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Abstract. Incomplete data is a common complication in applied research. In this
study, we use simulation to compare two approaches to the multiple imputation
of a continuous predictor: multiple imputation through chained equations and
multivariate normal imputation. This study extends earlier work by being the
first to 1) compare the small-sample approximations to the multiple-imputation
degrees of freedom proposed by Barnard and Rubin (1999, Biometrika 86: 948–
955); Lipsitz, Parzen, and Zhao (2002, Journal of Statistical Computation and
Simulation 72: 309–318); and Reiter (2007, Biometrika 94: 502–508) and 2) ask
if the sampling distribution of the t statistics is in fact a Student’s t distribution
with the specified degrees of freedom.

In addition to varying the imputation method, we varied the number of imputa-
tions (m = 5, 10, 20, 100) that were averaged over 500,000 replications to obtain
the combined estimates and standard errors for a linear model that regressed the
log price of a home on its age (years) and size (square feet) in a sample of 25 ob-
servations. Six age values were randomly set equal to missing for each replication.

As assessed by the absolute percentage and relative percentage bias, the two ap-
proaches performed similarly. The absolute bias of the regression coefficients for
age and size was roughly −0.1% across the levels of m for both approaches; the ab-
solute bias for the constant was 0.6% for the chained-equations approach and 1.0%
for the multivariate normal model. The absolute biases of the standard errors for
age, size, and the constant were 0.2%, 0.3%, and 1.2%, respectively. In general, the
relative percentage bias was slightly smaller for the chained-equations approach.
Graphical and numerical inspection of the empirical sampling distributions for
the three t statistics suggested that the area from the shoulder to the tail was
reasonably well approximated by a t distribution and that the small-sample ap-
proximations to the multiple-imputation degrees of freedom proposed by Barnard
and Rubin and by Reiter performed satisfactorily.

Keywords: st0235, missing data, multiple imputation, small-sample degrees of
freedom

c© 2011 StataCorp LP st0235
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1 Introduction

Missing data are present in most studies that ask individuals to report on their behav-
ior. With early efforts to address missing data (for example, mean substitution, last
observation carried forward, and single hot-deck imputation), researchers replaced each
missing value with some plausible value. These early methods fell short because they
did not account for the uncertainty introduced by the values that were substituted for
the missing observations.

Beginning in 1976, Rubin and colleagues have championed multiple imputation (MI)
as a flexible, general-purpose method for dealing with missing data (Rubin 1976, 1977,
1996; Schafer 1997, 1999; Little and Rubin 2002; Harel and Zhou 2007). With MI, re-
searchers replace each missing value with m > 1 plausible values. These values are
independent draws from the conditional distribution of the missing data given the ob-
served data. Moreover, these draws are based on a parametric or semi-parametric model
(that is, an imputation model) for the joint distribution, which is used to derive the
conditional distribution of the missing data given the observed data.

Judging from its widespread implementation in numerous statistical programs (for
example, R, SAS, SPSS, Stata), many researchers use a multivariate normal model to
represent the joint distribution and calculate imputed values. In part, MI is widely
used by researchers from different disciplines because Rubin proposed simple rules that
researchers could use to obtain combined estimates and their standard errors, and to
account for the uncertainty induced by the practice. Although Rubin used a Bayesian
perspective to develop MI (Rubin 1987), he and his colleagues have shown that the
obtained estimates demonstrate good frequentist properties (Little and Rubin 2002).

1.1 Rubin’s rules for obtaining combined estimates and assessing
their variability

“Rubin’s rules” for obtaining combined estimates and standard errors advanced current
practice because their use properly reflected the variability of the estimand, both within
and between the m multiply imputed datasets (Rubin and Schenker 1986). Addition-
ally, the rules allowed researchers to use standard, complete-data methods with their
analysis of each multiply imputed dataset.

