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Abstract. In a series of recent articles, Karlson, Holm, and Breen (Breen, Karlson,
and Holm, 2011, http://papers.ssrn.com/sol3/papers.cfm?abstractid=1730065;
Karlson and Holm, 2011, Research in Stratification and Social Mobility 29: 221–
237; Karlson, Holm, and Breen, 2010, http://www.yale.edu/ciqle/Breen Scaling
%20effects.pdf) have developed a method for comparing the estimated coefficients
of two nested nonlinear probability models. In this article, we describe this method
and the user-written program khb, which implements the method. The KHB

method is a general decomposition method that is unaffected by the rescaling
or attenuation bias that arises in cross-model comparisons in nonlinear models.
It recovers the degree to which a control variable, Z, mediates or explains the
relationship between X and a latent outcome variable, Y ∗, underlying the nonlin-
ear probability model. It also decomposes effects of both discrete and continuous
variables, applies to average partial effects, and provides analytically derived sta-
tistical tests. The method can be extended to other models in the generalized
linear model family.

Keywords: st0236, khb, decomposition, path analysis, total effects, indirect effects,
direct effects, logit, probit, primary effects, secondary effects, generalized linear
model, KHB method

1 Introduction

Social scientists are often interested in research questions that need to be analyzed by
comparing the estimated coefficients of nested linear regression models. One example,
which we will use throughout this article, is the decomposition of total effects into
direct and indirect effects. In studies of social mobility, sociologists analyze how the
occupational position of parents affects the occupational position of their offspring. It is
commonly hypothesized that the total effect of parents’ occupational positions operates
indirectly by influencing their children’s educational attainment and more directly by
inheriting economic capital or exploiting social capital (Blau and Duncan 1967; Breen
2004). In another example, political scientists seek to disentangle how much of the influ-
ence of long-term party identification on the voting decision is mediated by short-term

c© 2011 StataCorp LP st0236
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issues and candidate orientations (Miller and Shanks 1996). In studies of subjective
well-being, economists have repeatedly posed the question of the extent to which the
negative effect of unemployment can be explained by income losses resulting from un-
employment (Frey and Stutzer 2002).

In the context of linear regression models, the comparison of estimated coefficients—
and hence the decomposition of total effects into direct and indirect effects—is straight-
forward. Let there be the linear regression model

Y = αF + βF X + γF Z + δF C + ε (1)

where X is the variable whose effect is to be decomposed (it is the key variable), Z
is a mediator in the sense that X is hypothesized to partly operate through it, and
C is a concomitant variable used as a control variable for the decomposition. In this
hypothesized situation, the regression coefficient βF is commonly called the direct effect.
The total effect of X is captured by the coefficient βR of a reduced model that leaves
out the mediator Z:

Y = αR + βRX + δRC + ε (2)

The indirect effect is the difference between the total effect and the direct effects; that
is,

βI = βR − βF (3)

Formulas for the standard errors of the coefficients of βF , βR, and βI are readily
available (Sobel 1982), and situations with more variables of type X, Z, and C do not
pose any statistical problems.

The method just described is so common that it has also been used for other mod-
els of the generalized linear model family, in particular, in binary logit and probit
models. However, comparing the effects of nested nonlinear probability models is not
as straightforward as in linear models (Winship and Mare 1984). In nested nonlinear
probability models, uncontrolled and controlled coefficients can differ not only because
of confounding but also because of a rescaling of the model that arises whenever the me-
diator variable has an independent effect on the dependent variable. Stated differently,
the inclusion of the mediator variable Z in a nonlinear probability model will alter the
coefficient of X regardless of whether Z is correlated with X; it is a sufficient condition
that Z is correlated with Y .

