welfare-improving, it is 

less cost-effective than adaptation and an exclusively residual strategy. Conversely, in a world with 

catastrophic risk, it becomes a key policy variable, irrespectively of its ability to reduce non-

catastrophic damage, since it is the only strategy capable of reducing the probability of a 

catastrophic outcome.  
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Figure 4 examines the sensitivity of the trade-off between adaptation and mitigation to the 

discount rate, the catastrophic risk, and the catastrophic penalty. We find that, once catastrophic risk 

is introduced, lower discounting unambiguously implies more abatement and adaptation 

expenditure (Figure 4, lower panel). This result is particularly interesting, since, while standard in a 

cooperative framework, it is not obvious without cooperation. For instance, Bosetti et al. (2011) 

show that in a non-cooperative framework, changing assumptions on discounting have a limited 

influence on the optimal level of mitigation action. This is a direct consequence of the inability of 

individual regions to internalize the environmental externality. If it is true that a lower discount rate 

should favour mitigation as future damages gain in importance, at the same time it favours future 

consumption levels and thus emissions. Without the internalization of the negative externality 

caused by emissions, the two effects almost perfectly balance out, or the second even prevails. The 

higher probability associated with the catastrophic event or a higher catastrophic damage (High risk 

and high expected damage cases in Figure 4, upper panel) increases abatement while adaptation is 

crowded out. When the risk of a catastrophic event increases, the crowding-out of abatement 

induced by adaptation is in effect reduced to zero.  
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Figure 4. Top panels: sensitivity analysis of the size of catastrophic impact (low, default, and high 

expected damage) and of the size of catastrophic risk (high risk). Lower panels: sensitivity analysis 

of the discount rate. 

 

 

 

 

3.2 Mitigation and adaptation: a strategic analysis  

In a world with catastrophic risk, precautionary abatement becomes an optimal strategy even in the 

absence of an international global agreement. This section investigates whether a group of 

countries (OECD) could use adaptation transfers or unilateral commitment to adaptation 

expenditure as a strategic leverage to foster mitigation in another group of countries (the non-
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OECD). We maintain the non-cooperative setting
2
 and assume that only OECD countries perceive 

and react to catastrophic risk. Non-OECD countries react only to the non-catastrophic damage 

component. The idea is to simulate a situation in which OECD countries are not only inclined to 

strong domestic abatement, but are also willing to foster abatement in non-OECD by financing 

adaptation needs in non-OECD areas.  

 

3.2.1 Unconditional adaptation transfers 

In our first experiment we assume that the OECD countries finance all adaptation needs of non-

OECD countries. The lump-sum transfer is divided among donors proportionally to the GDP share 

relative to the OECD total. The major donors are the USA and Western Europe, while the larger 

recipients are the Middle East and North Africa, Southeast Asia and Sub-Saharan Africa. The 

transfer grows over time, as adaptation needs in less developed countries rapidly increase after 

2040, and peaks at 100 billion USD between 2055 and 2060.  

Adaptation funds almost completely replace domestic adaptation in receiving countries, 

which in fact only slightly increases. Investments in physical capital and in mitigation activities 

(energy saving R&D and renewable technologies) are basically unaffected. The additional 

available budget is almost totally used for consumption. Discounted consumption throughout the 

century increases by 0.084% (486 billion USD) relative to the case with no transfers (Table 1). In 

other words, mitigation behaves quasi-linearly in non-OECD preferences. In our particular setting, 

when countries start from a non-cooperative optimum, the adaptation transfer does not crowd out 

domestic mitigation, but does crowd out domestic adaptation, even when adaptation and mitigation 

are substitutes
3
. Higher consumption and production implies slightly higher emissions (Figure 5), 

which cause slightly more damages and hence lower GDP (-0.00042%).  