For a scalar estimand θ (for example, a regression coefficient), the combined estimate
was the arithmetic average of the m estimates calculated with the observed and imputed
data in each multiply imputed dataset (θ̂i, i = 1, . . . ,m), and the variance of the com-
bined estimate, T , was the sum of two components: 1) the average variability of the m

within-dataset variances, W = 1/m
m∑

i=1

Wi, where Wi, the variance of the ith dataset,

was calculated in the usual manner using the observed and imputed data, and 2) the

variability among the m estimates, B = 1/(m − 1)
m∑

i=1

(
θ̂i − θ̂

)2

, where θ̂ = 1/m
m∑

i=1

θ̂i.

More specifically, the total variance was T = W + {(m + 1) /m}B.
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With a large sample, Rubin and Schenker argued that interval estimates for the
combined estimate, θ̂± tυ

√
T , could be based on Student’s t distribution with υ degrees

of freedom where υ = (m − 1)
[
1 + {1/(m + 1)} (W/B

)]2
.

1.2 Approximations to the small-sample degrees of freedom

In deriving the rules for calculating the combined estimate and its standard error and in
determining the degrees of freedom for the reference t distribution, Rubin and Schenker
(1986) assumed that the size of the complete dataset was large enough to use large-
sample methods that effectively set the t statistic’s degrees of freedom equal to infinity.
Specifically, they assumed that there were an infinite number of observations in the
complete dataset. Soon, researchers reported that when the complete-data degrees of
freedom, vcom, was small and there was a modest proportion of missing data, Rubin
and Schenker’s approximation for the MI degrees of freedom, vm, could be many times
larger than the complete-data degrees of freedom (the available degrees of freedom in
the absence of any missing data).

To address the problem with Rubin and Schenker’s approximation, Barnard and
Rubin (1999) proposed a small-sample adjustment for the MI degrees of freedom that
would always be less than or equal to the complete-data degrees of freedom. Then
they conducted a simulation study to determine how well the empirical distribution
of the combined estimate of the slope of a simple linear regression model followed a
t distribution with their adjusted degrees of freedom. For their study, they generated
bivariate normal data and varied five factors: the correlation between y and x (ρ =
0.5, 0.8); the sample size (N = 10, 20, 30); the number of imputations (m = 3, 5, 10);
the percentage of missingness (� = 10, 20, 30); and the slope of their missing-data
function (η = −4, 0, 4). Using 1,000 replications for each of the 162 cells of their study
design, Barnard and Rubin found that their proposed modification exhibited better
coverage than did Rubin and Schenker’s large-sample approximation for all conditions.

Lipsitz, Parzen, and Zhao (2002) proposed another small-sample approximation to
the MI degrees of freedom. They submitted their article in 2001 and did not cite Barnard
and Rubin’s (1999) study or compare their proposed approximation to Barnard and Ru-
bin’s approximation. They simply noted that Rubin and Schenker’s (1986) approxima-
tion might be inaccurate when the sample size was small. Specifically, Lipsitz, Parzen,
and Zhao (LPZ) proposed the following small-sample approximation to the multiply
imputed degrees of freedom for a scalar estimand:

vLPZ =

[
W + {(m + 1)/m}B

]2{
W

2
/(N − 1)

}
+ {(m + 1)m}2 {B2/(m − 1)}

which can be rewritten as
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vLPZ =

[
(W/B) + {(m + 1)/m}]2[

{1/(N − 1)} (W/B
)2

+ {(m + 1)/m}2 {1/(m − 1)}
]

This reexpression makes it easier to see that the Lipsitz, Parzen, and Zhao approxima-
tion approaches the nominal degrees of freedom for the test that a population mean is
equal to zero as m increases for any two values of the variance components. Moreover,
by reexpressing their approximation in terms of W/B, Lipsitz, Parzen, and Zhao make
it easier to appreciate how it differs from Rubin and Schenker’s approximation.

In deriving their approximation, Lipsitz, Parzen, and Zhao (2002) started with the
same expression that Rubin and Schenker (1986) had used for the variance of the com-
bined estimate. However, they assumed that each multiply imputed sample consisted
of a finite number of observations, N . In addition, they assumed that the within and
between mean squares were independently distributed on N − 1 and m − 1 degrees of
freedom, respectively. As a practical consequence, they noted that their approximation
to the degrees of freedom was always less than or equal to Rubin and Schenker’s. Thus
confidence intervals based on their approximation would be larger than those based on
Rubin and Schenker’s approximation.

