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1 Overview

Social scientists have recently put increased emphasis on exploring the wide range of
substantive inferences from their statistical models. One area where this new focus has
been especially useful is analyses of ordinary least-squares (OLS) models with autore-
gressive processes. By specifying models with a lagged dependent variable, scholars
implicitly assume that the full effects of an independent variable occur for more than
just one time interval. For example, De Boef and Keele (2008) show that in models with
autoregressive processes, the β’s only provide the short-term effect of the independent
variable in that interval. Because the value of the dependent variable depends on its
previous values, each independent variable also has a long-term effect. In an OLS model
with a lagged dependent variable (and no lagged exogenous variables), the long-term
effect of an independent variable X1 is β̂/(1− φ̂), where β̂ is the parameter estimate for
X1 and φ̂ is the parameter estimate for the lagged dependent variable. Fully exploring
the substantive effects thus requires providing the long-term effects in addition to other
quantities of interest, such as median and mean lag lengths (De Boef and Keele 2008).

This is consistent with the message from King, Tomz, and Wittenberg (2000) to pro-
vide quantities of interest that are substantively meaningful, easy to comprehend, and
accompanied by measures of uncertainty. Quantities of interest (that is, predicted val-
ues, first-differences) and their measures of uncertainty (that is, standard errors, confi-
dence intervals) can be calculated via analytical methods. King, Tomz, and Wittenberg
(2000) suggest that the advances in computing power have ushered in an era for virtually
all computers to engage in simulation-based techniques that previously were possible
only for supercomputers. A more in-depth discussion is provided by King, Tomz, and
Wittenberg (2000), so we will only briefly describe simulation methods and their use-
fulness.

c© 2011 StataCorp LP st0242



578 Dynamic simulations of autoregressive relationships

Consider a very broad class of statistical models that can be summarized via two
equations:

Yi ∼ f(θi, α), θi = g(Xi, β)

The first equation describes the stochastic component of the statistical model, or “the
probability density (or mass) function that generates the dependent variable Yi(i =
1, . . . , n) as a random draw from the probability density f(θi, α)” (King, Tomz, and
Wittenberg 2000, 348). The characteristics that vary across observations i are con-
tained in each parameter vector θi, while those that do not vary are in the ancillary
parameter matrix α. The second equation is the systematic component, where θi varies
according to the values of the independent variables (Xi). The functional form g()
“specifies how the explanatory variables and effect parameters get translated into θi”
(King, Tomz, and Wittenberg 2000, 348).

For OLS regression with normally distributed, homoskedastic errors (σ2), we have

Yi ∼ N
(
μi, σ

2
)
, μi = Xiβ

where the systematic component (Xiβ) is of the linear form

Xiβ = β0 + Xi1β1 + Xi2β2 + · · ·

After fitting the model, many researchers stop once they interpret the coefficients and
perhaps their standard errors. However, there are other quantities and measures of un-
certainty that can aid the substantive interpretation of the causal relationships. Some
of these measures of uncertainty are incomplete because they ignore both estimation un-
certainty (which comes from estimating the α and the β’s) and fundamental uncertainty
(which comes from having a stochastic component).

King, Tomz, and Wittenberg (2000) advocate statistical simulation for overcoming
these problems and improving statistical inference. Much like survey sampling can tell
us something about the population as a whole, the central limit theorem allows us to
make inferences about probability distributions by simulating from the distribution.
In the case of OLS, one can use point estimates and the variance–covariance matrix
returned after estimation of a regression to randomly draw (simulate) the parameters
from a multivariate normal distribution with mean equal to the parameters and vari-
ance equal to the variance–covariance matrix. For example, one can make n draws
from the multivariate normal distribution, calculate the predicted value as the mean of
those values, and calculate lower and upper confidence bounds using the resulting rank
statistics.