 

3.2.2 Conditional adaptation transfers and mitigation transfer 

Transferred adaptation funds can only foster mitigation if a conditionality clause is included, stating 

that the adaptation fund will be delivered only in the presence of a binding, detectable mitigation 

commitment from the non-OECD countries. We consider the same adaptation transfer, but now 

non-OECD countries are required to invest a fraction of the transfer in renewable energy. We 

                                                           
2
 In fact, to highlight even clearer results, as compared to section 2, both the probability and the catastrophic penalties 

have been increased respectively to 50% and 99% of GDP, for a temperature increase of 3.6°C. 
3
 A potentially different situation would be one in which, because of an adaptive capacity deficit and a resource 

constraint, developing countries implement sub-optimal (lower than needed) adaptation levels. In this case foreign and 

domestic adaptation can be expected to be additional. This issue, which will imply a change in the model setting, will be 

explored in future research.  
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analyse the implications of small and large transfers, and consider a range of fractions between 1/20 

and 1, which changes the deal into a transfer for mitigation. In terms of welfare, which in AD-

WITCH is a function of consumption, non-OECD countries would always benefit from this 

exchange, which covers their optimal adaptation costs. However, the conditionality clause reduces 

the consumption gain, relative to the unconditional transfer (Table 1). The condition imposes a sub-

optimal level of renewable investments, which is larger than what non-OECD countries would 

optimally choose. Does this conditional transfer succeed in cutting emissions? The overall impact of 

the transfer onto non-OECD emissions is almost negligible, though it moves in the expected 

direction (Figure 5, left Panel).   

The international financing of adaptation does not appear to be the most effective way of 

buying emission reduction in non-OECD countries. A legitimate question then is whether OECD 

countries could achieve better results by directly financing abatement in the non-OECD. Let us 

assume this would be possible, leaving aside for the sake of experiment all the transaction costs 

potentially involved. This is then considered in the last column (Transfer Mitigation in Table 1), 

where we assume that the transfer is directly invested by the OECD to support investment in 

renewable energy in the non-OECD. The non-OECD region experiences an increase in its 

investments in renewables from  a current 12 billion USD to 66 billion USD  in 2050, from a 

current 49 billion USD to 539 billion USD in 2100. Emission reduction in non-OECD is effectively 

higher, but still small (-69 GtCO2 or -1.4% throughout the century). Furthermore, because of the 

strategic interaction between OECD and non-OECD countries, OECD countries compensate the 

additional reduction by the non-OECD countries with more emissions (relative to the unconditional 

transfer). 

In terms of discounted consumption, although non-OECD countries would still be better off 

with a mitigation transfer than without, they would prefer a support to adaptation (Table 1). Indeed, 

the benefit from additional abatement is a public good, whereas the benefit from adaptation is fully 

appropriable. Moreover, adaptation funding is replacing what non-OECD countries would have 

done anyway, while mitigation funding is financing an additional sub-optimal effort. Interestingly, 

results are qualitatively different when GDP instead of consumption is considered, the major 

difference across the two indicators being obviously represented by investment patterns. Table 1 

shows that adaptation transfers including a conditionality clause on mitigation are GDP-improving 

for both OECD and non-OECD countries. This positive (albeit small) effect is stronger the stronger 

the conditionality on investment in adaptation.  It is triggered by the fact that in the WITCH model 

the cost of renewable energy is endogenous and falls with global Learning-By-Doing. Hence, the 
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additional investments undertaken by non-OECD countries reduce the technology cost in the OECD 

countries as well, which benefit from the associated Learning-By-Doing externality. Furthermore, 

the slight reduction in global emissions caused by the transfer helps to mitigate climate change 

damages. All in all, this leads to small GDP gain relative to the no-transfer case (+0.0415% in non-

OECD and +0.0265% globally). However, these benefits are not sufficient to compensate the 

consumption loss compared to the unconditional transfer.  

Our results suggest  partly countervailing messages. On the one hand, albeit in principle adaptation 

funding can be used by developed countries as a leverage to induce more mitigation in non-OECD 

countries, the effectiveness of this strategy is very limited. Here a clear mismatch of scales is 

highlighted: adaptation costs are much smaller than those required to decarbonize non-OECD 

economic systems. On the other hand, although the transfer would reduce consumption possibilities 

in the OECD, it would have a positive impact on their GDP, the more so when the transfer goes to 

financing mitigation (Table 1).  

 

3.2.3 Unilateral commitment to adaptation in OECD countries 

As a further experiment, we examine the effect of adaptation implemented in OECD countries on 

mitigation and adaptation in non-OECD countries. Following the ideas put forward by Auerswald et 

al. (2011) and Marrouch and Chaudury (2011) we want to test whether adaptation can be used as a 

strategic signal or leverage by a group of countries to induce more abatement in other countries. 

