

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

THE STATA JOURNAL

Editor

H. Joseph Newton
Department of Statistics
Texas A&M University
College Station, Texas 77843
979-845-8817; fax 979-845-6077
jnewton@stata-journal.com

Editor

Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Nathaniel Beck
New York University

Rino Bellocchio
Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

Maarten L. Buis
Tübingen University, Germany

A. Colin Cameron
University of California–Davis

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

David Epstein
Columbia University

Allan Gregory
Queen's University

James Hardin
University of South Carolina

Ben Jann
University of Bern, Switzerland

Stephen Jenkins
London School of Economics and
Political Science

Ulrich Kohler
WZB, Berlin

Frauke Kreuter
University of Maryland–College Park

Stata Press Editorial Manager
Stata Press Copy Editors

Peter A. Lachenbruch
Oregon State University

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Roger Newson
Imperial College, London

Austin Nichols
Urban Institute, Washington DC

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Lisa Gilmore
Fred Iacoletti and Deirdre Skaggs

The *Stata Journal* publishes reviewed papers together with shorter notes or comments, regular columns, book reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository papers that link the use of Stata commands or programs to associated principles, such as those that will serve as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go “beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could be of interest or usefulness to researchers, especially in fields that are of practical importance but are not often included in texts or other journals, such as the use of Stata in managing datasets, especially large datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata with topics such as extended examples of techniques and interpretation of results, simulations of statistical concepts, and overviews of subject areas.

For more information on the *Stata Journal*, including information for authors, see the webpage

<http://www.stata-journal.com>

The *Stata Journal* is indexed and abstracted in the following:

- CompuMath Citation Index®
- Current Contents/Social and Behavioral Sciences®
- RePEc: Research Papers in Economics
- Science Citation Index Expanded (also known as SciSearch®)
- Scopus™
- Social Sciences Citation Index®

Copyright Statement: The *Stata Journal* and the contents of the supporting files (programs, datasets, and help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the *Stata Journal*.

The articles appearing in the *Stata Journal* may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the *Stata Journal*.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the *Stata Journal*, in whole or in part, on publicly accessible websites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the *Stata Journal* or the supporting files understand that such use is made without warranty of any kind, by either the *Stata Journal*, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the *Stata Journal* is to promote free communication among Stata users.

The *Stata Journal*, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata, Mata, NetCourse, and Stata Press are registered trademarks of StataCorp LP.

Treatment interactions with nonexperimental data in Stata

Graham K. Brown
Centre for Development Studies
University of Bath
Bath, UK
g.k.brown@bath.ac.uk

Thanos Mergoupis
Department of Economics
University of Bath
Bath, UK
a.mergoupis@bath.ac.uk

Abstract. Treatment effects may vary with the observed characteristics of the treated, often with important implications. In the context of experimental data, a growing literature deals with the problem of specifying treatment interaction terms that most effectively capture this variation. Some results of this literature are now implemented in Stata. With nonexperimental (observational) data, and in particular when selection into treatment depends on unmeasured factors, treatment effects can be estimated using Stata’s `treatreg` command. Though not originally designed for this purpose, `treatreg` can be used to consistently estimate treatment interaction parameters. With interactions, however, adjustments are required to generate predicted values and estimate the average treatment effect. In this article, we introduce commands that perform this adjustment for multiplicative interactions, and we show the required adjustment for more complicated interactions.

Keywords: st0240, `itreatreg`, treatment-effects models, interaction terms

1 Introduction

Treatment effects may vary with the observed characteristics of the treated, often with important implications (Royston and Sauerbrei 2008). In the context of experimental data, a growing literature deals with the problem of specifying treatment interaction terms that most effectively capture this variation (see Sauerbrei, Royston, and Zapien [2007], for references). Some results of this literature are now implemented in Stata (Royston and Sauerbrei 2009). With nonexperimental (observational) data, and in particular when selection into treatment depends on unmeasured factors, treatment effects can be estimated using the Stata `treatreg` (see [R] `treatreg`) command. Though not originally designed for this purpose, `treatreg` can be used to consistently estimate treatment interaction parameters. With interactions, however, adjustments are required to generate predicted values and to estimate the average treatment effect (ATE). In this article, we introduce commands that perform this adjustment for multiplicative interactions, and we show the required adjustment for more complicated interactions.

