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Abstract. We present a set of Stata commands for the estimation, prediction,
and graphical representation of logistic quantile regression described by Bottai,
Cai, and McKeown (2010, Statistics in Medicine 29: 309–317). Logistic quantile
regression models the quantiles of outcome variables that take on values within
a bounded, known interval, such as proportions (or percentages) within 0 and 1,
school grades between 0 and 100 points, and visual analog scales between 0 and
10 cm. We describe the syntax of the new commands and illustrate their use
with data from a large cohort of Swedish men on lower urinary tract symptoms
measured on the international prostate symptom score, a widely accepted score
bounded between 0 and 35.

Keywords: st0231, lqreg, lqregpred, lqregplot, logistic quantile regression, robust
regression, bounded outcomes

1 Introduction

Some variables take on values within a bounded, known interval. Examples of these
intervals include proportions (or percentages) within 0 and 1, school grades between 0
and 100 points, visual analog scales between 0 and 10 cm, quality of life index between
1 and 10, and international prostate symptom scores (IPSS) between 0 and 35.

In this article, we describe a set of Stata commands for the estimation of logistic
quantile regression, a method described by Bottai, Cai, and McKeown (2010) modeling
quantiles (for example, median) of bounded outcomes. Koenker and Bassett (1978) in-
troduced quantile regression over three decades ago, and the popularity of this method

c© 2011 StataCorp LP st0231



328 Logistic quantile regression

has grown ever since; Koenker (2005) gives an extensive description of quantile regres-
sion. The traditional linear regression models the conditional expectation of an outcome
variable given a set of covariates. Quantile regression models its conditional quantile in-
stead and can be estimated with the Stata commands qreg, iqreg, sqreg, and bsqreg.
Quantile regression is a powerful tool for comparing, more thoroughly than the mean
alone, various aspects (location, scale, and shape) of any kind of distribution of the
outcome across different covariate patterns.

When research interest lies in the mean of bounded response variables, beta regres-
sion and fractional logit models are useful methods. Beta regression (Smithson and
Verkuilen 2006) is implemented in Stata as the betafit package, available from the
SSC archive (Buis, Cox, and Jenkins 2011). Beta regression assumes that the regression
residual follows a beta distribution and can be used to investigate how the conditional
mean and standard deviation depend on explanatory variables (Smithson and Verkuilen
2006). The fractional logit model (Papke and Wooldridge 1996) can be estimated using
Stata’s glm command (see [R] glm) (Baum 2008), and it is fully robust and relatively
efficient under the generalized linear model assumption.

2 Logistic quantile regression

In this section, we follow the description provided by Bottai, Cai, and McKeown (2010).
Suppose we have a sample of n observations on some continuous outcome yi, i = 1, . . . , n,
and an s-dimensional vector of covariates xi = {x1,i, . . . , xs,i}T . The quantile regression
model is

yi = xT
i βp + εi

where the βp = {βp1, . . . , βps}T indicate the unknown regression parameters. For any
given p ∈ (0, 1), we assume that P (εi ≤ 0|xi) = p or, equivalently, that P (yi ≤
xT

i βp|xi) = p. The p quantile of the conditional distribution of yi given xi is defined as

Qy(p) = xT
i βp (1)

If p = 0.5, then Qy(0.5) is the conditional median, the value that splits the condi-
tional distribution of the response variable into two parts with equal probability. No
other assumptions are required on the distribution of the regression residual εi.

Quantile regression has several desirable properties. For example, its estimation,
contrary to the regression on the mean, is equivariant to monotonic transformations
of the outcome; that is, Qh(y)(p) = h{Qy(p)} for any nondecreasing function h, while
E{h(y)} �= h{E(y)} where E(y) denotes the mean of y. Bottai, Cai, and McKeown
(2010) exploit this property and define the logistic quantile regression to model contin-
uous outcomes that are bounded within a known interval as

yi ∈ (ymin, ymax) (2)
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where ymin and ymax do not denote the smallest and largest observed sample values but
the limits of the feasible interval of the outcome variable.