Specifically, we explore a unilateral increase in adaptation expenditure in the OECD between 10% 

and 200%, starting today (Figure 5, right panel). Since adaptation and mitigation are substitutes, 

abatement in OECD regions decreases. Cumulated OECD emissions increase by between 11.5 and 

147 MtCO2. As a reaction, abatement in non-OECD regions slightly increases and cumulated 

emissions decline by between 0.50 and 38.50 MtCO2. Adaptation in non-OECD regions remains 

basically unchanged. Our results provide evidence to support Auerswald’s intuition and confute 

Marrouch and Chauduri’s point. Even if countries can adapt, a lower mitigation effort by one 

country or a group of them is compensated by more abatement outside the group. However, for this 

size of transfers, the effect on overall abatement is negative, and cumulative emissions on a global 

scale increase. This necessitates some caution regarding the practical possibility of using adaptation 

as a credible signal of low mitigation commitment in one country to induce mitigation in other 

countries.  
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Figure 5: CO2 cumulated emissions 2005-2100 in OECD (red bar) and non-OECD (grey bar) as difference 

relative to the no transfer case. The left panel shows the cases with unconditional and conditional transfers 

from the OECD countries to the non-OECD ones. The right panel shows the cases with a unilateral increase 

in adaptation in OECD countries between 10% and 200%. 
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Table 1: GDP and consumption change relative to the no transfer case. Percentage point difference 

and USD Billion (Net Present Value over the century).  

Percentage point 

difference (%) w.r.t. no 

Transfer 

Unconditional 

Transfer 

Adaptation 

Conditional 

Transfer 

1/20 

Renewables 

Conditional 

Transfer 

1/10 

Renewables 

Conditional 

Transfer 1/5 

Renewables 

Conditional 

Transfer 1/3 

Renewables 

Conditional 

Transfer 1/2 

Renewables 

Transfer 

Mitigation 

GDP World 0.0002% 0.0022% 0.0041% 0.0073% 0.0112% 0.0156% 0.0268% 

 
OECD -0.0001% 0.0014% 0.0028% 0.0050% 0.0078% 0.0109% 0.0186% 

 

Non-

OECD -0.0004% 0.0028% 0.0056% 0.0107% 0.0167% 0.0236% 0.0415% 

Consumption World -0.004% -0.003% -0.002% -0.002% -0.002% -0.003% -0.009% 

 

OECD -0.0563% -0.0542% -0.0524% -0.0493% -0.0457% -0.0416% -0.0318% 

 

Non-
OECD 0.0840% 0.0832% 0.0816% 0.0775% 0.0709% 0.0611% 0.0270% 

USD Billion Difference 

w.r.t. no Transfer 

Unconditional 

Transfer 

Adaptation 

Conditional 

Transfer 

1/20 

Renewables 

Conditional 

Transfer 

1/10 

Renewables 

Conditional 

Transfer 1/5 

Renewables 

Conditional 

Transfer 1/3 

Renewables 

Conditional 

Transfer 1/2 

Renewables 

Transfer 

Mitigation 

GDP World 0.73 9.06 16.58 29.64 45.22 62.98 108.12 

 

OECD -0.22 3.44 6.86 12.44 19.27 27.00 46.08 

 

Non-

OECD -3.00 19.72 39.68 76.12 118.71 167.65 294.94 

Consumption World -11.42 -8.31 -6.54 -4.91 -5.28 -8.43 -28.13 

 

OECD -109.92 -105.92 -102.45 -96.30 -89.20 -81.33 -62.10 

 

Non-

OECD 485.65 480.63 471.61 448.08 409.59 353.30 155.78 

         Note: World and non-OECD figures do not include Transition Economies since in the simulation they neither receive 

nor give adaptation funds, being positively affected by climate change. 

 

4. Conclusions 

This paper contributes to the normative literature on mitigation and adaptation by framing the 

question of the optimal policy balance between these two strategies in the context of catastrophic 

climate risk. The analysis uses an integrated assessment model that accounts for the endogenous 

link between the probability of experiencing a catastrophic climate-related event and average global 

temperature increase. 