2 Treatment interactions and `treatreg`

Consider an example where selection into the treatment Y_2 is a function of ϵ_2 , which is correlated with ϵ_1 , the error term in the equation of the outcome Y_1 :

$$\begin{aligned} Y_1 &= \beta_0 + \beta_1 X_1 + \beta_2 Y_2 X_1 + \delta Y_2 + \epsilon_1 \\ Y_2^* &= \gamma_0 + \gamma_1 X_2 + \epsilon_2 \\ Y_2 &= \begin{cases} 1 & \text{if } Y_2^* > 0 \\ 0 & \text{if } Y_2^* \leq 0 \end{cases} \end{aligned} \quad (1)$$

We observe X_1 , X_2 , Y_1 , and Y_2 ; $E(\epsilon_i) = 0$; $\text{Var}(\epsilon_i) = \sigma_i^2$ for $i = 1, 2$; and we assume that $\sigma_2^2 = 1$. Assuming that ϵ_1 and ϵ_2 follow a bivariate normal distribution with correlation ρ , the parameters $\beta_0, \beta_1, \beta_2, \delta, \gamma_0, \gamma_1, \sigma_1$, and ρ can be consistently estimated using either the maximum likelihood (ML) or the two-stage estimation procedure of `treatreg`. Using `treatreg` to fit models similar to (1) but with $\beta_2 = 0$ was first discussed in [Cong and Drukker \(2000\)](#). When $\beta_2 \neq 0$, we have an additional endogenous variable, but this does not change the underlying random structure of the model; the identification conditions remain the same as when $\beta_2 = 0$ ([Wooldridge 2010](#), 265–266).

For the purpose of estimating the above parameters, it is irrelevant whether `treatreg` recognizes the term $\beta_2 Y_2 X_1$ as an interaction term between the treatment and an exogenous variable. What matters is that the likelihood function (for ML estimation) and the estimating equations (for two-stage estimation) are correctly specified and therefore the estimates are consistent.

However, when estimating the ATE, results computed with `treatreg` postestimation must be corrected. In the context of (1), the ATE is given by $E(Y_1|Y_2 = 1) - E(Y_1|Y_2 = 0)$ ([Wooldridge 2010](#), 905). `treatreg` postestimation provides the command `predict newvar, yctr` to estimate $E(Y_1|X_1, X_2, Y_2 = 1)$ and `predict newvar, ycntrt` to estimate $E(Y_1|X_1, X_2, Y_2 = 0)$. These estimated conditional expectations are then averaged across the sample and differenced to obtain an estimate of the ATE. This is appropriate when there is no treatment interaction term. When a treatment interaction term is present, however, the `predict` commands do not condition the treatment interaction term according to the conditioning value of the treatment; the sample value of the treatment is used instead.

It is instructive for what follows to derive the deviation between the two processes in the context of (1). In the population, the conditional expectations of the outcome are given by¹

$$E(Y_1|X_1, X_2, Y_2 = 1) = \beta_0 + (\beta_1 + \beta_2)X_1 + \delta + \sigma_1 \rho \frac{\phi(\gamma_0 + \gamma_1 X_2)}{\Phi(\gamma_0 + \gamma_1 X_2)} \quad (2)$$

$$E(Y_1|X_1, X_2, Y_2 = 0) = \beta_0 + \beta_1 X_1 - \sigma_1 \rho \frac{\phi(\gamma_0 + \gamma_1 X_2)}{1 - \Phi(\gamma_0 + \gamma_1 X_2)} \quad (3)$$

1. Equations (2) and (3) follow the formula for deriving moments of the incidentally truncated bivariate normal distribution (see theorem 19.5 in [Greene \[2012, 873\]](#)).

where $\phi(\cdot)$ is the standard normal density and $\Phi(\cdot)$ is the standard normal cumulative distribution function. The effect of the treatment on one observation is just their difference:

$$\begin{aligned} E(Y_1|X_1, X_2, Y_2 = 1) - E(Y_1|X_1, X_2, Y_2 = 0) = \\ \beta_2 X_1 + \delta + \sigma_1 \rho \frac{\phi(\gamma_0 + \gamma_1 X_2)}{\Phi(\gamma_0 + \gamma_1 X_2) \{1 - \Phi(\gamma_0 + \gamma_1 X_2)\}} \end{aligned} \quad (4)$$