King, Tomz, and Wittenberg’s (2000) clarify package contains three separate Stata
commands that made it easy for scholars to generate meaningful quantities of interest
following a number of estimation procedures.1 First, estsimp generates n draws of the

1. Our brief summary of simulation methods and the clarify package are modified to fit the purposes
of this command. We encourage interested readers to explore these methods with the original
sources.
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point estimates and ancillary parameters (in the OLS case, σ2). Next, the user can
specify with setx the values of the independent variables (XC) according to a variety
of numbering conventions. Finally, simqi generates a variety of quantities of interest
for that scenario, including predicted values and first-differences.

We believe that scholars are neglecting some of the most meaningful substantive
inferences from autoregressive models (for an example of this in an applied field, see
Williams and Whitten [2008]). Specifically, the most effective way to observe the long-
term effects of exogenous variables in autoregressive models is through simulating the
predicted value (and confidence interval) for a given scenario over a given number of
time intervals. The dynsim command uses the clarify package to create j long-term
dynamic simulations of up to four user-specified scenarios for OLS models with a lagged
dependent variable. It is dynamic because each additional iteration uses the predicted
value from the previous iteration as the value of the lagged dependent variable in the
next scenario. These simulations are then saved to a new dataset, which can be pre-
sented graphically or in a tabular fashion. The forecast() option calculates analytical
standard errors that incorporate forecasting error into the dynamic simulations so that
the confidence intervals are not underestimated. Greene (2008) demonstrates that the
conditional forecasting error variance is

Var
(
ŷT+F |T

)
= σ2 {1 + Ψ(1)11 + Ψ(2)11 + · · ·+ Ψ(F − 1)11}

where Ψ(i) = Cijj′Ci′

When we have a single lagged dependent variable (that is, i = 1), Ψ(i) = Cijj′Ci′

collapses to Ψ(i) = γ2σ2∀i, making the conditional forecast error variance

Var
(
ŷT+F |T

)
= σ2

(
1 +
∑
F

σ2γ2

)

Available options include specifying the values of an exogenous variable to change
with each iteration. This exogenous variable, called the “shock” variable, is included by
specifying either an additional dataset containing the shock variable or a Stata number
list. The program also effectively interacts the shock variable with up to four other
independent variables in the model.

The dynsim command automates a set of code to produce dynamic simulations. To
illustrate generating predicted values and 95% confidence intervals for a scenario where
all the independent variables are fixed at their means for 10 iterations, we present the
following code:
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. webuse grunfeld

. generate lag_invest = L.invest

. estsimp regress invest lag_invest mvalue kstock

. local it = 10 /* 10 iterations */

. local ldv_value = 139.2 /* Starting value for LDV */

. foreach i of numlist 1(1)`it´ {
2. setx lag_invest `ldv_value´
3. quietly simqi, genpv(yhat_`i´) pv
4. quietly sum yhat_`i´, meanonly
5. local yhat = `r(mean)´
6. _pctile yhat_`i´, percentiles(2.5 97.5) /* 95% CI */
7. display as result "Iteration = " `i´
8. display as result "Predicted Value = " `yhat´ " 95% C.I. =

> [" `r(r1)´ ", " `r(r2)´ "]"
9. local ldv_value = `yhat´

}

2 Syntax

dynsim, ldv(varname) scen1(string)
[
scen2(string) scen3(string) scen4(string)

n(integer) sig(cilevel) shock(varname) shock data(filename)

shock num(numlist) modify(varlist) inter(varlist) saving(string)

forecast(string)
]

3 Options

ldv(varname) specifies the name of the lagged dependent variable. ldv() is required.

scen1(string) specifies the values of the variables used to generate the predicted values
when t = 0. At least one scenario must be given. The coding designation is identical
to the options used in clarify’s setx (except for setting the values to a specific
observation). At each subsequent iteration, these values will not change except for
the value of the lagged dependent variable, the shock variable (shock(), if specified),
and the interacted variable (inter(), if specified). scen1() is required.