Several solutions have been proposed to deal with the problem of cross-model coeffi-
cient comparability. The solutions include Y standardization (Winship and Mare 1984;
Long 1997); the use of average partial effects (Wooldridge 2002); and a decomposition
method for binary response models developed by Erikson et al. (2005) and generalized
by Buis (2010). However, Monte Carlo studies presented in Karlson, Holm, and Breen
(2010) and Karlson and Holm (2011) show that the KHB method proposed by Karl-
son, Holm, and Breen is always as good as or better than these methods whenever
it comes to recovering the degree of confounding net of rescaling; that is, the degree
to which Z mediates the relationship between X and Y ∗ (that is, the underlying out-
come of interest). In addition, the KHB method decomposes effects of both discrete
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and continuous variables, can be extended to accommodate average partial effects, pro-
vides analytically derived statistical tests, and is computationally simple and intuitive
(Karlson, Holm, and Breen 2010; Karlson and Holm 2011). In fact, the KHB method
extends the decomposability properties of linear models to nonlinear probability models
(Breen, Karlson, and Holm 2011).

In this article, we introduce the KHB method and the user-written Stata command
khb, which implements the method. In section 2, we present the method and its formu-
las; in section 3, we present the khb command; and in section 4, we apply this command
to data on inequality in educational attainment.

2 Method and formulas

In this section, we introduce the KHB method for a binary response model. A formal
derivation, including proofs and a generalization, is given in Karlson, Holm, and Breen
(2010), Breen, Karlson, and Holm (2011), and Karlson and Holm (2011).

2.1 Restating the problem

We begin with stating the problem of comparing coefficients of binary response models.
Consider a latent variable model similar to (1),

Y ∗ = αF + βF X + γF Z + δF C + ε (4)

where Y ∗ is an unmeasured latent variable and ε is an error term. Likewise, we have a
reduced model similar to (2),

Y ∗ = αR + βRX + δRC + ε (5)

The sole difference between these two models is the mediator Z. Therefore the
difference, βR − βF , can be interpreted as the indirect effect, just as in the linear
regression model. However, because the dependent variable Y ∗ is unobserved, we cannot
estimate the coefficients of these models.

If we measure a dichotomous variable Y with a value of 0 if Y ∗ is smaller than some
threshold τ and a value of 1 if Y ∗ ≥ τ , then it is possible to develop an estimator for
the regression coefficients. However, this estimator requires an assumption about the
distribution and the variance of the error terms in (4) and (5) (Long 1997). If we assume
a binary logit model, it can been shown that the resulting estimators bF and bR for the
underlying coefficients are

bF =
βF

σF
and bR =

βR

σR
(6)

where σF and σR are scale parameters, which are a function of the residual standard
deviation of the underlying linear models. We only identify the underlying coefficients
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of interest relative to a scale unknown to us. Thus we can never estimate βF , βR, σF ,
nor σR, only their respective ratios. It always holds that σF ≤ σR, because adding a
control variable Z to the model reduces the unexplained portion of the variance in Y ∗.

It follows from (1) that the difference between bF and bR is affected by two differ-
ences, namely, differences in effects and differences in scale parameters:

bR − bF =
βR

σR
− βF

σF
(7)

Thus, had we followed standard practice in linear models and used (2) as an estimator
for the indirect effect in a logit model, we would conflate mediation with rescaling. The
difference is due to mediation—or confounding—to the degree at which X and Z are
correlated and Z has an effect on Y ∗ independently of X.

Likewise, the difference is due to rescaling to the degree at which the restricted model
has a larger residual standard deviation than the model that includes Z. Rescaling
consequently occurs whenever Z has an effect on Y ∗ that is independent of X. Because
the difference between bF and bR conflates mediation (or confounding) and rescaling, the
question is how to achieve an estimate of the indirect effect not distorted by differences
in scales.

2.2 The KHB method

A simple answer to that question is to use the KHB method. The idea is to extract from
Z the information that is not contained in X. This is done by calculating the residuals
of a linear regression of Z on X; that is,

R = Z − (a + bX) (8)

where a and b are the estimated regression parameters of a linear regression. R is then
used instead of Z for the reduced model; that is, instead of using (5), we use

Y ∗ = α̃R + β̃RX + γ̃RR + δ̃RC + ε (9)