The ATE, the treatment effect across the whole population, is then

$$\begin{aligned} E(Y_1|Y_2 = 1) - E(Y_1|Y_2 = 0) = \\ \beta_2 E(X_1) + \delta + \sigma_1 \rho E \left[\frac{\phi(\gamma_0 + \gamma_1 X_2)}{\Phi(\gamma_0 + \gamma_1 X_2) \{1 - \Phi(\gamma_0 + \gamma_1 X_2)\}} \right] \end{aligned} \quad (5)$$

where (5) follows from (4) by the law of iterated expectations (Wooldridge 2010, 31), and where the expectations on the right-hand side (RHS) are over X_1 and X_2 , respectively. An estimator of the ATE can then take the general form

$$\widehat{\beta}_2 \bar{X}_1 + \widehat{\delta} + \widehat{\sigma}_1 \widehat{\rho} \left[\frac{\phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}{\Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2) \{1 - \Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)\}} \right] \quad (6)$$

where the expectation terms of the RHS of (5) are estimated by the corresponding sample means, and the parameters β_2 , δ , σ_1 , ρ , γ_0 , and γ_1 can be estimated using ML or another method.

In general, the ATE can be estimated using the **treatreg predict** commands, but using the **predict** command is not straightforward when interaction terms are present. With one treatment interaction term, the predicted value of one observation conditional on the observed variables and on being treated is given in (2). Because the **predict** commands in the interaction term use the sample value instead of the conditioning value of the treatment, using the **predict** command the RHS of (2) is estimated as

$$\widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 Y_2 X_1 + \widehat{\delta} + \widehat{\sigma}_1 \widehat{\rho} \frac{\phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}{\Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}$$

instead of

$$\widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_1 + \widehat{\delta} + \widehat{\sigma}_1 \widehat{\rho} \frac{\phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}{\Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}$$

The difference between the two is

$$\widehat{\beta}_2 X_1 - \widehat{\beta}_2 Y_2 X_1$$

Averaging across the sample, we have

$$\begin{aligned}
 \widehat{\beta}_2 \overline{X_1} - \widehat{\beta}_2 \overline{Y_2 X_1} &= \widehat{\beta}_2 \frac{1}{N} \left(\sum_i X_{1i} - \sum_i Y_{2i} X_{1i} \right) \\
 &= \widehat{\beta}_2 \frac{1}{N} \left(\sum_{i: Y_2=1} X_{1i} + \sum_{i: Y_2=0} X_{1i} - \sum_{i: Y_2=1} Y_{2i} X_{1i} - \sum_{i: Y_2=0} Y_{2i} X_{1i} \right) \\
 &= \widehat{\beta}_2 \frac{1}{N} \left(\sum_{i: Y_2=1} X_{1i} + \sum_{i: Y_2=0} X_{1i} - \sum_{i: Y_2=1} X_{1i} \right) \\
 &= \widehat{\beta}_2 \frac{1}{N} \sum_{i: Y_2=0} X_{1i}
 \end{aligned} \tag{7}$$

Similarly, the predicted value of one observation conditional on the observed variables and on not being treated is given in (3). As before, using the `treatreg predict` command, the RHS of (3) is estimated as

$$\widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 Y_2 X_1 - \widehat{\sigma}_1 \widehat{\rho} \frac{\phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}{\Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}$$

instead of

$$\widehat{\beta}_0 + \widehat{\beta}_1 X_1 - \widehat{\sigma}_1 \widehat{\rho} \frac{\phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}{\Phi(\widehat{\gamma}_0 + \widehat{\gamma}_1 X_2)}$$

