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Abstract. Multiple-source data are often collected to provide better information
of some underlying construct that is difficult to measure or likely to be missing.
In this article, we describe regression-based methods for analyzing multiple-source
data in Stata. We use data from the BROMS Cohort Study, a cohort of Swedish
adolescents who collected data on body mass index that was self-reported and
that was measured by nurses. We draw together into a single frame of reference
both source reports and relate these to smoking onset. This unified method has
two advantages over traditional approaches: 1) the relative predictiveness of each
source can be assessed and 2) all subjects contribute to the analysis. The methods
are applicable to other areas of epidemiology where multiple-source reports are
used.

Keywords: st0234, multiple informants, multiple-source predictors, regression anal-
ysis, generalized estimating equations, missing data

1 Introduction

One of the fundamental tasks of modern epidemiology is to quantify the association be-
tween a risk factor and the outcome of interest (Rothman, Greenland, and Lash 2008)
while taking account of possible biases, such as confounding, measurement error, or mis-
classification. While confounding can be addressed by appropriate regression methods,
and many articles in the Stata Journal have already tackled this topic (Fewell et al.
2004; Wang 2007; Cummings 2009), the issue of measurement error is often more deli-
cate and requires ad hoc methods (Hardin, Schmiediche, and Carroll 2003).

Body mass index (BMI; weight in kilograms per square meter of height) is frequently
used in epidemiological studies to assess prevalence of overweight and obese people in
populations. Because of constraints on time, money, location, and personnel, obtaining

c© 2011 StataCorp LP st0234
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measures of the two components of BMI (height and weight) is not always feasible.
Therefore, many epidemiologic studies use a single source of information, typically by
asking subjects to self-report their weight and height.

The BROMS Cohort Study, a seven-year cohort of Swedish pupils (Galanti et al.
2001), has used information collected from two sources: one is the typical self-report
information and the other is a measurement taken on the same students by school
nurses. By collecting reports from multiple sources, one expects that BMI can be more
accurately and reliably determined.

In recent years, multiple-source reports (also known as multiple-informant data,
proxy reports, and coinformants) have been used in a variety of different fields of study.
Multiple-source data can be used to better define both the exposure and the outcome of
interest. However, many of the traditional methods for analyzing multiple-source data
are not completely satisfactory.

In response to the shortcomings of existing analytic methods for multiple-source
data, Horton and colleagues (Horton, Laird, and Zahner 1999; Horton and Fitzmaurice
2004) have proposed regression methodology for simultaneously analyzing information
from multiple-source predictors. These models allow separate regressions to be analyzed
together, tested for differences, and simplified if appropriate to determine a final overall
regression. Partially observed multiple-source reports may be incorporated into these
regression models to account for differential missingness.

Our goal with this article is to illustrate how to implement these models in Stata
using data from a cohort study (the BROMS Cohort Study) where the multiple reports
of BMI (self-reported and measured by nurses) are used as predictors in a regression
model to understand the association between being overweight and subsequent smoking
onset in Swedish adolescents.

2 Example: Multiple reports of BMI and smoking onset

2.1 Study sample

In this article, we analyze data from the BROMS (Swedish acronym for Children’s Smok-
ing and Environment in the Stockholm County) cohort, established at the Stockholm
Centre of Public Health to study the uptake of smoking in Swedish adolescents over time
(Galanti et al. 2001). The cohort was selected in 1998 through a random sample of all
schools in the Stockholm region. The data consist of observations on 3,020 children of
both sexes recruited in the fifth grade of compulsory school (at the age of 11 years)
with follow up until age 18. Cigarette smoking was self-reported by the adolescents in
a yearly paper-and-pencil questionnaire. Parental cigarette smoking was reported at
baseline and categorized dichotomously as “at least one parent” versus “neither parent”
currently smoking cigarettes.