To evaluate their approximation, Lipsitz, Parzen, and Zhao (2002) fit a multiple-
regression model to 25 observations taken from housing market data published in the
Dallas Morning News in 1990. Specifically, they regressed the natural logarithm of
the house’s selling price (in hundreds of thousands of dollars) on its size (in units of a
thousand square feet of heated floor space) and age (in years). With the exception of age,
which was not observed for 6 of the 25 houses, all the remaining values were observed.
Lipsitz, Parzen, and Zhao used a multivariate normal imputation model as implemented
in Schafer’s (1997) S-Plus program to impute the missing values with m = 5 and
m = 20. When they compared their approximation with Rubin and Schenker’s (1986)
large-sample approximation, they found that their estimates of the degrees of freedom
for the three regression coefficients were much smaller than Rubin and Schenker’s and
that the latter’s large-sample approximation essentially used the normal distribution as
the reference distribution whether m = 5 or m = 20.

Recently, Reiter (2007; Marchenko and Reiter 2009) proposed another small-sample
approximation to the MI degrees of freedom. Like Barnard and Rubin (1999), Reiter
noted that the degrees of freedom suggested by Rubin and Schenker (1986) could be
larger than the complete-data degrees of freedom. However, Reiter approached the
problem from the perspective of the researcher who wants to conduct a multicomponent
test where the combined estimate was a vector and the reference distribution was an
F distribution. Reiter noted that one of the assumptions that Rubin and Schenker
used to derive their expression for the degrees of freedom was that the sample size was
infinite. Moreover, as he was addressing multicomponent significance tests, Reiter noted
that the degrees of freedom suggested by Li, Raghunathan, and Rubin (1991) and by
Meng and Rubin (1992) could exceed the degrees of freedom that would be used if there
were no missing data. Consequently, Reiter proposed the following approximation:
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vf = 4 + 1/z

z =
1

v∗
com − 4(1 + a)

+
1

t − 4

[
a2 {v∗

com − 2 (1 + a)}
(1 + a)2 {v∗

com − 4 (1 + a)}

]

+
1

t − 4

[
8a2 {v∗

com − 2 (1 + a)}
(1 + a) {v∗

com − 4 (1 + a)}2 +
4a2

(1 + a) {v∗
com − 4 (1 + a)}

]

+
1

t − 4

[
4a2

{v∗
com − 4 (1 + a)} {v∗

com − 2 (1 + a)} +
16a2 {v∗

com − 2 (1 + a)}
{v∗

com − 4 (1 + a)}3

]

+
1

t − 4

[
8a2

{v∗
com − 4 (1 + a)}2

]

where v∗
com = {(vcom + 1) / (vcom + 3)} vcom; a = rmt/(t − 2); t = k(m − 1); and rm =

(1 + 1/m)tr
(
BW

−1
)

/k. In the above, m is the number of imputations; k is the
number of components that were tested; vcom is the complete-data degrees of freedom;
B is the between-variance component; and W is the average within-variance component.
Reiter noted that his approximation used some results from Barnard and Rubin (1999).
However, his approximation would always be less than or equal to the complete-data
degrees of freedom for samples of modest size and equal to the standard degrees of
freedom for samples of infinite size. Reiter did not cite the Lipsitz, Parzen, and Zhao
(2002) study.

To compare the performance of his approximation, Reiter conducted a simulation
study. He obtained 10,000 replications each for two conditions that varied the sample
size and the number of assessed coefficients (N = 50 and k = 4; N = 200 and k = 9).
The data were generated as a k-variate multivariate normal sample with a mean of 0
and a variance–covariance matrix that exhibited compound symmetry (ρ = 0.5); and
the response was an independently generated standard normal variate. Missing data
were generated by randomly deleting 10% of all values in the dataset. Reiter used SAS’
Proc MI and its multivariate normal model to obtain five multiply imputed datasets.
Reiter reported that his small-sample approximation was calibrated better than was the
standard approximation of Li, Raghunathan, and Rubin (1991) and Meng and Rubin
(1992) for multicomponent significance tests with multiply imputed data.