To accommodate the constraint (2), we assume that for any quantile p there exists
a fixed set of parameters βp and a known nondecreasing function h from the interval
(ymin, ymax) to the real line (a function often referred to as link), such that

h{Qy(p)} = xT
i βp

Because a continuous outcome bounded within the unit interval resembles a prob-
ability, or a propensity, among a variety of suitable choices for the link function h,
Bottai, Cai, and McKeown (2010) opt for the logistic transformation

h(yi) = log
(

yi − ymin

ymax − yi

)
= logit(yi)

The inverse transform is

Qy(p) =
exp (xT

i βp)ymax + ymin

1 + exp (xT
i βp)

Regression coefficients can be estimated using quantile regression by regressing the
transformed outcome h(yi) on x using (1):

Qh(yi)(p) = Qlogit(yi)(p) = xT
i βp

This is analogous to logistic regression, which applies the same transform to model a
probability. Transforming has an identical goal in both models: to facilitate modeling
while constraining inference about the outcome within the feasible range, (0, 1) for a
probability and (ymin, ymax) for the continuous bounded outcome. When the sample
data take on the lower limit, ymin, or the upper limit, ymax, a small quantity can be
added to ymax and subtracted from ymin.

Regarding inference about βp, it has been shown in quantile regression that boot-
strap standard errors outperform asymptotic standard errors (Rogers 1992; Gould 1992;
Buchinsky 1995). Therefore, the present Stata commands use bootstrap as the default
method for estimating standard errors. When multiple quantiles are estimated, for
each bootstrap sample, regression coefficients are estimated for each quantile of inter-
est. Thus one can also test and construct confidence intervals comparing regression
coefficients across quantiles of the response.
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3 Stata syntax

Inference about the logistic quantile regression model above can be carried out with the
new Stata commands lqreg, lqregpred, and lqregplot. We describe their syntax in
this section and illustrate their use in section 4.

3.1 lqreg

lqreg estimates logistic quantile regression for bounded outcomes. It produces the same
coefficients as qreg or sqreg (see [R] qreg) for each quantile of a logistic transformation
of depvar. lqreg estimates the variance–covariance matrix of the coefficients by using
either bootstrap (default) or closed formulas.

lqreg depvar
[
indepvars

] [
if
] [

in
] [

, quantiles(numlist) reps(#) seed(#)

ase cluster(varlist) ymin(#) ymax(#) generate(varname) level(#)

nodots
]

After lqreg estimation, qreg postestimation (see [R] qreg postestimation) is
available. In addition, lqreg has two specific postestimation commands described in
sections 3.2 and 3.3.

Options

quantiles(numlist) specifies the quantiles to be estimated and should contain numbers
between 0 and 1, exclusive. Numbers greater than 1 are interpreted as percentages.
The default, quantiles(0.5), corresponds to the median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate
of the variance–covariance matrix of the estimators (standard errors). For example,
the default, reps(100), would perform 100 bootstrap replications.

seed(#) sets the random-number seed. Because bootstrapping is a random process,
this option is important to reproduce the results (see [R] set seed).

ase specifies the asymptotic standard errors as implemented in qreg (see [R] qreg).

cluster(varlist) specifies the variables identifying resampling clusters. If cluster() is
specified, the sample drawn during each replication is a bootstrap sample of clusters.
cluster() works only if reps() is also specified.

ymin(#) sets the lower bound of depvar to be used in the logistic transformation. The
default is the minimum value of depvar minus half of the minimal increment of
depvar.

ymax(#) sets the upper bound of depvar to be used in the logistic transformation. The
default is the maximum value of depvar plus half of the minimal increment of depvar.
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generate(varname) creates a new variable containing the logistic transformation of
depvar.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

nodots suppresses display of the replication dots when using bootstrap.

Saved results

lqreg saves the following in e():

Scalars
e(N) number of observations e(n q) number of quantiles requested
e(df r) residual degrees of freedom e(q#) the quantiles requested
e(ymin) lower bound for depvar e(rank) rank of e(V)
e(ymax) upper bound for depvar e(convcode) 0 if converged; otherwise, return

code for why nonconvergence

Macros
e(cmd) lqreg e(eqnames) names of equations
e(cmdline) command as typed e(properties) b V
e(depvar) name of dependent variable e(predict) program used to implement

predict

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators

Functions
e(sample) marks estimation sample

3.2 lqregplot

The postestimation command lqregplot plots any regression coefficient with confidence
bands against a dense set of quantiles.