During the school survey at age 14, the adolescents’ weight and height were measured
by the school nurses using a standardized protocol (standing, without clothes and shoes)
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as well as self-reported by the adolescents with a questionnaire, under the same specified
conditions of measurement. Among students with complete data on smoking habits,
2,052 students provided information on their anthropometric measures, and 2,349 were
visited by the school nurse, who was able to provide the same measurement. Although
1,743 subjects had both types of information available, 915 had only one report available
(309 with only a self report and 606 with only a nurse report). These 2,658 subjects
constitute the sample of interest in this article.

2.2 Variables

Smoking onset at age 18 (beginsmo18) will be the binary outcome variable in these
analyses, with predictor variables bmi14 nurse (BMI at age 14 measured by the nurses)
and bmi14 self (BMI at age 14 measured by the students). In addition, we will also
use a covariate that records a student’s gender (female) and a binary covariate that
records the parental smoking status (famsmoke).

. describe beginsmo18 bmi14_nurse bmi14_self female famsmoke

variable storage display value
name type format label variable label

beginsmo18 float %9.0g yesno Smoking onset at age 18
bmi14_nurse float %9.0g BMI at age 14 measured by the nurses
bmi14_self float %9.0g BMI at age 14 self reported by the students
female float %9.0g yesno Gender: 1 = female, 0 = male
famsmoke float %9.0g yesno Parental smoking status

3 Methods

We first establish some notation. We assume that there are N independent subjects.
Let Y denote a univariate outcome for a given subject (smoking onset in our example).
Let Xj denote the jth multiple-source predictor. In the BROMS Cohort Study, we have
two sources (J = 2), where X1 denotes the first source report (BMI self-reported by
students) and X2 denotes the second source report (BMI measured by nurses). The
latent variable Q represents the unobserved true value of BMI. Let Z denote a vector of
other covariates of interest for the subject (gender and parental smoking status). The
general regression model of interest is f(Y |X,Z).

3.1 Analytic approaches

Consensus decision

A first approach when the multiple sources are categorical could be to force a consensus
decision. The model would be f(Y |Q,Z). This forced decision generally needs to be
done at the data-collection stage and as a result may not always be possible.
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Separate analyses for each source

Another simple but grossly inefficient (and too common!) approach is to use only one
source and fit either the model f(Y |X1, Z) or the model f(Y |X2, Z).

This approach, however, addresses sensitivity of choice of the source: 1) separate
analyses yield multiple (and often differing) sets of results for the different sources, which
may be difficult to interpret; 2) separate analyses provide no formal means of evaluating
how similar or different the results are across the various sources (or of summarizing
them in a single set of results, if they are sufficiently similar); and 3) separate analyses
may be based on different subsets of the data if some subjects are missing data from
one source and others are missing data from another source.

Combining (pooling) sources

The “pooling” strategy, where information from multiple sources is combined into a
single summary number for each subject, has been a common alternative to separate
analyses in the past. A variety of strategies and algorithms for pooling multiple-source
data have been introduced (Horton, Laird, and Zahner 1999). For example, a strategy
that is appealing when the source data are quantitative is to take the arithmetic average
of the multiple-source data:

MEAN =
(X1 + X2)

2

The model of interest will then be f(Y |MEAN, Z).

When the multiple sources are dichotomous, variants such as “OR” rules or “AND”
rules may be useful.

Although this approach simplifies the analysis, there are many reasons why the
pooling of data from multiple sources is not very desirable: 1) the optimal algorithm
for combining multiple-source data depends on the type of measurement error present;
2) pooling does not permit the examination of differences in risk-factor effects across
sources; and 3) many pooling algorithms are not clearly defined in the presence of
missing data from one or more sources.

Including both source reports

Another standard approach is to fit a regression model that includes both source reports:

f(Y |X1,X2, Z) = β0 + β1X1 + β2X2 + β3Z + β4(X1 × X2) (1)
+ β5(X1 × Z) + β6(X2 × Z)

Here the regression parameters are interpreted in terms of the effect of a report from
one source, conditional on the report of the other source. This may be the appropriate
model if prediction is of primary interest. However, in many settings, the marginal
association of each source report with the outcome may be of greater scientific interest.
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In addition, the association between the risk factor and the outcome will generally be
attenuated in this model because of the conditioning on all source reports.