The presence of catastrophic risk weakens the incentive to free ride and induces substantial 

mitigation effort even in a non-cooperative setting in which global cooperation on climate does not 

succeed. The policy balance is realigned from adaptation toward more mitigation, and the 

responsiveness of mitigation to changes in adaptation decreases. Compared to a world without 
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climate catastrophes, risk reduces the substitutability between adaptation and mitigation because 

only mitigation can manage the catastrophic probability. Nonetheless, the strategic complementarity 

between mitigation and adaptation does not vanish. Even though adaptation does not influence the 

catastrophic probability, it is still a necessary complement to mitigation in addressing the residual 

damage not accommodated by the decentralized mitigation effort. Similarly, the trade-off between 

mitigation and adaptation persists: when adaptation increases, the need to mitigate the smooth part 

of climate change damages decreases. Therefore, even though greatly reduced, there remains a 

minimal crowding-out of mitigation by adaptation. These findings suggest that in a world 

characterized by catastrophic risk, mitigation is a key policy variable, as it is the only strategy able 

to limit the catastrophic risk. Mitigation should be justified on the basis of precautionary 

considerations and only marginally considering its capacity to reduce marginally increasing climate 

change damages. Adaptation should tackle the damage component that weak mitigation fails to 

accommodate because of the free-riding incentives. 

Given these results, we then investigate whether unilateral or partial commitment to 

adaptation can be used as a leverage to increase abatement effort in third countries, always in a non-

cooperative setting. We find that if the OECD countries financed all adaptation needs of non-

OECD, such adaptation funding would significantly affect neither abatement nor adaptation. 

Domestic adaptation in non-OECD countries is displaced almost perfectly by international aid and 

mitigation remains unchanged. If the adaptation fund is conditional on undertaking specific 

mitigation actions at home, it can foster additional mitigation in less developed countries, though 

the effectiveness of this strategy remains very limited. On the one hand, the resources needed by the 

recipient countries to significantly decarbonize their production and energy system are much higher 

than the size of the transfer. On the other hand, in the chosen non-cooperative setting any additional 

abatement effort in non-OECD countries is strategically balanced by an increase in emissions in the 

OECD, which therefore erodes part of the benefit of the non-OECD mitigation.  Even though a 

financial support to adaptation from richer countries would be insufficient to spur significant 

mitigation in developing countries, it could be beneficial for the donor countries. This happens if 

the transfer is specifically designed to foster investments in those technologies that, because of 

other market failures, are sub-optimal. We also evaluate whether a unilateral commitment by the 

OECD countries to adapt can induce more abatement in other countries. As a reaction, abatement in 

non-OECD regions effectively increases. However, the effect on overall abatement is negative, as 

cumulative world emissions increase. Adaptation transfers and strategic commitments to adaptation 

appear to be quite weak leverages for buying emission reduction in non-OECD countries, though 
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adaptation transfers remain an important instrument for addressing the adverse distributional 

implications of climate change impacts. Moreover, our framework assumes that, in each model 

region, both adaptation and mitigation are implemented in an optimal fashion. The welfare 

implications of adaptation transfers can be different in second-best situations, in which for instance 

resource or capacity constraints lead to sub-optimal levels of adaptation. 

 

 

Disclaimer 

 
The estimation of the market damage component of the AD-WITCH reduced-form damage function builds 

on the interdisciplinary work undertaken by the ClimateCost FP7 project. We are grateful to the project 

coordinator, Tom Downing, and to the project technical coordinator, Paul Watkiss, for data disclosure and 

availability. All imprecisions and potential mistakes are our own responsibility.  
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Appendix.  

Calibration of the damage functions. Data sources and methods 

The AD-WITCH model used in the present study adopts the adaptation cost curves in Agrawala et 

al. (2010). This Appendix describes the calibration of the regional climate change damage 

functions, which builds on more recent data. Market damages are based on the results of the FP7 

ClimateCost project (see Bosello et al. 2012). The project has quantified the physical and economic 

impacts of climate change on sea-level rise, energy demand, agricultural productivity, tourism 

flows, net primary productivity of forests, floods, and reduced work capacity because of thermal 

discomfort. All impacts, except those on floods and health, which focus on the EU, have been 

assessed for a number of macro regions covering the world. The joint macro-economic effect of the 

above climate change impacts, in terms of regional GDP changes, has been estimated by means of 

the computable general equilibrium (CGE) model ICES (Eboli et al., 2010). Therefore, the market 

damages included in the present study are net of autonomous adaptation. Non-market damages 

include an estimate of the potential ecosystem loss and of the non-market impacts on health. Both 

impacts have been evaluated by means of a willingness-to-pay approach. The next two sections 

describe in greater detail the methodologies used to evaluate market and non-market impacts.  