lqregplot varname
[
, quantiles(numlist) level(#) reps(#) ase seed(#)

nosmooth loptions(string) generate(varname1 varname2 varname3

varname4)
]

Options

quantiles(numlist) specifies the quantiles to be estimated and should contain numbers
between 0 and 1, exclusive. Numbers greater than 1 are interpreted as percentages.
The default, quantiles(0.5), corresponds to the median.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate
of the variance–covariance matrix of the estimators.
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ase specifies the asymptotic standard errors as implemented in qreg (see [R] qreg).

seed(#) sets the random-number seed.

nosmooth specifies not to smooth the plot of the regression coefficients. Smoothing is
the default.

loptions(string) specifies lowess (see [R] lowess) options (for instance, bwidth() or
mean) when smoothing the regression coefficients versus the set of specified quantiles.

generate(varname1 varname2 varname3 varname4) saves the variables required to
reproduce the plot: quantile, point estimate, lower bound, and upper bound of the
regression coefficient, to be saved in varname1, varname2, varname3, and varname4,
respectively. This option is useful if one wants to customize the plot using graph
twoway (see [G-2] graph twoway).

3.3 lqregpred

The postestimation command lqregpred creates new variables containing the untrans-
formed predicted quantiles of depvar and optionally plots them versus a covariate of
interest.

lqregpred stubname
[
if
] [

in
] [

, for(varlist) at(var = #
[
var = #

[
. . .

] ]
)

plotvs(varname)
]

Options

for(varlist) specifies the covariate, modeled using one or more transformations for(),
for which to compute the (partial) predicted values, evaluating the remaining co-
variates at the value of 0 unless specified differently with the at() option.

at(var = #
[
var = #

[
. . .

] ]
) specifies the values of the covariates not specified in

the for() option. at() works only if the for() option is also specified.

plotvs(varname) creates plots of the untransformed predicted quantiles versus a quan-
titative covariate.

4 Example

Lower urinary tract symptoms are a common problem in aging men. The severity of
these symptoms is frequently measured by the IPSS, whose values are bounded between
0 and 35. Severity of the symptoms is generally interpreted as follows: 0–7 is mild,
8–19 is moderate, and 20–35 is severe. The distribution of the values of IPSS is often
markedly skewed to the right, and in most studies the score is dichotomized as mild
or no symptoms (0–7) and moderate to severe symptoms (8–35). The binary outcome
is then modeled with logistic regression. The cutoff value 7 is clearly arbitrary, albeit
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widely accepted, and analyzing the resulting binary outcome may be inefficient and
potentially misleading.

In this section, we analyze IPSS as a bounded score with logistic quantile regression
on a sample of 30,377 men in central Sweden aged 45–79 years; this sample is described
in more detail by Orsini et al. (2006). The main covariate of interest is a total physical
activity score (variable tpa), a combination of intensity and duration for a combination
of daily activities, expressed in metabolic equivalents (MET; kcal/kg/hour).

The sample distribution of response variable IPSS is highly skewed with a concen-
tration of observed values in a narrow range close to zero (figure 1). About 50% of the
subjects had IPSS less than 3. Figure 2 shows the distribution of IPSS by categories of
physical activity. The median and interquartile ranges of IPSS decrease with increasing
levels of physical activity. Comparing the lowest (≤ 30) to the largest (> 54) category of
physical activity, the 0.25 quantile of IPSS decreases by 1 unit and the median decreases
by 4 units.
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Figure 1. Distribution of the IPSS; the top axis shows the 25th, 50th, 75th, and 95th
percentiles
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Figure 2. Plot of various observed quantiles of IPSS according to categories of physical
activity intervals

Inference about the conditional mean IPSS through ordinary least-squares regression
would have several limitations because the normality and homoskedasticity (constant
variance) assumptions of the conditional mean of the outcome are clearly untenable.
Two useful parametric regression methods to model the conditional mean IPSS are a
beta regression model (betafit) and a fractional logit model (glm). Both commands
require prior transformation of the original bounded outcome to a unit interval. Beta
regression requires an additional transformation to avoid the boundaries (exact 0s and
1s), as suggested by Smithson and Verkuilen (2006). Below is the syntax for both models
modeling physical activity with indicator variables.