Unified multiple-source regression model

Analytic methods of analysis for multiple-source predictor data have been described
independently by Horton, Laird, and Zahner (1999) and Pepe, Whitaker, and Seidel
(1999). They proposed the simultaneous estimation of separate regression equations,
one for each source report. In the BROMS example, this could be represented by the
following model:

f(Y |X1, Z) = β0 + β1X1 + β2Z
f(Y |X2, Z) = β0 + γ0 + (β1 + γ1)X2 + (β2 + γ2)Z

(2)

One advantage of this approach is that it facilitates testing for source effects, that
is, whether the regression models are sensitive to the choice of source. If the values γ
are nonzero, then the models depend on the source. A test of γ1 = 0 can be used to
determine if the effects of BMI on the outcome differ by source. A test of γ2 = 0 can be
used to determine if the effects of other covariates on the outcome differ by source.

The following bivariate (two lines per subject) regression allows a single regression
model to be fit to the multiple-source predictor data specified by (2):

f(Y |X) = β0 + γ0NURSE + β1X + γ1(NURSE × X) + β2Z + γ2(NURSE × Z) (3)

where NURSE is an indicator variable included in the model to indicate whether the
BMI value was self-reported by the student (NURSE = 0) or measured by the nurse
(NURSE = 1) and where

X =
{

X1 if NURSE = 0
X2 if NURSE = 1

Equation (3) assumes that the association between BMI and smoking onset as well as
the association between the covariate and smoking onset may vary by source (nurse
or student). Here each subject in the study contributes two lines to the dataset, with
different values of the NURSE variable for the two lines. Additional predictor variables
and interactions can be incorporated.

In general, source-related differences in the effect of BMI can be evaluated via tests of
the γ parameters equaling zero. For example, the simplified bivariate regression model

f(Y |X) = β0 + γ0NURSE + β1X + β2Z (4)

assumes that neither the association between BMI and outcome (γ1 = 0) nor the asso-
ciation between covariate and outcome (γ2 = 0) vary by source.

This methodology is a special case of the generalized estimating equations (GEE)
approach (Liang and Zeger 1986), in which the relationship between the outcome and
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each predictor can be modeled separately (but estimated simultaneously). Unlike a
traditional GEE, the outcomes are the two outcomes for the two lines per subject, but the
value of the predictor differs. An independence working correlation matrix is specified,
along with an empirical (robust in Stata parlance) variance estimator. The model can
incorporate complex survey sampling designs (Särndal, Swensson, and Wretman 1992;
Horton and Fitzmaurice 2004) and can easily be fit using Stata.

4 Results

We begin by reading in the dataset and creating the analytic set:

. use broms_source

. keep bmi14_nurse bmi14_self beginsmo18 female famsmoke

4.1 Summary statistics and distribution of variables

We then describe the variables of interest:

. tabulate beginsmo18

Smoking
onset at

age 18 Freq. Percent Cum.

No 1,565 58.88 58.88
Yes 1,093 41.12 100.00

Total 2,658 100.00

. summarize bmi14_nurse bmi14_self

Variable Obs Mean Std. Dev. Min Max

bmi14_nurse 2349 20.55556 3.141448 13.97107 37.72291
bmi14_self 2052 19.92175 2.692268 13.38776 38.96455

. tabulate female

female Freq. Percent Cum.

male 1,334 50.19 50.19
female 1,324 49.81 100.00

Total 2,658 100.00

. tabulate famsmoke

famsmoke Freq. Percent Cum.

No 1,654 62.23 62.23
Yes 1,004 37.77 100.00

Total 2,658 100.00
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4.2 Analytic approaches

Separate analyses for each source

Figure 1 displays a lowess (locally weighted smoothing spline) and straight-line fit for
the association between age of onset of smoking and nurse-reported BMI.