 

Market damages 

Estimates of coastal land loss due to sea-level rise are based on the DIVA model outputs (Vafeidis 

et al., 2008). DIVA (Dynamic Integrated Vulnerability Assessment) is an engineering model 

designed to address the vulnerability of coastal areas to rise in sea-levels. The model is based on a 

world database of natural system and socioeconomic factors for world coastal areas reported with a 

spatial resolution of 5°. The temporal resolution is 5-year time steps until 2100 and 100-year time 

steps from 2100 to 2500. Changes in natural as well as socio-economic conditions of possible future 

scenarios are implemented through a set of impact-adaptation algorithms. Impacts are then assessed 

both in physical (i.e. sq. Km of land lost) and economic (i.e. value of land lost and adaptation costs) 

terms. 

Changes in tourism flows induced by climate change are derived from simulations based on 

the Hamburg Tourism Model (HTM) (Bigano et al., 2007). HTM is an econometric simulation 

model, estimating the number of domestic and international tourists by country, the share of 

international tourists in total tourists and tourism flows between countries. The model runs in time 

steps of 5 years. First, it estimates the total tourists in each country, depending on the size of the 
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population and of average income per capita; then it divides tourists between those that travel 

abroad and those that stay within their country of origin. In this way, the model provides the total 

number of holidays as well as the trade-off between holidays at home and abroad. The share of 

domestic tourists in total tourism depends on the climate in the home country and on per capita 

income. International tourists are finally allocated to all other countries based on a general 

attractiveness index, climate, per capita income in the destination countries, and the distance 

between origin and destination. 

Changes in average crops productivity per world region are derived from the ClimateCrop 

model (Iglesias et al., 2009; Iglesias et al., 2010). Crop response depends on temperature, CO2 

fertilisation and extremes. Water management practices are also taken into account. Spatially 

integrating all these elements, the model estimates climate change impacts and the effect of the 

implementation of different adaptation strategies. Responses of residential energy demand to 

increasing temperatures are derived from the POLES model (Criqui, 2001; Criqui et al., 2009), a 

bottom-up partial-equilibrium model of the world energy system, extended to include information 

on water resource availability and adaptation measures, which determines future energy demand 

and supply according to trends in energy prices, technological innovation, climate impacts and 

alternative mitigation policy schemes. The present version of the model considers both heating and 

cooling degree-days in order to determine the evolution of demand for different energy sources 

(coal, oil, natural gas, electricity) over the time-horizon considered. 

Data on changes in net primary forest productivity (NPP) are provided by the LPJmL 

Dynamic Global Vegetation Model developed at the PIK – (Boundeau et al., 2007). The LPJ model, 

endogenously determines spatially explicit transient vegetation composition and the associated 

carbon and water budgets for different land-uses including forestry. It estimates the effects of 

climate change on forests (NPP) for all countries in the world, with or without carbon fertilisation 

effect on vegetation and the role of forest fires. Data on climate change impacts on river floods are 

based on results from the LISFLOOD model (Van der Knijff et al., 2009; Feyen, 2009). This is a 

spatially distributed hydrological model embedded within a GIS environment. It simulates river 

discharges in drainage basins as a function of spatial information on topography, soils, land cover 

and precipitation. This model has been developed for operational flood forecasting on a European 

scale, and it is a combination of a grid-based water balance model and a 1-dimensional 

hydrodynamic channel flow routing model. The LISFLOOD model can assess the economic loss in 

the EU27 countries per different macro-sectors: residential, agriculture, industry, transport and 

commerce, together with the number of people affected. The role of climate change, and of 
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economic growth in determining the final losses can be disentangled. As opposed to other impact 

studies, LISFLOOD is an EU model, thus the non-EU regions remain outside the scope of its 

investigation. 

Finally, climate change impacts on job performance in Europe are derived from Kovats and 

Lloyd (2011), who assess the change in working conditions due to heat stress produced by the 

increase in temperature, and their effects on labour productivity. By linking climate data, a 

combined measure of heat and humidity (the “Wet Bulbe Globe Temperature”), and effects on the 

human body (Kjellstrom et al., 2009), they are able to estimate the expected decrease in labour 

productivity for four European macro-regions (Western, Eastern, Northern and Southern). The 

authors also consider sectoral impacts by taking into account future changes in labour force 

distribution across sectors. Table AI compares the individual and joint effect on GDP that has been 

estimated by means of the CGE model ICES and Nordhaus (2007)’s estimates.  