2 The present study

In the present study, we had three objectives. First, we sought to fill a gap in the lit-
erature by comparing the three small-sample approximations to the degrees of freedom
for the multiply imputed data that have been proposed: Barnard and Rubin’s (1999)
approximation; Lipsitz, Parzen, and Zhao’s (2002) approximation; and Reiter’s (2007)
approximation. Second, we compared these approximations when the imputations were
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calculated using Stata’s multivariate normal imputation model (version 11, StataCorp
2009) and Royston’s implementation of the MIs through the chained-equations approach
(Royston 2004, 2005, 2007; Royston, Carlin, and White 2009; White, Royston, and
Wood 2011). Although research suggests that the two approaches produce comparable
results when all the conditional imputation models are linear regressions (van Buuren
2007), researchers should conduct studies that compare the different imputation pro-
cedures with different data structures and report their findings and experiences with
the implementing software. Third, we compared the three small-sample approxima-
tions when a multiple regression model is fit to data collected from a small sample, and
researchers would use Student’s t test to assess the null hypothesis that a population
regression coefficient was equal to 0.

We initiated our simulation study by generating multivariate normal data that were
consistent with a complete-data version of the housing data that Lipsitz, Parzen, and
Zhao (2002) had used to study the relationship between three variables reported for 25
homes in the Dallas, Texas, housing market: the price (in dollars), the age (in years),
and the size of the house (in square feet). Six homes had missing data on age.

To obtain a complete-data version of Lipsitz, Parzen, and Zhao’s (2002) dataset, we
used Royston’s (2004, 2005, 2007) missing-data program, ice, and randomly selected an
imputed dataset as the starting point for identifying population parameters (see table 1).
We then used Stata’s drawnorm program to generate 25 multivariate normal observations
and randomly set six age values equal to missing. We used a missing completely at
random (MCAR) missing-data mechanism for two reasons. First, we wanted to focus on
the empirical sampling distribution of the combined estimator, its estimated standard
error, and the corresponding Student’s t statistic. Second, we wanted to minimize the
impact of both the missing-data mechanism and questions regarding specification of the
imputation model. Other researchers (for example, Graham, Olchowski, and Gilreath
[2007] and van Buuren [2010]) have also deemphasized the missing-data mechanism so
that they could compare different imputation methods in a straightforward manner.
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Table 1. Summary statistics for the multivariate normal data generator, N = 25

Population means Population standard deviations⎡⎣ log(price)
age(yrs)
size(thousands)

⎤⎦ =

⎡⎣ 11.41948
6.120000
1.874800

⎤⎦ ⎡⎣ 0.2002466
2.1470910
0.4002216

⎤⎦
Population correlation matrix⎛⎝ 1.0000 −0.0435 0.7564

−0.0435 1.0000 −0.2469
0.7564 −0.2469 1.0000

⎞⎠
Population regression model and standard errors
log(price) = β0+ β1age+ β2size + residual

= 10.58754+ 0.01422age+ 0.39730size + residual
(0.17203) (0.01307) (0.07014)

Our simulation design varied two factors: the imputation model (mvn, ice) and
the number of imputations (5, 10, 20, 100). We conducted 500,000 replications for each
cell of our design. We chose this number because we believed that it would provide
reasonable estimates of the sampling distribution’s mean, variance, and percentiles (for
example, the 97.5th percentile).

We used the data reported by Lipsitz, Parzen, and Zhao (2002) for two reasons.
First, these observations have been used previously with a multivariate normal imputa-
tion model to compare the performance of the small-sample approximations proposed
by Barnard and Rubin (1999) and by Lipsitz, Parzen, and Zhao (2002). Second, the
dataset was small enough to be used in a simulation study where we could obtain, store
in memory, and manipulate as many as 100 multiply imputed datasets, and repeat these
steps 500,000 times. The choice of the four levels for m was based in part on the early MI

literature, which indicated that researchers only needed a “few” imputations to achieve
reasonable efficiency. Initially, a few meant 3 to 5 (Allison 2000, 2003; Schafer and Olsen
1998). However, as researchers gained more experience with MI methods, a few became
10 (Schafer 1999), then 20 (Schafer and Graham 2002), and then 40 or as many as 100
(Graham, Olchowski, and Gilreath 2007).