The difference between the two is now

$$-\widehat{\beta}_2 Y_2 X_1$$

Averaging across the sample gives

$$\begin{aligned}
 -\widehat{\beta}_2 \overline{Y_2 X_1} &= -\widehat{\beta}_2 \frac{1}{N} \sum_i Y_{2i} X_{1i} \\
 &= -\widehat{\beta}_2 \frac{1}{N} \left(\sum_{i: Y_2=1} Y_{2i} X_{1i} + \sum_{i: Y_2=0} Y_{2i} X_{1i} \right) \\
 &= -\widehat{\beta}_2 \frac{1}{N} \sum_{i: Y_2=1} X_{1i}
 \end{aligned} \tag{8}$$

Subtracting (8) from (7) gives the difference between the estimator in (6) and the quantity computed on the basis of the `predict` commands:

$$\begin{aligned}
 \hat{\beta}_2 \frac{1}{N} \sum_{i: Y_2=0} X_{1i} + \hat{\beta}_2 \frac{1}{N} \sum_{i: Y_2=1} X_{1i} &= \hat{\beta}_2 \frac{1}{N} \left(\sum_{i: Y_2=0} X_{1i} + \sum_{i: Y_2=1} X_{1i} \right) \\
 &= \hat{\beta}_2 \frac{1}{N} \sum_i X_{1i} \\
 &= \hat{\beta}_2 \bar{X}_1
 \end{aligned} \tag{9}$$

This is the first term of the estimator in (6). Therefore the quantity computed with the `predict` commands is the sum of the remaining two terms in (6), namely, the coefficient of the treatment indicator $\hat{\delta}$ and the selection bias term. From (9), we conclude that the estimator in (6) will be greater than the quantity computed with the `predict` commands if the sample mean of the interaction variable and the interaction coefficient have the same sign; otherwise, the estimator will be smaller.

It is straightforward to extend this result to contexts of treatment interactions with more independent variables. For a treatment interaction of the general form $f(X_1, Y_2)$, where $f(\cdot)$ is any function, the adjustment term corresponding to (9) is

$$\hat{\beta}_2 \left\{ \bar{f}(X_1, Y_2 = 1) - \bar{f}(X_1, Y_2 = 0) \right\} \tag{10}$$

The results of this section can be extended easily to several interactions.

3 The `itreatreg` command

The `itreatreg` command can be used when multiplicative treatment interactions enter the outcome equation in a model such as (1). In a model with nonexperimental data and selection on the basis of unobservables, as in (1), multiplicative treatment interactions are interactions of the form $Y_2 f(X_1)$, where $f(\cdot)$ can be any function of X_1 .

The `itreatreg` and `treatreg` commands produce the same parameter estimates of the model. In addition to these estimates, `itreatreg` uses the adjustment described in the previous section to evaluate the estimator in (6). The computational heart of the command calls `treatreg` internally, and the adjustments are made from the estimates provided by `treatreg` and stored in two new variables. `itreatreg` also displays and returns the adjusted ATE and the standard deviation of the treatment effect.

3.1 Syntax

The syntax of the `itreatreg` command is

```
itreatreg depvar [indepvars_ni] [if] [in],  
    treat(depvar_t = indepvars_t [ , noconstant]) x(xvars [= indepvars_i])  
    gen(stubname) [oos twostep]
```

where `depvar` is the dependent variable of interest in the outcome equation. `indepvars_ni` is the list of predictors in the outcome equation that are not interacted with the treatment variable. This is optional in so far as predictor variables that are interacted with the treatment variable are specified in the `x()` option, so if all the predictor variables are included with interaction terms, then this list will be empty.

3.2 Options

`treat(depvar_t = indepvars_t [, noconstant])` specifies the equation for the treatment selection, where `depvar_t` is the treatment variable and `indepvars_t` is the list of predictor variables for the treatment, in a manner identical to the specification in the `treatreg` command. It is an integral part of specifying a treatment-effects model and is required. The `noconstant` option suppresses the constant in the treatment equation.