 

Non-market damages 

Ecosystems and biodiversity losses induce welfare losses not directly priced by market 

transactions, such as the loss of recreational and amenity value of natural environments when they 

are enjoyed under free access, losses of option and existence values. To calibrate the ecosystem 

losses component, we follow a Willingness-To-Pay (WTP) approach, as in the MERGE model 

(Manne et al. 2005). In principle, an elicited WTP to avoid a given loss in ecosystems should 

encompass all their non-market values and therefore reasonably approximate the lost value in case 

they are not protected
4
. In MERGE the WTP, to avoid the non-market damages of a of 2.5°C 

temperature increase above pre-industrial levels, is 2% of GDP when per capita income is above 

40,000 USD 1990. The 2% figure was the US EPA expenditure on environmental protection in 

1995. An S-shaped relationship between per capita income and WTP is then used to infer the WTP 

for other regions. We follow a similar approach, though we use an updated proxy for the WTP, for 

which we consider the EU expenditure on environmental protection. The most recent Eurostat data 

referring to the public sector expenditure reports a total value in 2001 of 54 billion Euro, 0.6% of 

EU25 GDP, or of 120 Euro per capita
5
. This value encompasses activities such as protection of soil 

and groundwater, biodiversity and landscape, protection from noise and radiation, along with more 

                                                           
4
 In practice, the limitations of this approach are well known, and many criticisms have been raised against WTP and 

other stated preference approaches. However, the usual response is that in the end they represent the only viable way to 

capture existence values. 
5
 “Environmental Protection Expenditure in Europe by public sector and specialized producers 1995-2002”  

 http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-NQ-05-010/EN/KS-NQ-05-010-EN.PDF viewed on 

November 24th 2011. 

http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-NQ-05-010/EN/KS-NQ-05-010-EN.PDF
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general research and development, administration and multifunctional activities.We then use the 

expression reported in Warren et al. (2006), which links average per capita environmental 

expenditure and per capita income to extrapolate a relationship between WTP and per-capita 

income: 

 

 
𝑊𝑇𝑃𝑛,𝑡|𝑡=2.5°𝐶 =  𝛾∆𝑇𝑛,𝑡|𝑡=2.5°𝐶𝜀

1

1 + 100𝑒(−0.23∗𝐺𝐷𝑃𝑛,𝑡|𝑡=2.5°𝐶 𝑃𝑂𝑃𝑛,𝑡|𝑡=2.5°𝐶⁄ )  
 

(AI) 

 

In (AI) the parameters γ and ε have been calibrated to give exactly 0.6% of GDP when per capita 

income is 28,780 USD and ΔT=2.5°C. Figure AII shows the s-shaped relationship between per-

capita income and WTP that has been used to compute the WTP in the different model regions, 

which is reported in Table AII.  

 

Figure AII. Willingness to pay as a function of per capita GDP 

 

Note: The black marker refers to the calibration point, a WTP equal 

to 0.6% for the EU income per-capita in 2001, $28,780. 

 

Table AII also compares the resulting values with Hanemann (2008), who applies the same 

procedure, though he starts from a WTP estimates for the US equal to 0.1% of GDP; Nordhaus and 

Boyer (2000) as embedded in the RICE99 model, and by the MERGE model as described in 

Warren (2006).  
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Table AI. Market impacts of 1.92°C global average temperature increase (reference year 2050) on real GDP by region and impact: % change compared 

to the case with no temperature increase 

 All impacts Energy Tourism SLR River Floods Agriculture Forestry Health 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

Used 

this 

study 

Nordhaus 

(2007) 