Although researchers are reevaluating the number of imputations that they need to
use (Hershberger and Fisher 2003; Royston 2004; von Hippel 2005; Graham, Olchowski,
and Gilreath 2007; Harel 2007; Bodner 2008; White, Royston, and Wood 2011), three of
the four levels used in the present study (m = 5, 10, 20) reflect the number of imputations
that are reported most often. The present simulation was conducted on a Dell Optiplex
computer with a 3.60 GHz Pentium 4 CPU and 2 GB RAM that ran on the Windows XP

Professional (SP3) operating system.
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3 Simulation results

Before we present our results, we take note of the data-generation process and the
graphical and numerical procedures that we used to assess our empirical sampling dis-
tributions. We conducted five training runs. On each run, we used Stata’s drawnorm
program to generate 500,000 multivariate normal datasets (N = 25 observations) with
the inputs presented in table 1 and regressed log(price) on the house’s age and size. For
each dataset, we wrote the three estimated regression coefficients and standard errors
to a Stata dataset and calculated t statistics corresponding to the null hypothesis that
a regression coefficient equaled 0. For each empirical sampling distribution, we used
Stata’s kdensity command to obtain a density plot. We overlaid the three plots of the
sampling distributions for the regression coefficients with that of a normal distribution;
we overlaid three plots of the sampling distribution of our t statistics with that of a
Student’s t distribution on 22 degrees of freedom for the three t distributions. We used
Stata’s quantile plots (specifically, qnorm and qqplot) to visually inspect the central
and tail-area behavior of the various sampling distributions. We expected Stata’s pro-
grams to perform their functions well. We simply took these steps to accustom our eyes
to distinguish atypical from typical departures from the underlying theoretical models.

We also used five runs to assess how well Stata’s multivariate normal generator
returned samples that had a structure consistent with our target parameters. Each run
consisted of 500,000 replications; and each replication fit the regression model shown
in table 1 to 25 multivariate normal observations generated according to the values
shown in table 1. Koehler, Brown, and Haneuse (2009) noted that few researchers have
attempted to assess or report the Monte Carlo error associated with their simulation and
they proposed that researchers use the standard deviation of the Monte Carlo estimator
across the repetitions of the simulation. In keeping with their proposal, we note that
the coefficients of variation, 100 × (σ̂/μ̂), for the regression coefficients for age, size,
and the constant, were 0.2%, 0.0%, and 0.0%, respectively, and that the coefficients of
variation for their respective standard errors were 0.0%, 0.0%, and 0.0%.

These five runs with Stata’s drawnorm program also showed that 7 of the 15 estimates
of the t distribution’s degrees of freedom obtained as v̂ = 2σ̂2/

(
σ̂2 − 1

)
were less than

the nominal degrees of freedom of 22, even when the regression coefficients and standard
errors were estimated with reasonable precision. The relative percentage error ranged
from −5.5% to 3.6% (mean = −0.4%, standard deviation = 3.2%).

Table 2 presents the multiply imputed estimates of the regression coefficients for
age, size, and the constant and their standard errors by imputation approach (the
MI through chained-equations approach, ice, and the multivariate normal imputation
model, mvn) and number of imputations (m = 5, 10, 20, and 100). Again each cell entry
is based on 500,000 repetitions. As in the Lipsitz, Parzen, and Zhao (2002) study, age
was the only variable that had missing data. Specifically, six values were randomly set
equal to missing.

The cell entries presented in table 2 suggest that the performance of the two MI

approaches was similar for the fit of the linear regression model to data from a small
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sample (N = 25) when the missing-data mechanism is MCAR, and only one of two pre-
dictors had missing data. The cell means for the standard errors suggest that estimation
did not improve appreciably when the total imputation variance was based on 100 im-
putations as opposed to 5 imputations. Both imputation methods overestimated the
standard errors for all three regression coefficients to the same extent. It is understand-
able that the standard errors would be overestimated. The target values were based on
the inputs given to Stata’s multivariate normal generator, which were not subject to
the uncertainty associated with repeatedly sampling 25 observations or the uncertainty
associated with repeatedly sampling observations from a posterior distribution.