Because R and Z differ only in the component in Z that is correlated with X, the
full model of (4) is no more predictive than (9), and consequently, the residuals have
the same standard deviation. It follows that σ̃R = σF , with σ̃R being the standard
deviation of the residuals of the estimated model from (9). Furthermore, we know that
β̃R = βR; hence, the difference between the estimated regression coefficients b̃R and bF

of (9) and (4) can be rewritten as

b̃R − bF =
β̃R

σ̃R
− βF

σF
=

βR − βF

σF
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The difference reflects the indirect effect as introduced below (3) divided by some
common scale. Of course, rather than considering differences due to confounding, one
may also consider the confounding ratio,

b̃R

bF
=

βR

σF

βF

σF

=
βR

βF
(10)

where the scale parameter cancels out entirely. The same is true for the percentage
difference of the estimated regression parameters

100 × b̃R − bF

b̃R

= 100 ×
βR

σF
− βF

σF

βR

σF

= 100 × βR − βF

βR
(11)

which is a percentage measure of the degree to which Z mediates the Z–Y ∗ relationship,
called the confounding percentage.

2.3 Significance test for the difference in effects

One key variable and one confounder

When we wish to test whether the variable Z confounds X, we need to test the hy-
pothesis H0 : b̃R − bF = 0 because it amounts to testing whether βR = βF . From
Karlson, Holm, and Breen (2010), we have

b̃R − bF =
γF

σF
b (12)

where b is the regression coefficient of X on Z from (3). For (12) not to be zero, there
needs to be a direct effect of the mediator (or confounder) on the outcome, γF

σF
�= 0, and

a correlation between X and Z, that is, b �= 0. Starting from these observations, a test
statistic based on the delta method (Sobel 1982) can be derived for the indirect effect,

Z =

√
N
(
b̃R − bF

)
√

a′Σa
∼ N(0, 1)

where a is the vector
(
γF /σF , b

)′ and Σ is the variance–covariance matrix of γF and b;
see Karlson, Holm, and Breen (2010) for a generalization.

Many key variables and many confounders

In the more general case of several key predictor variables and many confounders, it
is still possible to evaluate the confounding effect of a vector of J confounders, z, on
a vector of key variables, x. Usually, we want to know the confounding effect of z on
one key variable conditional on the other key variables being in the model. Denote the
logit or probit effect of the lth key variable, xl, on y conditional on x, and denote the
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residualized z’s as b̃xl.ezx(l) (̃bR in the previous section) where x(l) denotes the set of x’s
without xl. Denote the effect of xl on y conditional on z, and denote x(l) as bxl.zx(l)

(̃bF in the previous section). We then have that the confounding effect of z on xl is
b̃xl.ezx(l) − bxl.zx(l), measured on the same scale. The test statistic for the confounding
effect of z on x(l) is therefore

b̃xl.ezx(l) − bxl.zx(l)

sd
(
b̃xl.ezx(l) − bxl.zx(l)

)
where sd

(
b̃xl.ezx(l) − bxl.zx(l)

)
=

√
a′Σa with a =

(
θzxl.xl

byz.x

)
and Σ =

(
Σyz.x 0

0 Σzxlx(l)

)
.

The vector θzxl.xl
is a J×1 vector of regression coefficients of xl on z from a seemingly

unrelated regression of x on z, and the vector byz.x is a J×1 vector of binary regression
coefficients of z on y conditional on x. The two block-diagonal elements in Σ are the
J×J variances and covariances of bz from the regression of x and z on y and the J×J
variance–covariance matrix from a seemingly unrelated regression of x on z using the
elements relating xl on z, respectively.

3 The khb command

3.1 Syntax

khb model-type depvar key-vars || z-vars
[
if
] [

in
] [

weight
][

, options
]

model-type can be any of regress, logit, ologit, probit, oprobit, cloglog, slogit,
scobit, rologit, clogit, mlogit, xtlogit, or xtprobit. Other models might also
give output, but you should consider this output to be experimental for the time being.

depvar is the name of the dependent variable, key-vars is a varlist containing the names
of the variables to be decomposed, and z-vars is a varlist holding the names of control
variables of interest.

key-vars and z-vars may contain factor variables; see [U] 11.4.3 Factor variables.