. twoway scatter beginsmo18 bmi14_nurse || (lowess beginsmo18 bmi14_nurse)
> || (lfit beginsmo18 bmi14_nurse), scheme(sj)

0
.2

.4
.6

.8
1

15 20 25 30 35 40
BMI at age 14 measured by the nurses

Smoking onset at age 18 lowess beginsmo18 bmi14_nurse
Fitted values

Figure 1. Lowess and straight-line fit for the association between nurse-reported BMI

and age of onset of smoking
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Figure 2 displays a lowess and straight-line fit for the association between age of
onset of smoking and self-reported BMI.

. twoway scatter beginsmo18 bmi14_self || (lowess beginsmo18 bmi14_self)
> || (lfit beginsmo18 bmi14_self), scheme(sj)

0
.2

.4
.6

.8
1

15 20 25 30 35 40
BMI at age 14 self reported by the students

Smoking onset at age 18 lowess beginsmo18 bmi14_self
Fitted values

Figure 2. Lowess and straight-line fit for the association between self-reported BMI and
age of onset of smoking

The assumption of a linear association between nurse-reported, as well as self-reported,
BMI and the probability of smoking seems reasonable in the midrange of BMI values,
though there is greater deviation between the straight line and the lowess with self-
reported BMI.

We first fit a logistic regression model separately for each source, controlling for
gender and parental smoking status. Nonsignificant interaction terms are dropped from
the models.

. logistic beginsmo18 bmi14_nurse female famsmoke

Logistic regression Number of obs = 2349
LR chi2(3) = 72.39
Prob > chi2 = 0.0000

Log likelihood = -1552.9799 Pseudo R2 = 0.0228

beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14_nurse 1.035984 .014013 2.61 0.009 1.00888 1.063817
female 1.443318 .1230764 4.30 0.000 1.221174 1.705873

famsmoke 1.773314 .1548034 6.56 0.000 1.494442 2.104225
_cons .2231046 .0637182 -5.25 0.000 .1274698 .3904899



394 Multiple-source models

. estimates store Separate_nurse

. logistic beginsmo18 bmi14_self female famsmoke

Logistic regression Number of obs = 2052
LR chi2(3) = 52.00
Prob > chi2 = 0.0000

Log likelihood = -1356.7054 Pseudo R2 = 0.0188

beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14_self 1.023967 .017413 1.39 0.164 .9904009 1.058671
female 1.539319 .1416506 4.69 0.000 1.285286 1.843561

famsmoke 1.642746 .1542083 5.29 0.000 1.366678 1.97458
_cons .2783781 .097847 -3.64 0.000 .1397804 .5544005

. estimates store Separate_self

When BMI is assessed using the self-report information, the odds ratio of smoking onset
is 1.024 and not statistically significant (95% confidence interval [CI]: [0.99, 1.06]). When
BMI measured by nurses is used, the odds ratio of smoking onset is 1.036 and statistically
significant (95% CI: [1.01, 1.06]). The association between BMI and smoking appears to
be stronger when using the nurse-reported values. An obvious limitation of this analysis
is that there is no way to quantify this difference from the separate model.

Combining (pooling) sources

We generate a variable, bmi14 mean1, that is equal to the arithmetic average of the two
BMI values when both are available and otherwise is equal to the only value available.
We then fit a logistic regression, controlling for gender and parental smoking status:

. egen bmi14_mean1 = rowmean(bmi14_nurse bmi14_self)

. logistic beginsmo18 bmi14_mean1 female famsmoke

Logistic regression Number of obs = 2658
LR chi2(3) = 74.47
Prob > chi2 = 0.0000

Log likelihood = -1763.0187 Pseudo R2 = 0.0207

beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14_mean1 1.034027 .013712 2.52 0.012 1.007498 1.061254
female 1.464281 .1171575 4.77 0.000 1.251756 1.71289

famsmoke 1.706915 .1396021 6.54 0.000 1.454104 2.00368
_cons .2369137 .0657249 -5.19 0.000 .1375462 .4080672