Table 2. Combined estimates of the regression coefficients and standard errors by im-
putation method and number of imputations (T = 500, 000)

Number of imputations
Variable MI procedure Target 5 10 20 100

MI combined regression coefficient
age ice 0.01422 0.01352 0.01357 0.01356 0.01354

mvn 0.01307 0.01309 0.01310 0.01309
size ice 0.39730 0.39644 0.39649 0.39637 0.39641

mvn 0.39578 0.39589 0.39582 0.39596
constant ice 10.58754 10.59346 10.59305 10.59340 10.59346

mvn 10.59748 10.59715 10.59730 10.59699

MI standard error
age ice 0.01307 0.01501 0.01489 0.01481 0.01476

mvn 0.01499 0.01486 0.01479 0.01472
size ice 0.07014 0.07292 0.07282 0.07267 0.07264

mvn 0.07320 0.07298 0.07290 0.07277
constant ice 0.17203 0.18591 0.18517 0.18447 0.18420

mvn 0.18632 0.18525 0.18472 0.18415

Figure 1 presents the relative percentage bias associated with each imputation
method across the four levels of m. Each data point was based on 500,000 replica-
tions. The figure indicates that the average of the estimates obtained with ice was
consistently closer to the target value for the regression coefficients for age and size
than was the corresponding average obtained with the multivariate normal imputation
model. Additionally, the relative percentage bias suggests that differences between the
two imputation approaches for a continuous response that is normally distributed may
decrease as the magnitude of the estimated coefficient increases. Both the relative per-
centage bias and absolute percentage bias were calculated using the values displayed in
table 2.
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Figure 1. Relative percentage error for the regression coefficients (left panel) and their
standard errors (right panel) by number of imputations and imputation method

Table 3 presents the mean of the large-sample approximation to the MI degrees
of freedom proposed by Rubin and Schenker (1986) and the mean of the three small-
sample approximations proposed by Barnard and Rubin (1999); Lipsitz, Parzen, and
Zhao (2002); and Reiter (2007). Each mean was averaged across 500,000 repetitions that
were conducted with ice and with Stata’s mvn imputation program, with m = 5, 10, 20,
and 100 imputations. With each small-sample approximation, the mean increased as
the number of imputations increased from m = 5 to m = 100. This increase was larger
for the Lipsitz, Parzen, and Zhao approximation than it was for Barnard and Rubin’s
approximation, and the increase observed with Barnard and Rubin’s approximation was
larger than that observed for Reiter’s approximation. Given that the combined estimates
for the regression coefficients were relatively stable as m increased from 5 to 100, the
increase observed in the degrees of freedom for each small-sample approximation may
signal that too few imputations were used to obtain a stable estimate of a standard
error.
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Table 3. Means for the four approximations to the multiply imputed degrees of freedom
by number of imputations and imputation method

ice mvn
Variable m RS BR LPZ R RS BR LPZ R

age 5 3892.8 13.0 22.5 18.4 1808.1 12.4 22.0 18.1
10 617.3 14.2 28.6 19.4 474.6 13.7 28.7 19.2
20 895.4 14.9 33.0 19.7 712.2 14.4 33.8 19.6
100 3876.4 15.5 37.4 19.8 3151.2 15.1 39.3 19.7

size 5 24700000.0 18.2 23.8 20.0 5412033.0 18.1 23.8 19.9
10 635068.9 18.6 24.7 20.1 309759.5 18.5 24.9 20.1
20 356568.9 18.8 25.0 20.1 295088.9 18.7 25.2 20.1
100 1150215.0 19.0 25.2 20.1 856355.1 18.9 25.5 20.1

constant 5 42794.1 15.9 24.1 19.5 34472.9 15.6 24.0 19.4
10 6277.3 16.8 27.0 19.9 4709.4 16.5 27.3 19.8
20 7786.3 17.2 28.5 20.0 6070.9 17.0 29.0 19.9
100 30550.6 17.6 29.4 20.0 23453.0 17.3 30.2 20.0