aweights, fweights, and pweights are allowed if they are allowed for the specified
model-type; see [U] 11.1.6 weight.
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options Description

concomitant(varlist) concomitant variables
disentangle disentangle difference of effects by mediators
summary summary of decomposition
or exponentiate coefficients
vce(vcetype) vcetype may be robust or cluster clustvar
ape decompose key-vars using average partial (marginal)

effects
continuous treat dummy variables as continuous when using

method ape
notable suppress coefficient table
verbose show restricted and full model
keep keep residuals of mediators
xstandard standardize key-vars
zstandard standardize z-vars
outcome(outcome) outcome used for decomposition when

model-type is mlogit, ologit, or oprobit
baseoutcome(#) value of depvar that will be the base outcome when

model-type is mlogit
group(varname) necessary option for model-types rologit and clogit
model options all options allowed for the specified model-type

3.2 Options

concomitant(varlist) specifies control variables that are not mediator variables. Factor
variables are allowed; see [U] 11.4.3 Factor variables.

disentangle requests a table that shows how much of the difference between the full
and reduced models is contributed by each z-var.

summary requests a decomposition summary for all key-vars. By default, khb reports
the effects of the full and reduced models, their difference, and their standard errors.
With the summary option, khb also presents a table that shows the confounding
ratios, the percentage reduction due to confounding, and the rescale factor. The
confounding ratio measures the impact of confounding net of rescaling. The per-
centage reduction measures the percentage change in the coefficient of each key-var
attributable to confounding net of rescaling. Finally, the rescale factor measures the
impact of rescaling net of confounding.

or exponentiates the estimated coefficients, and hence shows odds ratios for logit models.
The coefficient for the reduced model is then the product of the full model and the
estimated difference.
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vce(vcetype) specifies the type of standard error reported. The default is the Stata
default for the specified model-type. Standard errors for indirect effects are estimated
using a method discussed by Sobel (1982). The vce() option sets the standard errors
for the effects of the reduced and full models and controls the type of standard
error that enters into Sobel’s method. The robust and cluster clustvar types are
available; see [R] vce option.

ape is used to decompose the key-vars using average partial effects; for continuous X,
this is the average of the derivatives of the predicted probability with respect to
X, and for discrete X, this is the average of the discrete differences (see [R] mar-
gins). For model-types ologit and oprobit, khb uses the average partial effect on
the probability for the first outcome unless outcome() is specified; see [R] ologit
postestimation for various ways to specify outcome(). With ape, the calculated
difference is not constant across outcomes; this is a well-known property of ordered
choice models (see Greene and Hensher [2010]).

continuous treats dummy variables equal to continuous variables. Average partial
effects are by default based on unit effects for dummy variables. See [R] margins
for details about this option.

notable suppresses the display of the coefficient table. This normally involves the
summarize or disentangle option.

verbose is used to show the complete output of the full and restricted models that are
used to estimate the decomposition. This is especially useful to detect problems that
occur in the intermediate steps of the estimation.

keep is used to keep the residuals of the mediator variables, that is, the mediator
variables net of confounding. These residuals are included as independent variables
in the reduced model.

xstandard is used to standardize the key-vars.

zstandard is used to standardize the z-vars.

outcome(outcome) specifies the outcome for which the decomposition is to be calcu-
lated. This has an effect for multinomial response models (mlogit) and, if the ape
option is specified, for ordered response models (ologit and oprobit). outcome()
may be specified using

• #1, #2, . . . , where #1 means the first category of the dependent variable, #2 means
the second category, etc.;

• the values of the dependent variable; or

• the value labels of the dependent variable, if they exist.

baseoutcome(#) is for use with model-type mlogit. It specifies the value of depvar to
be treated as the base outcome. The default is to choose the most frequent outcome.
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baseoutcome() may be used together with outcome() to fully control the contrast
for which the decomposition is done.

group(varname) is a necessary option for model-types rologit and clogit; see
[R] rologit and [R] clogit.

model options: All options allowed for the specified model-type may be used.

4 Application

In this section, we give examples from educational sociology to show several applica-
tions of the khb command. Following Boudon (1974), researchers in this field are con-
cerned with two ways in which social origin influences educational attainment, namely,
“primary” and “secondary” effects (Breen and Goldthorpe 1997; Erikson et al. 2005;
Erikson 2007; Jackson et al. 2007).