`x(xvars [= indepvars_i])` specifies the treatment interaction variables `xvars` and, optionally, the original variables `indepvars_i` that were interacted with the treatment. `x()` is required. The inclusion of `indepvars_i` is optional if one wishes to include only the interaction term. At least one `xvar` must be specified, otherwise `treatreg` itself is appropriate. Moreover, if the original variables are included, then they must be specified correctly in `x()` and not included in the list of independent variables `indepvars_ni` directly after the dependent variable. For example, `itreatreg y1, treat(y2=x1) x(y2x2) gen(pr)` would fit a simple model in which an interaction between the treatment variable `y2` and an independent variable `x2`—that is, `y2x2`—is the sole predictor of `y1`, aside from the treatment variable itself. Inclusion of the original independent variable `x2` in the model must be specified: `itreatreg y1, treat(y2=x1) x(y2x2=x2) gen(pr)`.

`gen(stubname)` is required and specifies the `stubname` for the two new variables created by `itreatreg`, `stubnamectr` and `stubnamecntr`, that contain for each observation, respectively, the predicted value of the dependent variable `depvar` in the presence of the treatment and the predicted value in the absence of the treatment. This is analogous to the `predict varname, yctr` and `predict varname, ycntr` postestimation commands for `treatreg`, but it is corrected for the effect of the interaction variables. Contrary to the usual `predict` syntax, the default in `itreatreg` is to create predictions only for those observations used in the estimation process. Applying the predictions to the entire dataset requires specification of the `oos` option

(see below). If the variable names created by this process are unavailable (for example, if one specifies `gen(pr)` when there already exists a variable named `prctrt`), then `itreatreg` will still produce the estimated coefficients but will not calculate the predicted values or the ATE.

`oos` specifies that the predicted values generated by `treatreg`—and hence the calculation of the ATE—are applied to all observations in the dataset. By default, the predictions are otherwise applied only to those observations included in the estimation of the coefficients.

`twostep` specifies that two-step consistent estimates of the parameters, standard errors, and covariance matrix of the model be produced instead of the default ML estimates.

3.3 Saved results

Though `itreatreg` provides estimation of coefficients, it does so by calling the `treatreg` function internally. `itreatreg` is primarily a postestimation command that creates adjusted predictions for interaction terms. Therefore, normal Stata postestimation commands, such as `predict`, run after `itreatreg` will act on the estimations provided by `treatreg`, and they will not take into account the adjustments for interaction made by `itreatreg`. In addition to the results returned by the `treatreg` command called internally, `itreatreg` returns the following additional results:

Scalars	
<code>r(ate)</code>	ATE
<code>r(te_sd)</code>	standard deviation of the treatment effect
<code>r(N_ate)</code>	number of observations used to generate ATE
Macros	
<code>r(varctr)</code>	name of new variable containing predicted values in the presence of treatment
	<code>r(varcntr)</code> name of new variable containing predicted values in the absence of treatment

4 Examples

4.1 Multiplicative interactions using `itreatreg`

This example uses the same data that [Cong and Drukker \(2000\)](#) used in their discussion of the `treatreg` command. It is the same data used in the [StataCorp \(2011\)](#) discussion of the `treatreg` command. The `treatreg` command is used with a dataset of women's wages and other characteristics to explore the possibility that women's college education is endogenous to wage determination (the hypothesis was rejected). The original model is modified to allow for multiplicative interactions between the treatment (college education) with the two exogenous variables in the wage equation, age, and whether they live in a large city.

```

. use http://www.stata-press.com/data/r12/labor
. generate wc = 0
. replace wc = 1 if we > 12
(69 real changes made)
. generate wcXwa = wc*wa
. generate wcXcit = wc*cit
. itreatreg ww, treat(wc=wmed wfed) x(wcXwa=wa wcXcit=cit) gen(padjusted)