. estimates store Mean1

For every one-point increase in BMI, the odds of having started smoking by age 18
increases by 0.034. This odds ratio is statistically significant (95% CI: [1.01, 1.06]).
Then we generate another variable, bmi14 mean2, which reports the arithmetic average
of the two BMI values when both are available and reports a missing value if one of the
sources is missing.
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. generate bmi14_mean2 = (bmi14_nurse + bmi14_self) / 2

. logistic beginsmo18 bmi14_mean2 female famsmoke

(915 missing values generated)

Logistic regression Number of obs = 1743
LR chi2(3) = 49.34
Prob > chi2 = 0.0000

Log likelihood = -1146.6655 Pseudo R2 = 0.0211

beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14_mean2 1.029351 .0187437 1.59 0.112 .993262 1.066752
female 1.53314 .1531183 4.28 0.000 1.260579 1.864633

famsmoke 1.712501 .1755853 5.25 0.000 1.400734 2.093658
_cons .2422215 .0919753 -3.73 0.000 .1150795 .509832

. estimates store Mean2

Again for every one-point increase in BMI, the odds of having started smoking by age 18
increases by about 3%, but this effect is no longer statistically significant (95% CI: [0.99,
1.07]).

Including both source reports

We next fit a regression akin to (1) that includes both source reports (and potentially
their interaction):

. logistic beginsmo18 bmi14_self bmi14_nurse female famsmoke

Logistic regression Number of obs = 1743
LR chi2(4) = 49.44
Prob > chi2 = 0.0000

Log likelihood = -1146.6167 Pseudo R2 = 0.0211

beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14_self 1.000548 .0454791 0.01 0.990 .9152663 1.093777
bmi14_nurse 1.027377 .0422885 0.66 0.512 .9477479 1.113696

female 1.525057 .1544594 4.17 0.000 1.250476 1.859931
famsmoke 1.711882 .1755344 5.24 0.000 1.400208 2.092931

_cons .2481597 .0961403 -3.60 0.000 .1161354 .5302709

. estimates store Adjusted

Neither report of BMI is statistically significant. However, while this model may be
attractive if the primary goal is prediction of the outcome, the regression parameters
now are interpreted in terms of the effect on the outcome of a one-point increase in
the BMI report from one source, conditional on the report of the other source (and of
the other covariates) being held fixed. In addition to being challenging to interpret,
this model will tend to have an attenuated association if both sources have a positive
correlation.
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Unified multiple-source regression model

To fit the models of Horton, Laird, and Zahner (1999) as specified in (3), we need to
reshape the dataset from wide to long format (that is, from one observation per subject
to two observations per subject).

. generate id = _n

. rename bmi14_nurse bmi141

. rename bmi14_self bmi140

. list id female bmi141 bmi140 famsmoke beginsmo18 if id < 6

id female bmi141 bmi140 famsmoke beginsmo18

1. 1 No 18.80921 . Yes No
2. 2 No 20.98399 21.38594 No No
3. 3 Yes 28.51563 . No No
4. 4 Yes 21.33821 20.57613 No No
5. 5 Yes 16.09645 15.29291 No No

. reshape long bmi14, i(id) j(nurse)

(note: j = 0 1)
Data wide -> long

Number of obs. 2658 -> 5316
Number of variables 12 -> 12
j variable (2 values) -> nurse
xij variables:

bmi140 bmi141 -> bmi14

. list id beginsmo18 bmi14 nurse female famsmoke if id < 6

id beginsmo18 bmi14 nurse female famsmoke

1. 1 No . 0 No Yes
2. 1 No 18.80921 1 No Yes
3. 2 No 21.38594 0 No No
4. 2 No 20.98399 1 No No
5. 3 No . 0 Yes No

6. 3 No 28.51563 1 Yes No
7. 4 No 20.57613 0 Yes No
8. 4 No 21.33821 1 Yes No
9. 5 No 15.29291 0 Yes No

10. 5 No 16.09645 1 Yes No

We fit a logistic regression model accounting for the clustering of multiple-source
observations within subject. The regression model controls for the main effect of source,
gender, and parental smoking status, as well as the interaction between each variable
and source (the γ terms). We retained interactions if the overall p-value was less than
or equal to 0.05. Other strategies may be used to find a balance between a parsimonious
and flexible model.