For our guiding example, the secondary effect is the direct effect, that is, the effect
of social origin on educational attainment net of performance at school. The primary
effect, on the other hand, is what we called the indirect effect above, that is, that part of
the relationship between social origin and educational attainment that is due to uneven
performance at school.

For the application, we use a subset of the Danish National Longitudinal Survey
(DLSY).1 We show the Stata commands for reproducing some of the analysis presented
in Karlson and Holm (2011).

. use dlsy_khb

. describe

Contains data from dlsy_khb.dta
obs: 1,896
vars: 8 17 Jan 2011 10:26
size: 34,128

storage display value
variable name type format label variable label

edu byte %20.0g edu Educational attainment
upsec byte %10.0g yesno Complete upper secondary

education (Gymnasium)
univ byte %13.0g yesno Complete University education
fgroup byte %9.0g fgroup Father´s social group/class
fses float %9.0g Father´s SES, standardized with

mean 0 and sd 1
abil double %10.0g Standardized ability measure,

with mean 0 and sd 1
intact byte %9.0g yesno Intact family
boy byte %9.0g yesno Boy

Sorted by:

1. Information on the DLSY is available online at http://www.sfi.dk/dlsy. We wish to thank the
management at SFI—The Danish National Centre for Social Research for allowing us to distribute
a subset of the DLSY with the online material of this article.
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The subset contains 1,896 individuals born around 1954. These individuals were
interviewed the first time in seventh grade and have been followed since then until around
year 2000. The data contain information on university completion (univ), parental
social status (fses), and academic ability (abil); fses and abil are standardized to
have zero mean and unit variance. Using the khb command, we decompose the total
effect of parental social status on university graduation into its direct part and an
indirect part running through academic ability.

4.1 Basic use

The syntax diagram of khb requires the specification of four elements: the model type,
the dependent variable, the variable to be decomposed (key variable), and the mediator
variables. In our example, the dependent variable is university completion (univ).
Because this variable is dichotomous, we choose logit as our model-type, although we
could have also chosen probit or, if deemed relevant, any other Stata command for
binary response models (like cloglog, scobit, or slogit, for example). We decompose
the effect of parental social status (fses) on university completion. Finally, we use
as mediator a measure of academic ability (abil). To separate the key variable—the
variable whose effect is to be decomposed—from the mediators, the syntax requires two
pipe symbols, ||. In addition to these required elements, the command also has the
concomitant() option, which allows for the addition of variables to be controlled for
in both the full and the reduced models. In our example, we use this option to control
for gender (boy) and intact family (intact).

. khb logit univ fses || abil, concomitant(intact boy)

Decomposition using the KHB-Method

Model-Type: logit Number of obs = 1896
Variables of Interest: fses Pseudo R2 = 0.19
Z-variable(s): abil
Concomitant: intact boy

univ Coef. Std. Err. z P>|z| [95% Conf. Interval]

fses
Reduced .5459815 .0779806 7.00 0.000 .3931424 .6988206

Full .3817324 .0778061 4.91 0.000 .2292353 .5342295
Diff .1642491 .0293249 5.60 0.000 .1067734 .2217247

The output shows the estimated effect of the reduced model (̃bR), the estimated
effect of the full model (bF ), and the estimated difference between these two effects; see
(12). For our guiding example, we call the estimated effect of the reduced model the
total effect, the estimated effect of the full model the direct effect, and the estimated
difference the indirect effect. We see that parental social status increases the log odds
of completing university by 0.55. Controlling for academic ability, the effect of parental
social status reduces to 0.38, leaving an indirect effect of 0.16.
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The standard output of khb expresses the effects in terms of the estimated regression
coefficients.2 The KHB method ensures that the coefficients presented are measured on
the same scale (and thus are not affected by the scale identification issue described
earlier). However, the magnitude of logit coefficients is generally difficult to interpret,
precisely because they are measured on “arbitrary” scales. This also holds for the
interpretation in terms of total, direct, and indirect effects. Karlson, Holm, and Breen
(2010) propose the confounding ratio and the confounding percentage, as defined by (10)
and (11), to overcome these problems. Both measures can be easily calculated from the
standard output of khb; however, the summary option provides the information directly.