```

Iteration 0: log likelihood = -706.19914

Iteration 1: log likelihood = -706.19738

Iteration 2: log likelihood = -706.19738

Treatment-effects model -- MLE

	Number of obs	=	250
	Wald chi2(5)	=	5.91
	Prob > chi2	=	0.3148

Log likelihood = -706.19738

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
ww					
wa	.0057609	.0236009	0.24	0.807	-.040496 .0520178
cit	.0720367	.3829244	0.19	0.851	-.6784814 .8225548
wcXwa	-.0542976	.0410126	-1.32	0.186	-.1346807 .0260855
wcXcit	.0980451	.8044176	0.12	0.903	-1.478584 1.674675
wc	3.466534	1.900961	1.82	0.068	-.2592815 7.192349
_cons	1.657002	1.059636	1.56	0.118	-.4198465 3.73385
wc					
wmed	.1197113	.032011	3.74	0.000	.056971 .1824517
wfed	.0964197	.0291015	3.31	0.001	.0393819 .1534576
_cons	-2.633536	.3310894	-7.95	0.000	-3.282459 -1.984613
/athrho	.0435995	.1904776	0.23	0.819	-.3297297 .4169287
/lnsigma	.9210499	.0448669	20.53	0.000	.8331123 1.008988
rho	.0435719	.190116			-.3182779 .3943399
sigma	2.511926	.1127025			2.300467 2.742823
lambda	.1094494	.4779808			-.8273757 1.046274

LR test of indep. eqns. (rho = 0): chi2(1) = 0.05 Prob > chi2 = 0.8191

Average Treatment Effect (ATE) = 1.3945965

Standard deviation of Treatment Effect = .44730832

```

. predict poriginalctr, yctr
. predict poriginalcntr, ycntr
. generate poriginaldiff = poriginalctr - poriginalcntr
. summarize poriginaldiff

```

Variable	Obs	Mean	Std. Dev.	Min	Max
poriginald-f	250	3.663869	.0268047	3.641228	3.790205

This example first generates the necessary interaction terms that are not present in the original dataset and then calls `itreatreg` to estimate the parameters, generate predicted values, and calculate the ATE. After calling `itreatreg`, the example then recalculates the ATE and the standard deviation of the treatment effect on the basis of the unadjusted predicted values generated by the `treatreg` function. The unadjusted ATE is reported as the mean of the `poriginaldiff` variable in the summary table; the standard deviation of the treatment effect is the standard deviation of `poriginaldiff`. Clearly, there is a significant difference in the estimated treatment statistics. The ATE is almost three times higher in the unadjusted calculations than the correct ATE, while the standard deviation of the treatment effect is much smaller.²

4.2 Nonmultiplicative interactions

Nonmultiplicative treatment interactions are rarely used. Here we modify the previous example to include a nonmultiplicative interaction between age and the treatment, in addition to the multiplicative interaction between the treatment and living in a large city.

```
. use http://www.stata-press.com/data/r12/labor, clear
. generate wc = 0
. replace wc = 1 if we > 12
(69 real changes made)
. generate wcxcit = wc*cit
. generate wc_wa = 1/(wa^wc)
```

2. As noted in section 2 in the context of one interaction term, the ATE is the sum of the interaction effect ($\beta_2 \bar{X}_1$) and the unadjusted ATE. When the interaction effect and the unadjusted ATE have similar magnitudes but opposite signs, the unadjusted ATE will be substantially larger than the ATE (in absolute value). That is easy to verify in this example. Note, however, that in this example, there are two interaction terms and therefore the interaction effect is the sum of the products of the interaction coefficients with the sample means of the corresponding interaction variables.

```

. treatreg ww wa cit wc_wa wxcxit, treat(wc=wmed wfed)
Iteration 0:  log likelihood = -706.17482
Iteration 1:  log likelihood = -706.17325
Iteration 2:  log likelihood = -706.17325

Treatment-effects model -- MLE                                         Number of obs = 250
                                                               Wald chi2(5) = 5.97
                                                               Prob > chi2 = 0.3094
Log likelihood = -706.17325


```

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
ww					
wa	.005609	.0234476	0.24	0.811	-.0403474 .0515654
cit	.0724072	.3828214	0.19	0.850	-.6779089 .8227233
wc_wa	94.45258	70.37642	1.34	0.180	-43.48267 232.3878
wxcxit	.0996757	.8043637	0.12	0.901	-1.476848 1.676199
wc	93.29493	68.59617	1.36	0.174	-41.15108 227.7409
_cons	-92.79207	70.87472	-1.31	0.190	-231.704 46.11982
wc					
wmed	.1196905	.0320164	3.74	0.000	.0569394 .1824415
wfed	.0964198	.0291069	3.31	0.001	.0393713 .1534683
_cons	-2.633293	.3310698	-7.95	0.000	-3.282178 -1.984408
/athrho	.0406697	.1900651	0.21	0.831	-.331851 .4131905
/lnsigma	.9208927	.0448475	20.53	0.000	.8329931 1.008792
rho	.0406473	.1897511			-.320183 .3911783
sigma	2.511531	.112636			2.300193 2.742287
lambda	.102087	.4769336			-.8326856 1.03686