scen2(string), scen3(string), and scen4(string) are optional and are only used if more
than one scenario is desired. A maximum of four scenarios is allowed. These follow
the same conventions as scen1().

n(integer) specifies the number of iterations (or time intervals) over which the program
will generate the predicted value of the dependent variable. The default is n(10).

sig(cilevel) specifies the level of statistical significance of the confidence intervals (cal-
culated via the percentile method). This value must be between 10 and 99.99.

shock(varname) allows the user to choose an independent variable (and its first n()
values) and have the variable (and potentially different values) impact the scenarios
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at each simulation. If this command is specified, the user must specify the n() shock
values through either a dataset containing the variable (shock data()) or a Stata
numlist (shock num()). For example, if shock data(shock.dta) is specified, then
dynsim will read the first n() values of the shock() variable. If shock num() is
specified as 0(10)100, the value of the shock() variable will be 0 at time t + 1, 10
at time t + 2, and so on. The number of values assigned to the shock variable must
exceed the number of simulations. If the shock variable is interacted with another
variable in the model, the user must also specify the name of the modifying variable
(modify()) and the interaction variable (inter()).

shock data(filename) is one of two ways of specifying the shock values. This must
either give the filename or be located in the working directory. The dataset used to
get the shock variable (called the shock dataset) must have at least the number of
iterations specified in n(), and it must contain a variable with the same name as
the shock variable (shock()).

shock num(numlist) is the second way of specifying the shock values. Any numlist is
acceptable if it contains at least n() values.

modify(varlist) specifies up to four variables that modify the relationship between the
shock variable and the dependent variable. If the shock variable interacts with
another variable in the model, then dynsim automatically updates the value of the
interaction to be the product of the shock and it modifies the variable at each
interaction. If inter() is specified, then modify() must also be specified. The
same number of variables must appear in inter() as in modify(). The variables
must also appear in the same order as in estsimp.

inter(varlist) specifies up to four interaction variables. If modify() is specified, then
inter() must also be specified. Much like modify(), the variables must appear in
the same order as in estsimp.

saving(string) creates a dataset containing the predicted values and confidence inter-
vals for each scenario. It automatically replaces any dataset with the same name,
so change the name of the dataset used if you do not want it replaced.

forecast(string) produces confidence intervals based on one of four options for calcu-
lating the conditional variance of a forecast: The ae suboption analytically calculates
the standard errors based on Enders’ (2010, 81–89) formula for the conditional vari-
ance of the forecast. The ag suboption analytically calculates the standard errors
based on Greene’s (2008, 686–689) formula for the conditional variance of a forecast.
The se and sg suboptions use the Enders and Greene formulas, respectively, but
use the simulations to produce n() estimates of the conditional variance, which are
then used to produce confidence intervals based on the percentile method.
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4 Examples

To illustrate the features of dynsim, we use the Grunfeld (1958) dataset (webuse
grunfeld) to fit the following model via OLS regression:

Iit = α + β1Iit−1 + β2Fit + β3Cit + μit

where Iit denotes the real gross investment for firm i in year t, Iit−1 is the firm’s
investment for the previous year, Fit is the real value of the firm, and Cit is the real value
of the capital stock. The dataset contains information for 10 large U.S. manufacturing
firms from 1935–1954 (Baltagi 2008, 24).

Consider an OLS model that predicts a firm’s real gross investment (invest) with its
one-year lag (lag invest), the firm’s market value (mvalue), and the real value of the
capital stock (kstock). We would first decide how many scenarios we want to display
for our dynamic simulations and the values of each of the variables in those scenarios.
Suppose that we want three different scenarios based on holding the firm’s market value
and value of the capital stock at its 5th percentile, mean, and 95th percentile. We also
provide the starting value for the lagged dependent variable (in the scen() options),
which here is the sample mean. We first use estsimp to simulate 1,000 draws of each
coefficient. We then use dynsim to produce 20 dynamic simulations (n(20)) of each of
the three scenarios. The resulting predicted values and 95% confidence intervals (the
default, changeable via the sig() option) are saved to a dataset named dynsim1.dta
in the working directory.