M. P. Caria, R. Bellocco, M. R. Galanti, and N. J. Horton 397

. xtset id
panel variable: id (balanced)

. xtgee beginsmo18 nurse##(c.bmi14 female famsmoke), link(logit) corr(ind)
> family(binomial) vce(robust) eform nolog

GEE population-averaged model Number of obs = 4401
Group variable: id Number of groups = 2658
Link: logit Obs per group: min = 1
Family: binomial avg = 1.7
Correlation: independent max = 2

Wald chi2(7) = 74.40
Scale parameter: 1 Prob > chi2 = 0.0000

Pearson chi2(4401): 4404.44 Deviance = 5819.37
Dispersion (Pearson): 1.000781 Dispersion = 1.322284

(Std. Err. adjusted for clustering on id)

Semirobust
beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.nurse .8014445 .2124384 -0.84 0.404 .4767009 1.347414
bmi14 1.023967 .0172544 1.41 0.160 .9907017 1.05835

1.female 1.539319 .1417153 4.69 0.000 1.28518 1.843713
1.famsmoke 1.642746 .1540527 5.29 0.000 1.366932 1.974213

nurse#c.bmi14
1 1.011736 .0129836 0.91 0.363 .9866057 1.037506

nurse#female
1 1 .937634 .0552886 -1.09 0.275 .8352977 1.052508

nurse#famsmoke
1 1 1.079481 .0651481 1.27 0.205 .9590562 1.215028

_cons .2783781 .0970596 -3.67 0.000 .1405576 .5513353

There is little evidence for source effects (testing γ3 = γ2 = γ1 = 0):

. testparm nurse#c.bmi14 nurse#female nurse#famsmoke

( 1) 1.nurse#c.bmi14 = 0
( 2) 1.nurse#1.female = 0
( 3) 1.nurse#1.famsmoke = 0

chi2( 3) = 4.37
Prob > chi2 = 0.2241

In addition, none of the individual CIs came close to excluding 0 (all γ p-values were
greater than or equal to 0.205). We then refit a regression similar to (4) after dropping
the nonsignificant interactions (and the source main effect):
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. xtgee beginsmo18 bmi14 female famsmoke, link(logit) corr(ind)
> family(binomial) vce(robust) eform

Iteration 1: tolerance = 2.252e-10

GEE population-averaged model Number of obs = 4401
Group variable: id Number of groups = 2658
Link: logit Obs per group: min = 1
Family: binomial avg = 1.7
Correlation: independent max = 2

Wald chi2(3) = 67.69
Scale parameter: 1 Prob > chi2 = 0.0000

Pearson chi2(4401): 4404.37 Deviance = 5820.38
Dispersion (Pearson): 1.000767 Dispersion = 1.322513

(Std. Err. adjusted for clustering on id)

Semirobust
beginsmo18 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bmi14 1.03116 .0137493 2.30 0.021 1.004561 1.058463
female 1.490927 .1242893 4.79 0.000 1.266185 1.755561

famsmoke 1.710896 .1455271 6.31 0.000 1.448175 2.021277
_cons .2437989 .0683924 -5.03 0.000 .1406844 .4224912