In the following command, we use summary together with notable to save space:

. khb logit univ fses || abil, concomitant(intact boy) summary notable

Decomposition using the KHB-Method

Model-Type: logit Number of obs = 1896
Variables of Interest: fses Pseudo R2 = 0.19
Z-variable(s): abil
Concomitant: intact boy

Summary of confounding

Variable Conf_ratio Conf_Pct Resc_Fact

fses 1.4302727 30.08 1.0602422

The total effect is 1.4 times larger than the direct effect, and 30% of the total effect is
due to academic ability.

The summary option also shows the rescale factor, given by

rescale factor =
b̃R

bR

where bR is the “näıve” estimator for the βR of the model without Z, (5). The measure
provides information about the size of the change in the scale parameter due to the
inclusion of R or, in other words, due to the inclusion of Z net of confounding.

4.2 Comparing average partial effects

Average partial effects (Wooldridge 2002) are often used for reporting the effects of logit
and probit models because of their natural interpretation on the probability scale. How-
ever, Karlson, Holm, and Breen (2010) show that simple comparisons of average partial
effects across models with or without a confounder, Z, may be distorted in a range of
scenarios encountered in real applications. Average partial effects may therefore not be
well suited for decompositions of effects. Applying the KHB method to average partial
effects resolves this problem (Karlson, Holm, and Breen 2010). This is an attractive
property of the method because average partial effects are more interpretable than the

2. Odds-ratio decomposition can be obtained using the or option. In this situation, the total effect
measured in odds ratios will be the product (not the sum) of the direct and indirect effects measured
in odds ratios.
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estimated coefficients of logit and probit models. khb therefore has the ape option,
which requests the application of the KHB method on average partial effects:

. khb logit univ fses || abil, concomitant(intact boy) ape summary

Decomposition using the APE-Method

Model-Type: logit Number of obs = 1896
Variables of Interest: fses Pseudo R2 = 0.19
Z-variable(s): abil
Concomitant: intact boy

univ Coef. Std. Err. z P>|z| [95% Conf. Interval]

fses
Reduced .0384906 .0054429 7.07 0.000 .0278226 .0491585

Full .0269113 .0054476 4.94 0.000 .0162343 .0375884
Diff .0115792 . . . . .

Note: Standard errors of difference not known for APE method

Summary of confounding

Variable Conf_ratio Conf_Pct Dist_Sens

fses 1.4302727 30.08 .95931864

On average, the probability of a youth’s university completion increases by 3.9 per-
centage points for a standard-deviation change in the father’s socioeconomic status.3

After controlling for academic ability, this average increase is reduced to 2.7 percentage
points. An increase of parental social status leads to higher academic ability, which
is then translated into a higher probability of university graduation of 1.1 percentage
points. Despite the arguably more interpretable values shown in the estimation table,
the confounding ratios and confounding percentages in the summary table are always
equal to those ascertained based on the regression coefficients.4

4.3 Disentangle contributions of mediators

If more than one mediator is used, the question arises as to which of the mediators con-
tributes most to the confounding. The question can be answered using the disentangle
option, which requests an additional table that shows the contribution of each mediator
separately. In the following example, we use the concomitants (intact and boy) and
combine disentangle with summary and notable:

3. The average partial effect is the average gradient of the function that links parental social status
with the probability of university completion.

4. The summary table shows the distributional sensitivity instead of the rescale factor because the
ratio in (9) is sensitive to the distributions of the included variables in the model.
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. khb logit univ fses || abil intact boy, summary disentangle notable

Decomposition using the KHB-Method

Model-Type: logit Number of obs = 1896
Variables of Interest: fses Pseudo R2 = 0.19
Z-variable(s): abil intact boy

Summary of confounding

Variable Conf_ratio Conf_Pct Resc_Fact

fses 1.5207722 34.24 1.1317064

Components of Difference

Z-Variable Coef Std_Err P_Diff P_Reduced

fses
abil .1661177 .0301003 83.56 28.61

intact .020142 .0144611 10.13 3.47
boy .0125359 .011524 6.31 2.16

The first two columns of the disentangle table show the effect difference (indirect
effect) due to each of the mediators along with their standard errors. The values in the
first column sum up to 0.199, the overall confounding by all mediators together (that
is, the sum of indirect effects). The third column expresses the contribution of each
mediator to the indirect effect, and the last column shows how much of the total effect
is due to confounding of the respective mediator; this last column sums up to 34.24,
the overall confounding percentage. According to the results shown here, the degree of
mediation is much larger for academic ability than for gender and an intact family.