. estsimp reg invest lag_invest mvalue kstock

. dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue p5 kstock p5) scen2(mean)
> scen3(lag_invest mean mvalue p95 kstock p95) n(20) saving(dynsim1)

Table 1 lists the dynamics of the first scenario. The predicted value at time t becomes
the value of lag invest for time t + 1 and so on. The starting values and the values
for each iteration of the scenarios are returned in the r(t0 s1) and r(xc s1) matrices,
respectively. To view these values, list the returned matrices:

. matrix list r(t0_s1)

. matrix list r(xc_s1)
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Table 1. Illustration of the dynamics for the first two forecasts of the 5th percentile
scenario shown in figure 1

Time Scenario Predicted gross investment

t
Gross investmentt−1: 139.2*
Firm value: p5 106.1
Capital stock: p5

t + 1
Gross investmentt: 106.1
Firm value: p5 77.2
Capital stock: p5

t + 2
Gross investmentt+1: 77.2
Firm value: p5 51.9
Capital stock: p5

*The starting value for gross investment is the sample mean.

We can present the predicted values (and confidence intervals) in the new dynsim
dataset in different ways. We have found that Stata’s twoway rcap command is a
simple way of demonstrating the predicted values and uncertainty, though it is certainly
reasonable to display them in a table. We graph the dynamic simulations in figure 1.
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Figure 1. An example of a dynamic simulation of three scenarios
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Dynamic simulations produce particularly helpful figures because of the variety of
inferences we can make from them. First, we can use these simulations to make in-
ferences about the long-term effects of variables. One can determine if the changes in
predicted probabilities are statistically different across time and scenarios. For example,
because the 95% confidence intervals with the 95th percentile scenario do not overlap
at t+2 compared with those at t = 0, we can infer that the 95th percentile scenario will
have a statistically higher gross investment after two years than it did at time t = 0. We
can make these types of inferences across scenarios as well. While there is no statistical
difference between the 5th percentile and mean scenarios in the first period (t + 1), the
confidence intervals in the second period (t+2) do not overlap. This would suggest that
the long-term effect of these variables on gross investment is quite strong.

We can incorporate forecasting error with analytically derived standard errors with
the forecast() option. We allow the user to specify one of four options for calculating
uncertainty for the forecast: ag, ae, sg, or se. The options are based on whether the
user wants to calculate the confidence intervals analytically (a) or through simulation
methods (s), and whether the user wants to use the Greene (2008) (g) or the Enders
(2010) (e) formula for the conditional variance of a forecast.

Consider the simple model yt = α0 + α1yt−1 + εt, where α1 is the parameter
for the lagged dependent variable. We calculate the error variance with the formula
σ2 = RSS/ (N − 2), where RSS is the residual sum of squares and N is the number of
observations. Enders (2010) shows that we can easily generate the conditional variance
of a forecast of j periods with the following formula:

Var {et(j)} = σ2
(
1 + α2

1 + α4
1 + α6

1 + · · ·+ α
2(j−1)
1

)
The forecast error variance at j = 1 is σ2, the forecast error variance at j = 2 is
σ2(1 + α2

1), and so on. Greene (2008) provides a slightly different formula:2

Var {et(j)} = σ2

(
1 +
∑
F

σ2α2
1

)

Note that in both formulas, while the size of the confidence intervals increases at each
additional forecast period, the size of the confidence intervals will be the same across
scenarios for the same iteration.

Another benefit of estsimp is that the n() draws for the values of α1 and σ2 are easily
accessible. One can take the mean value of the n() draws for both α1 and σ2 to calculate
the analytical standard errors, and then use the desired level of statistical significance
(sig()) to produce analytical confidence intervals. Or one can take advantage of the
information present in the n() draws to calculate n() estimates of the conditional
variance of the forecast, and then use the percentile method to calculate simulation-
based forecast errors.