USA 0.17 0.12 -0.01 0 0.18 0.22 -0.05 -0.08   0.05 -0.02 0.00    

MEUR -0.15 -0.25 -0.05 0 0.07 0.33 -0.03 -0.35 -0.01 -0.19 0.07 -0.02 -0.01  -0.19 -0.02 

NEUR 0.18 -0.25 -0.07 0 0.15 0.33 -0.11 -0.35 -0.01 -0.19 0.23 -0.02 0.00  0.00 -0.02 

EEUR -0.21 0.15 -0.02 0 0.10 0.28 -0.04 -0.01 -0.05 -0.08 -0.15 -0.02 -0.03  -0.03 -0.02 

FSU 0.81 1.78 0.01 0.61 0.32 0.58 -0.03 -0.04   0.49 0.63 0.00    

KOSAU 0.09 0.48 -0.04 0.25 0.15 0.27 -0.04 -0.07   0.01 0.04 0.00    

CAJANZ -0.09 0.02 -0.02 0 -0.10 0.24 -0.16 -0.21   0.19 -0.02 0.00    

NAF -2.67 -0.97 -0.03 -0.25 -0.54 -0.19 -0.02 -0.02   -2.10 -0.51 0.01    

MDE -0.83 -0.64 -0.19 -0.15 -0.42 -0.18 -0.10 -0.03   -0.10 -0.27 -0.03    

SSA -1.50 -0.97 0.00 -0.25 -0.31 -0.19 -0.02 -0.02   -1.09 -0.51 -0.10    

SASIA -3.10 -0.77 0.22 -0.22 0.04 -0.23 -0.32 -0.07   -3.02 -0.25 -0.02    

CHINA 0.20 -0.12 0.04 -0.25 -0.24 0.20 -0.03 -0.06   0.43 -0.02 0.00    

EASIA -2.82 -0.60 0.01 -0.16 -0.36 0.03 -0.10 -0.07   -2.36 -0.40 -0.02    

LACA -0.71 -0.58 -0.04 -0.22 -0.49 0.03 -0.05 -0.08   -0.11 -0.32 -0.01    

The extended names of the regions are: USA – United States, MEURO – Mediterranean Europe, NEURO – Northern Europe , EEURO - Eastern Europe, CAJANZ - Canada, 

Japan, New Zealand, CHINA - China and Taiwan, SASIA - South Asia, SSA - Sub-Saharan Africa, LACA - Latin America, Mexico, and the Caribbean, KOSAU - Korea, South 

Africa, Australia, FSU – Former Soviet Union, EASIA - South East Asia, MED- Middle-East, NAF - North Africa. The results presented in the table have been obtained by 

means of a model with a slightly finer regional disaggregation (14 instead of 12 regions) than that of the WITCH model. This is also the reason why the regional matching is 

imperfect.  

 



31 

 

Table AII. WTP for ecosystems protection related to a temperature increase of 2.5°C (% of regional GDP) 

 AD-WITCH 
Hanemann 

(2008 ) 

Nordhaus 

and Boyer 

(2000) 

(Merge as in Warren, 2006) 

USA 0.69 0.10 0.10 2.00 

Western EU 0.69 0.10 0.25 2.00 

Eastern EU 0.69 0.10 0.10 2.00 

KOSAU 0.69 0.10 0.10 1.99 

CAJAZ 0.69 0.10 0.25 2.00 

TE 0.50 0.08 0.05 1.47 

MENA 0.31 0.05 0.05 0.89 

SSA 0.01 0.002 0.10 0.04 

SASIA 0.06 0.009 0.10 0.18 

CHINA 0.61 0.09 0.05 1.76 

EASIA 0.10 0.02 0.10 0.30 

LACA 0.66 0.099 0.10 1.92 

WORLD 0.49 0.07 0.10 2.00 

USD Billion (2005) 1120 169  4569 
 

 

 The second type of impact refers to the changes in welfare related to modifications in health 

status
6
. The non-market costs related to changes in health status have been estimated by means of a 

value of statistical life approach (VSL). We derived the number of additional deaths related to 

climate-change from two sources. The first is the PESETA project (Ciscar et al., 2009). The 

PESETA research dedicated to the health impacts of climate change computed heat- and cold-

related (cardiovascular and respiratory) deaths or avoided deaths for different degrees of warming 

(1°C, 2.5°C, and 3.9°C above pre-industrial levels) in Europe. The number of heat-related deaths is 

convex in temperature, while the number of avoided cold-related deaths is decreasing and concave. 

Hence, the relationship between net additional deaths and warming is n-shaped with a turning point 

at 2.5°C. We assumed this same relationship for all world regions. Heat- and cold-related diseases 

concern above all developed regions, while in developing regions large impacts will occur through 

vector-borne diseases, primarily malaria, dengue and schistosomiasis. For this aspect we 

extrapolated upon Tol (2002) estimating the number of deaths associated with 1°C of warming in 

different world regions. The study assumes that as per-capita income grows, mortality decreases 

until it disappears at a per-capita income level of 4,000 USD 2005. This implies that vector-born 

disease impacts will remain positive until 2070 only in Sub-Saharan Africa, until 2035 in South 

Asia, until 2015 in China, and until 2020 in East Asia.  