. estimates store Unified

This yields a shared parameter model with a parameter estimate between that of
self and nurse report. Table 1 summarizes the results from the different models by using
the user-written estout command (Jann 2005) (values with an * do not include 1 in
the associated 95% CI):
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. estout Separate_nurse Separate_self Mean1 Mean2 Adjusted Unified,
> cells(b(star fmt(2)) ci(fmt(2)) se(par fmt(3))) legend eform
> title("Odds ratio, confidence interval and standard error for different models")
> order(bmi14_self bmi14_nurse bmi14_mean1 bmi14_mean2 bmi14 female famsmoke)
> mlabels("Separate nurse" "Separate self" "Pooled mean1" "Pooled mean2" "Adjusted"
> "Unified") style(smcl) starlevels(* 0.05) drop(_cons) collabels(none)

Separate Separate Mean1 Mean2 Adjusted Unified
nurse self

main
bmi14_self 1.02 1.00

0.99,1.06 0.92,1.09
(0.017) (0.045)

bmi14_nurse 1.04* 1.03
1.01,1.06 0.95,1.11

(0.014) (0.042)
bmi14_mean1 1.03*

1.01,1.06
(0.014)

bmi14_mean2 1.03
0.99,1.07

(0.019)
bmi14 1.03*

1.00,1.06
(0.014)

female 1.44* 1.54* 1.46* 1.53* 1.53* 1.49*
1.22,1.71 1.29,1.84 1.25,1.71 1.26,1.86 1.25,1.86 1.27,1.76

(0.123) (0.142) (0.117) (0.153) (0.154) (0.124)
famsmoke 1.77* 1.64* 1.71* 1.71* 1.71* 1.71*

1.49,2.10 1.37,1.97 1.45,2.00 1.40,2.09 1.40,2.09 1.45,2.02
(0.155) (0.154) (0.140) (0.176) (0.176) (0.146)

* p<0.05

Table 1. Odds ratio, CI, and standard error for different models

5 Conclusions

Researchers in epidemiology are often interested in the results of regression models based
on multiple-source reports. Separate regression models for each source are straightfor-
ward to fit but difficult to interpret if they provide differing results. Also, interpretability
of models where both sources are included can be problematic. In the BROMS Cohort
Study, how should we interpret the effect on smoking onset of a one-unit increase of
self-reported BMI while holding the nurse report constant? However, regression models
for the combined reports have disadvantages in that they must often make a number of
a priori assumptions, and they can yield biased estimates of the regression parameters
and standard errors when there are missing source reports and the data are missing at
random (Goldwasser and Fitzmaurice 2001).
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We have illustrated methods using a single model that have several advantages over
approaches that combine the reports. The proposed methods allow formal assessment
of whether covariate (for example, risk factor) effects vary according to the source
and allow for the pooling of information from different sources when appropriate. For
example, in the analysis of the BROMS data, there are no significant source effects, so
a single model that pooled information from nurse report and self report is fit to these
data. This joint analysis of both source reports results in smaller standard errors than
those obtained from separate analyses of each source report. As an example, the robust
standard error for family smoking is 0.146, while for each of the separate source models
it is at least 0.154.

Another appealing feature of the proposed methods is that they can be implemented
using existing, general-purpose, statistical software. These methods are attractive be-
cause they can account for complex survey designs and can be generalized to other
epidemiologic investigations that use multiple-source reports.

Our models assumed that the functional form of the relationship between BMI and
smoking onset was approximately linear, though there was some indication in figures 1
and 2 of nonlinearity for extremely low and extremely high values. Additional analyses
(not reported here) that allowed for quadratic form of the association yielded similar
results. This is likely because of the relatively small number of subjects with extreme
values.

A practical concern in analyzing multiple-source reports is the presence of missing
data. While a full review of missing-data methods is beyond the scope of this article,
missingness can induce bias and loss of efficiency (Little and Rubin 2002). This model
allows partially observed subjects to contribute to the analysis and fully uses all available
information. A limitation is that the GEE approach assumes that data are missing
completely at random; that is, missingness does not depend on observed or unobserved
measurements. Horton et al. (2001) described how to fit a weighted estimating equation
model, which is unbiased when the missingness is missing at random in the sense of
Little and Rubin (2002).
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