2. This is the case when the lagged dependent variable is limited to a one-year lag.
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Assuming that the user has already estsimped the data, one can produce the dy-
namic simulations shown in figure 2 with the following code.3 We simplify the code
so that there is only one scenario with all values held at their mean. To demonstrate
that the analytically derived and simulation-based confidence intervals are similar, we
choose the forecast(se) option (simulation-based standard errors via Enders’ formula)
in the first dynsim and the forecast(ae) option (analytically derived standard errors
via Enders’ formula) in the second.

. dynsim, ldv(lag_invest) scen1(mean) n(20) sig(90) saving(dynsim_se) forecast(se)

. dynsim, ldv(lag_invest) scen1(mean) n(20) sig(90) saving(dynsim_ae) forecast(ae)
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Figure 2. An example of a dynamic simulation with confidence intervals based on
analytical and simulation-based forecasting errors

Using the forecast() option widens the confidence intervals to represent the in-
creased uncertainty of future forecasts. In our experience, however, the different options
give similar substantive answers, so the choice is one of personal preference.

Figure 3 illustrates how an exogenous shock—in this case, the firm’s market value
(mvalue)—influences a firm’s real gross investment over two scenarios for 15 iterations.
To produce the dynamic simulations, we first create a dataset (grunfeldshock) con-
taining a series of values to use as the exogenous shock (mvalue). Then we use dynsim
to simulate those values.

3. We slightly jitter the confidence intervals so that it is easier to compare their sizes.
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. preserve

. keep if company == 1

. keep mvalue

. save grunfeldshock, replace

. restore

. dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue 1000 kstock p5)
> scen2(lag_invest mean mvalue 1000 kstock p95) n(15) saving(dynsim3)
> shock(mvalue) shock_data(grunfeldshock.dta)

Note that we now include two additional options: the shock() option provides the name
of the exogenous variable, and the shock data() option gives the name of the dataset
containing the location of the values of the exogenous variable. Here we use the values
of mvalue for the first company in the dataset. The value of mvalue for the initial
calculation (t = 0) is provided in the scen() options (here mvalue = 1000). One can
also specify the values of the shock variable with a Stata numlist (that is, 0(10)100).
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Figure 3. An example of a dynamic simulation with the inclusion of a shock variable

The breadth of our inferences is increased by including a shock variable. In this
example, we can examine whether the 5th percentile scenario responds to changes in
the shock variable (mvalue) differently than the 95th percentile scenario. One can also
use this figure to determine how long it takes for the predicted values for each scenario
to return to their preshock values.

Interactive relationships between the shock variable and the other independent vari-
ables can also be incorporated into the command with the use of the inter() option. Up
to four modifying variables (modify()) and interactive variables (inter()) can be spec-
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ified, though these variables must be in the same order as they appear in the estsimp
command.

In the next example, we interact the shock variable (mvalue) with another exogenous
variable from the model (kstock), with the result displayed in figure 4:

. generate z = mvalue * kstock

. estsimp reg invest lag_invest mvalue kstock z

. dynsim, ldv(lag_invest) scen1(lag_invest mean mvalue 1000 kstock p5)
> scen2(lag_invest mean mvalue 1000 kstock p95) n(15) saving(dynsim3)
> shock(mvalue) shock_data(grunfeldshock.dta) modify(kstock) inter(z)
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Figure 4. An example of a dynamic simulation where a shock variable interacts with an
exogenous variable

This is a nice way to illustrate that the effects of an independent variable on the
dependent variable depend on the values of the shock variable. In this case, the difference
between the 5th percentile and 95th percentile scenarios becomes more pronounced when
there are high values of the shock variable (for instance, at t + 3). It is also interesting
to note that while the predicted value for the 5th percentile varies little over the span of
15 iterations regardless of the value of the exogenous shock, the 95th percentile scenario
is much more variable.
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