Notes: Each cell mean is based on 500,000 repetitions.
RS—Rubin and Schenker’s (1986) large-sample approximation
BR—Barnard and Rubin’s (1999) small-sample approximation
LPZ—Lipsitz, Parzen, and Zhao’s (2002) small-sample approximation
R—Reiter’s (2007) small-sample approximation

The respective mean degrees of freedom for the three small-sample approximations
were essentially comparable across the two imputation procedures. The mean degrees
of freedom for Lipsitz, Parzen, and Zhao’s (2002) small-sample approximation exceeded
the complete-data degrees of freedom for 11 of the 12 cells of the study design. In
table II of their article, Lipsitz, Parzen, and Zhao reported that their approximation
yielded values greater than the complete-data degrees of freedom for the two levels of m
that they considered (m = 5 and m = 20). However, Lipsitz, Parzen, and Zhao simply
sought to show that their approximation was better calibrated than was Rubin and
Schenker’s (1986) approximation.

Finally, the mean degrees of freedom for the three small-sample approximations ex-
hibited the same order for each coefficient and level of m. Specifically, Barnard and Ru-
bin’s (1999) small-sample approximation for the degrees of freedom was always smaller
than the remaining two approximations, and the mean degrees of freedom for Reiter’s
(2007) approximation was always less than the mean observed for Lipsitz, Parzen, and
Zhao’s (2002) approximation. Moreover, the mean degrees of freedom for Reiter’s ap-
proximation was noticeably less variable across the coefficients and imputations than
were the means of the remaining two small-sample approximations. With the chained-
equations approach, the standard deviation of the 12 mean degrees of freedom for Re-
iter’s approximation was 0.49; when the multivariate normal model was used to obtain
the imputations, it was 0.57. Both of these standard deviations were smaller than the
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respective standard deviations of the 12 means for Lipsitz, Parzen, and Zhao’s approx-
imation (4.29 and 4.89) and Barnard and Rubin’s approximation (1.95 and 2.13).

4 Discussion

In this study, we used simulation to extend previous studies that have compared the
performance of MI through the chained-equations approach and through imputation
with a multivariate normal model in two directions. First, we compared the three
small-sample approximations to the multiply imputed degrees of freedom that have
been proposed by Barnard and Rubin (1999), Lipsitz, Parzen, and Zhao (2002), and
Reiter (2007). Second, we may be the first to use sampling distributions with 500,000
observations to ask if a Student’s t distribution is the appropriate reference distribution
with the specified degrees of freedom. The dataset was modeled on the 25 observations
that Lipsitz, Parzen, and Zhao had considered in their simulation study. Specifically,
the natural logarithm of the house’s price was described as a linear function of its age
(years) and size (square feet). This dataset was chosen because it was quite small
and thus could be expected to provide a moderately extreme test of the performance
of each small-sample approximation. As with the Lipsitz, Parzen, and Zhao study, six
age values were randomly set equal to missing prior to imputing the data.

We found that the performance of the two MI approaches was quite similar for the
fit of a relatively straightforward linear regression model to data from a small sample
when the missing data were MCAR and only one of two predictors had any missing data.
More specifically, we found that the absolute bias of the regression coefficients for age
and size was roughly −0.1% across the four levels of m (m = 5, 10, 20, 100) for both
approaches; it was 0.6% across the levels of m for the combined estimate of the constant
for the chained-equations approach, and it was 1.0% for the multivariate normal model.
Moreover, the absolute bias of the corresponding standard errors was only slightly larger
for age (0.2%), size (0.3%), and the constant (1.2%); and the relative percentage bias
was slightly smaller for the chained-equations approach than it was for imputation via
the multivariate normal model.

Both imputation methods overestimated the standard errors for all three regression
coefficients to the same extent. The cell means for the estimated standard errors were
not appreciably closer to the corresponding target value when the total imputation
variance was based on 100 imputations as opposed to 5 imputations. This suggests that
the components-of-variance argument used to derive the total variance of a combined
estimate may not perform particularly well when the sample size is as small as 25 and
there are few variables that the researcher can use in an imputation model.