LR test of indep. eqns. (rho = 0): chi2(1) = 0.05 Prob > chi2 = 0.8307

```

. predict wwhat1, yctr
. predict wwhat0, ycntrt
. generate wwctr = wwhat1 + (1- wc)*([ww]_b[wc_wa]*(1/wa-1) + [ww]_b[wxcxit]*cit)
. generate wwcntrt = wwhat0 + wc*([ww]_b[wc_wa]*(1-1/wa) - [ww]_b[wxcxit]*cit)
. generate wwatehat = wwctr - wwcntrt
. generate wwhatdiff = wwhat1 - wwhat0
. summarize wwhat1 wwctr wwhat0 wwcntrt wwatehat wwhatdiff, sep(0)

```

Variable	Obs	Mean	Std. Dev.	Min	Max
wwhat1	250	69.95679	41.26938	2.468673	95.62572
wwctr	250	3.277062	.4031218	2.468673	4.157271
wwhat0	250	-23.5222	41.26322	-90.99352	2.051853
wwcntrt	250	1.898402	.0746325	1.687243	2.058028
wwatehat	250	1.37866	.4548583	.5838184	2.281107
wwhatdiff	250	93.47899	.024998	93.45787	93.59681

The mean of the variable `wwhatdiff` is the estimate of the ATE produced on the basis of the predict commands without any adjustments. The mean of `wwatehat` is the estimate produced by computing the correct conditional expectations using the adjustments of equations (7) and (8) and following the generalization of (10). The model in this example has the nonmultiplicative interaction term $X_2^{-Y_2}$, but the results are similar to the previous model with the multiplicative interaction term. However,

the absolute values of the estimated coefficients of age and its interaction term, and the constant of the outcome equation are much larger. The estimated ATE is still the same as in the previous example to the first decimal, but the estimated ATE without the necessary adjustment—`wwhatdiff`—is very different.

5 Conclusion

The Stata `treatreg` command can be used to fit models where selection into treatment depends on observed and nonobserved factors. The `treatreg` command gives consistent estimates of the parameters whether treatment interactions are included or not. The `predict` command of `treatreg` postestimation, however, gives the correct conditional predictions only when treatment interactions are not present. In this article, we derived the adjustments that are required to compute the correct conditional predictions and ATE. When the treatment interactions are multiplicative, we introduced the `itreatreg` command, which produces the appropriate estimate of the ATE in addition to the usual output of the `treatreg` command. When treatment interactions are nonmultiplicative, we showed the steps that are required to produce the appropriate estimates of the ATE.

6 References

Cong, R., and D. M. Drukker. 2000. sg141: Treatment effects model. *Stata Technical Bulletin* 55: 25–33. Reprinted in *Stata Technical Bulletin Reprints*, vol. 10, pp. 159–169. College Station, TX: Stata Press.

Greene, W. H. 2012. *Econometric Analysis*. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Royston, P., and W. Sauerbrei. 2008. Interactions between treatment and continuous covariates: A step toward individualizing therapy. *Journal of Clinical Oncology* 26: 1397–1399.

———. 2009. Two techniques for investigating interactions between treatment and continuous covariates in clinical trials. *Stata Journal* 9: 230–251.

Sauerbrei, W., P. Royston, and K. Zapien. 2007. Detecting an interaction between treatment and a continuous covariate: A comparison of two approaches. *Computational Statistics and Data Analysis* 51: 4054–4063.

StataCorp. 2011. *Stata 12 Base Reference Manual*. College Station, TX: Stata Press.

Wooldridge, J. M. 2010. *Econometric Analysis of Cross Section and Panel Data*. 2nd ed. Cambridge, MA: MIT Press.

About the authors

Graham K. Brown is the director of the Centre for Development Studies and a senior lecturer in international development in the Department of Social and Policy Sciences at the University of Bath.

Thanos Mergoupis is a lecturer in the Department of Economics at the University of Bath.