                                                           
6
 Climate-related health impacts are also associated with obvious market effects, directly measurable by changes in 

labour productivity, or in public and private health care expenditure.  The focus here is instead placed on welfare losses 

associated with the disability or discomfort of living as an infirm person, which is a typical non-market aspect.  
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The moral implications aside, the money evaluation associated with loss of life will crucially 

determine the final economic assessment of climate–change-related health impacts and will 

introduce a degree of uncertainty-subjectivity very similar to that related to the assessment of 

ecosystem losses. Aldy and Viscusi (2003), surveying the literature on VSL, point to a fairly wide 

range of available estimates (see Box AI). Our choice was to assign each life the value of $ 1 

million, which is in the upper range of estimates obtained with stated preference methodologies.  

 

BOXAI. The Value of Statistical Life 

According to Aldy and Viscusi (2003) the compensating wage method usually produces higher VSL in 

a range of 4-9 million USD. which entails a revealed preferences approach (hedonic wage) where the 

average risk of mortality is evaluated by a wage premium. This latter reflects the “wage-risk trade-offs” of 

workers with similar jobs in different environmental conditions. Estimates below the 5 million USD value 

usually come from studies using the Society of Actuaries data. These report wages from workers who have 

voluntarily chosen jobs that are an order of magnitude riskier than the average. There are also some studies 

yielding estimates beyond 12 million USD, but either these did not estimate the wage-risk trade-off directly 

or their authors reported unstable estimates. Estimates with this methodology are available only for small 

segments of the population, and usually refer only to current risk of accidental deaths (e.g. no deaths caused 

by air pollutants after a latency period are considered). 

Estimates of roughly 1 million USD are produced by averting behavior approaches. These Stated 

Preference Methods directly ask individuals how much they would be willing to pay to compensate for a 

small reduction in risk. The lower estimates compared with compensating wage methods may reflect several 

characteristics of these studies that distinguish them from the labor market studies. First, some product 

decisions do not provide a continuum of price-risk opportunities (unlike the labor market, which does offer a 

fairly continuous array of wage-risk employment options), but rather a discrete safety decision.  Second, the 

types of products considered in some studies may induce selection based on risk preferences. Third, several 

studies are based on inferred, instead of observed, price-risk trade-offs. 

This methodology has been also applied in the PESETA study. A contingent valuation survey in which 

people of various ages – including elderly persons –  have been asked to report their willingness to pay 

(WTP) for a reduction in their risk of dying has been conducted in UK, France and Italy. The results yielded 

exactly 1.1 million Euro. 

 

Table AIII reports the value obtained for the AD-WITCH world regions. 
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Table AIII. Climate change impacts on health. Economic estimates for a temperature increase of 1, 2.5, and 

3.5°C (% of regional GDP) 

°C USA 
Western 

EU 

Eastern  

EU 
FSU KOSAU CAJANZ MENA SSA SASIA CHINA EASIA LACA 

1.0 0.294 0.332 1.206 2.652 0.156 0.042 -0.173 -3.423 -3.272 0.333 -1.521 0.019 

2.5 0.076 0.098 0.171 0.591 0.028 0.016 -0.171 -1.592 -0.864 -0.225 -0.685 -0.090 

3.5 0.085 0.112 0.202 0.647 0.030 0.018 -0.155 -0.519 -0.717 -0.233 -0.832 -0.087 
 

Benefits are expected in cooler, richer regions, particularly Transition Economies and Eastern 

Europe, where decrease in cold-related mortality compensates increases in the heat-related one, and 

where vector-borne diseases are absent. Such a result is in contrast with Nordhaus (2007) and 

Nordhaus and Boyer (2000), since they assumed that any increased mortality in the summer is 

completely offset by the respective decrease in mortality from winter warming. Regions that suffer 

from vector-borne diseases face large economic impacts associated with health, but decreasing 

throughout time, as they get richer. Figure AIII compares the newly estimated impacts embedded in 

the AD-WITCH model with Nordhaus and Boyer (2000), showing the market and non-market 

components at the temperature calibration point (+2.5°C). Note that, for the sake of comparison, 

Nordhaus and Boyer (2000) figures for non-market impacts are net of the catastrophic damages and 

only refer to health, ecosystems and settlements. 

 

Figure AIII: Estimated regional non market (left) and market (right) damages for a +2.5°C temperature 

increase above pre-industrial levels. 
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