We also found that the means of the degrees of freedom for the three small-sample
approximations were essentially comparable across the two MI procedures. However,
the mean degrees of freedom for Lipsitz, Parzen, and Zhao’s (2002) small-sample ap-
proximation exceeded the complete-data degrees of freedom for 11 of the 12 cells of our
study design. That their approximation could yield values greater than the complete-
data degrees of freedom was also reported by Lipsitz, Parzen, and Zhao, who conducted
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a simulation with m = 5 and m = 20. The present study extends their results by con-
sidering two additional levels of m (10, 100), an additional imputation approach (the
chained-equations approach), and a greater number of repetitions (500,000 versus 2,000).
When we used the mean degrees of freedom to characterize the performance of each ap-
proximation, we found that Barnard and Rubin’s (1999) small-sample approximation
was always smaller than either of the remaining two approximations, and that the mean
degrees of freedom for Reiter’s (2007) approximation was always less than that observed
for Lipsitz, Parzen, and Zhao’s approximation. Additionally, we found that the mean
degrees of freedom for Reiter’s approximation was noticeably less variable across the
coefficients and imputations than were the means of the remaining two small-sample
approximations.

5 Study limitations

The present study was intentionally restricted to a linear regression model that described
the price of a home in terms of its age and size. This model was fit to 25 observations
generated with Stata’s multivariate normal random-number generator, and an MCAR

missing-data mechanism was imposed, setting six age values equal to missing. Then
only two specific approaches to imputation—MI through chained equations and the
multivariate normal imputation model—were studied. Conclusions cannot be general-
ized readily to different regression models with different missing-data mechanisms and
missing-data patterns, to larger sample sizes, or to different approaches to MI without
further study.

6 Conclusions

The present findings suggest that the performance of the chained-equations approach
was comparable to that of the multivariate normal model for the imputation of missing
data on a continuous predictor in a multiple linear regression model fit to a sample
of 25 observations. The regression estimates and standard errors obtained with the
chained-equations approach were similar to those obtained with a multivariate normal
imputation model. This finding is consistent with earlier studies that compared the two
approaches (Lee and Carlin 2010; van Buuren et al. 2006).

What distinguishes the present study from these earlier studies is its examination
of the empirical sampling distribution of the t statistics corresponding to the estimated
regression coefficients. Specifically, the present study sought to determine if the dis-
tributions could be described by a Student’s t with the small-sample approximations
proposed by Barnard and Rubin (1999), Lipsitz, Parzen, and Zhao (2002), or Reiter
(2007).

As Lipsitz, Parzen, and Zhao (2002) reported, their small-sample approximation to
the MI degrees of freedom can exceed the nominal degrees of freedom that researchers
would use with complete data. Because we used a dataset modeled on the 25 obser-
vations studied by Lipsitz, Parzen, and Zhao, we too found that their approximation
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could exceed the nominal degrees of freedom. As a result, that approximation should
not be used when the sample size is small.

Of the remaining two approximations, Reiter’s (2007) approximation might be pre-
ferred because it is not an average of two estimates—one of which, Rubin and Schenker’s
(1986), was derived using an assumption about the sample size that is unlikely to be
met in practice. The primary disadvantage of Reiter’s approximation would be the
difficulty that many researchers would have demonstrating or explaining how it was
derived. Neither Reiter’s nor Barnard and Rubin’s (1999) small-sample approximation
to the degrees of freedom exhibited excellent performance under either approach to im-
putation when m equaled 100. However, any disappointment should be tempered by
the fact that few studies actually look at the empirical sampling distribution of the
statistics that researchers use to construct interval estimates or test hypotheses.

Finally, we note that Stata provides its users with the tools they need to extend the
present findings to regression problems with a larger number of predictors, larger and
different variance–covariance structures, larger and more numerous sample sizes, and
indeed different response types. Although these simulation studies are time-intensive
when implemented on one computer, they are straightforward to conduct and could
be conducted by a supervised class of students who want to experience the kinds of
problems that some statisticians and applied researchers seek to answer via computer
simulation.
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