4.4 More than one key variable

In the syntax diagram, the variable to be decomposed is termed the key variable. There
can be more than one key variable in the same command. In this case, the command
displays the decomposition for all key variables in one output. When specifying more
than one key variable, we must decompose each key-var while controlling for all the
others. In the example below, we perform the decomposition of the effects of boy and
intact, using academic ability as mediator. For the decomposition of the gender effect,
intact is controlled for in both the full and the reduced model. Likewise, for the
decomposition of the intact-family effect, gender is controlled for in both equations.
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. khb logit univ boy intact || abil, concomitant(fses) summary

Decomposition using the KHB-Method

Model-Type: logit Number of obs = 1896
Variables of Interest: boy intact Pseudo R2 = 0.19
Z-variable(s): abil
Concomitant: fses

univ Coef. Std. Err. z P>|z| [95% Conf. Interval]

boy
Reduced 1.06178 .1848087 5.75 0.000 .6995613 1.423998

Full .9821406 .1848351 5.31 0.000 .6198704 1.344411
Diff .0796391 .133004 0.60 0.549 -.1810438 .3403221

intact
Reduced 1.129767 .7386976 1.53 0.126 -.3180536 2.577588

Full 1.08391 .7386558 1.47 0.142 -.3638292 2.531648
Diff .0458575 .1328438 0.35 0.730 -.2145116 .3062266

Summary of confounding

Variable Conf_ratio Conf_Pct Resc_Fact

boy 1.0810873 7.50 1.0033213
intact 1.0423075 4.06 1.03542

We find that the effect of gender is mediated stronger by academic ability than
having an intact family is.

4.5 Categorical variables

Categorical key variables and concomitants may be specified using factor-variable nota-
tion; see [U] 11.4.3 Factor variables. The following example decomposes the effect of
fgroup, a discrete social class measure, using a categorized version of academic ability
as mediator:

. xtile catabil = abil, nquantiles(4)

. khb logit univ i.fgroup || i.catabil, concomitant(intact boy) summary
> disentangle

(output omitted )

As shown in section 2.3, the standard errors of the regression of the mediators on
the key variables are used in the formula for the standard errors of the effect difference.
Huber/White/sandwich standard errors are used for that purpose, when the mediator
only has values 0 and 1.

4.6 Ordered outcome

The decomposition of key variables on ordered outcomes can be done by specifying an
ordered choice model like ologit or oprobit as model-type. Some care must be taken,
however, when using the ape option for those models. It is a well-known feature of
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ordered choice models that the average partial effect is not constant across outcomes
(Greene and Hensher 2010). The default of khb with the ape option shows the decom-
position using the average partial effect on the probability of the lowest outcome, but
this can be changed with the outcome() option.

For an example, we use the variable edu, which is a three-level ordered discrete
variable measuring educational attainment:

. tab edu

Educational
attainment Freq. Percent Cum.

Compulsory schooling 1,091 57.54 57.54
Upper secondary 633 33.39 90.93

University 172 9.07 100.00

Total 1,896 100.00

We now perform the decomposition with the ape and summarize options for each
outcome, and we show the results in a table using Ben Jann’s command esttab (Jann
2007):

. forv i = 1/3 {
2. quietly eststo: khb ologit edu fses || abil, outcome(`i´) ape

> summary
3. }

. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

(1) (2) (3)
edu edu edu

fses
Reduced -0.103*** 0.0643*** 0.0385***

(-11.33) (10.72) (9.27)

Full -0.0755*** 0.0472*** 0.0283***
(-8.02) (7.76) (7.23)

Diff -0.0272 0.0170 0.0102
. . .

N 1896 1896 1896
Conf.-Ratio 1.360 1.360 1.360
Conf.-Perc. 26.48 26.48 26.48

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

The estimations of the total, direct, and indirect effects differ between outcomes.
However, all confounding ratios and confounding percentages are equal to those based
on the decomposition of the regression coefficients. Hence, if researchers are interested
in the relative measures, there is little to be gained by including the ape option. This
property points to the generality of the KHB method.
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4.7 Multinomial outcome

We now treat the ordinal variable edu as categorical to show how khb cooperates with
multinomial logistic regression. The basic command is as simple as before: just change
the model-type to mlogit.

. khb mlogit edu fses || abil, baseoutcome(2)

Decomposition using the KHB-Method

Model-Type: mlogit Number of obs = 1896
Variables of Interest: fses Pseudo R2 = 0.11
Z-variable(s): abil
Results for outcome Compulsory_schooling and base outcome Upper_secondary

edu Coef. Std. Err. z P>|z| [95% Conf. Interval]

fses
Reduced -.4227091 .055406 -7.63 0.000 -.5313028 -.3141154

Full -.3132967 .0549432 -5.70 0.000 -.4209834 -.20561
Diff -.1094124 .0184393 -5.93 0.000 -.1455528 -.0732719

As noted above the table, the decomposition is only done for one outcome of the
dependent variable using the base outcome of the multinomial regression. In our exam-
ple, khb displays the decomposition of log odds for being in the first category of edu
(compulsory schooling) instead of in the second category (upper secondary).

By default, khb inherits the default settings of mlogit so that the most frequent
outcome becomes the base outcome. This can be changed with the baseoutcome(#)
option. The default setting for the outcome is the alternative with the lowest level that
is not the base outcome. The outcome can be changed with the outcome() option. In
the following, we apply both options to show the decompositions for having an education
level of 2 or 3 instead of 1. Again we exploit Ben Jann’s esttab command (Jann 2007)
to show the results in a single table.
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. forv i = 2/3 {
2. quietly eststo: khb mlogit edu fses || abil, outcome(`i´)

> baseoutcome(1) summary
3. }

. esttab, scalars("ratio_fses Conf.-Ratio" "pct_fses Conf.-Perc.")

(1) (2)
edu edu

fses
Reduced 0.423*** 0.779***

(7.63) (9.30)

Full 0.313*** 0.552***
(5.70) (6.68)

Diff 0.109*** 0.227***
(5.93) (6.04)

N 1896 1896
Conf.-Ratio 1.349 1.411
Conf.-Perc. 25.88 29.15

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

4.8 A word of caution

The khb program is very general. It is written to cooperate with various standard
Stata estimation commands. We have only performed tests of khb for regress, logit,
ologit, probit, oprobit, cloglog, slogit, scobit, rologit, clogit, and mlogit,
xtlogit, and xtprobit. Other models might also produce output, but this output
should be considered experimental for the time being; the experimental status of such
models is indicated by a note in the output.

. khb glm edu fses || abil, link(power 2) family(gaussian)
Note: glm not supported. Output is experimental

Decomposition using the KHB-Method

Model-Type: glm Number of obs = 1896
Variables of Interest: fses Pseudo R2 = .
Z-variable(s): abil

OIM
edu Coef. Std. Err. z P>|z| [95% Conf. Interval]

fses
Reduced .4225422 .0413326 10.22 0.000 .3415317 .5035526

Full .3226696 .0423019 7.63 0.000 .2397593 .4055798
Diff .0998726 .0154422 6.47 0.000 .0696065 .1301388

As a side effect of its generality, the program does not provide sensible error messages
for any situation that might arrive. Users should be aware that khb cannot provide any
output if an intermediate step of estimating the full and reduced models returns an error.
Moreover, khb inherits all problems that arise while performing these intermediate steps.
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It is therefore sensible to investigate these intermediate steps. khb offers two ways to
do this:

• The verbose option shows the output produced in the intermediate steps of esti-
mating the full and reduced models. This is helpful if khb returns unclear error
messages and to detect problems such as high discrimination or perfect multi-
collinearity.

• The keep option stores the residuals of (3). This is helpful for users who want to
do specific diagnostics on the reduced model.

The KHB method solves the general problem of comparing effects between nested
nonlinear regression models, and it will consequently be useful in many applications.
The method allows for a complete analogy between the interpretation of effect differences
in nonlinear models and the interpretation in linear models.
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