. use http://nicolaorsini.altervista.org/data/pa_luts
(Data source: Orsini et al. The Journal of Urology. 2006. 176(6):2546-50)

// Transform the [0,35] bounded outcome in [0,1] bounded outcome
. generate ipssb = (ipss-0)/(35-0)

// Transform the [0,35] bounded outcome in (0,1) bounded outcome
. generate ipssc = [(ipss-0)/(35-0)*(30377-1)+.5]/30377

// Beta regression
. xi: betafit ipssc, mu(i.tpac)

(output omitted )

// Fractional logit regression
. xi: glm ipssb i.tpac, family(binomial) link(logit) vce(robust)

(output omitted )

The estimates of both models indicate that the mean of the transformed IPSS sig-
nificantly decreases with increasing values of physical activity. Interpretation of both
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regression coefficients and predicted values from these models requires transforming
back to the original scale of the outcome. The conditional mean alone cannot fully
describe the shift in location and shrinkage in spread of the distribution of a bounded
outcome evident in figure 2. This can be described directly and with no assumptions
about the residuals by modeling quantiles of the bounded outcome with logistic quantile
regression.

4.1 Categorical predictor

We now present how to estimate quantiles of IPSS as a function of covariates using the
proposed lqreg command. The minimum and maximum values used for the logistic
transformation of the response can be set directly using the ymin(#) and ymax(#)
options. If ymin(#) and ymax(#) are not specified, the lqreg command computes the
logistic transformation of the bounded response variable subtracting a quantity (half of
the minimal increment of the outcome) from its minimum value and adding the same
quantity to its maximum value to ensure that the transform is defined for all values
of the response. Confidence intervals are obtained by using 100 bootstrap samples,
and the seed of the pseudorandom-number generator can be specified to reproduce the
confidence intervals.

Because IPSS ranges from 0 to 35, half of the smallest increment is 1/2 = 0.5.
Therefore, ymin() = 0− 0.5 = −0.5 and ymax() = 35 + 0.5 = 35.5. The default logistic
transformation of IPSS is

y = log {(ipss + 0.5)/(35.5 − ipss)}

We start by modeling the median (p = 0.5) of the logistic transformation of IPSS

(y) as a function of physical activity categorized in 10 intervals (tpac), using the lowest
category as referent (≤ 30 MET-hours/day). The equation of the model is

Qy(p) = βp0 + βp1 Itpac 2 + βp2 Itpac 3 + βp3 Itpac 4 + βp4 Itpac 5+
+ βp5 Itpac 6 + βp6 Itpac 7 + βp7 Itpac 8 + βp8 Itpac 9

+ βp9 Itpac 10
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. xi: lqreg ipss i.tpac, nodots seed(123)
i.tpac _Itpac_1-10 (naturally coded; _Itpac_1 omitted)

Logistic Quantile Regression Number of obs = 30377
Bounded Outcome: ipss(-.5, 35.5) Bootstrap(100) SEs

Bootstrap
ipss Coef. Std. Err. t P>|t| [95% Conf. Interval]

q50
_Itpac_2 -.3779775 .535728 -0.71 0.480 -1.428027 .6720719
_Itpac_3 -.610909 .551716 -1.11 0.268 -1.692296 .4704776
_Itpac_4 -.8934761 .5248025 -1.70 0.089 -1.922111 .1351589
_Itpac_5 -.8934761 .5248025 -1.70 0.089 -1.922111 .1351589
_Itpac_6 -.8934761 .5248025 -1.70 0.089 -1.922111 .1351589
_Itpac_7 -.8934761 .531642 -1.68 0.093 -1.935517 .1485645
_Itpac_8 -.8934761 .5432536 -1.64 0.100 -1.958276 .1713238
_Itpac_9 -1.260254 .5248025 -2.40 0.016 -2.288889 -.2316185
_Itpac_10 -1.260254 .5248025 -2.40 0.016 -2.288889 -.2316185

_cons -1.335001 .5248025 -2.54 0.011 -2.363636 -.306366

After the lqreg command, it is possible to use all the postestimation commands
available for quantile regression. For instance, the predict command provides the
predicted median of the logistic transformation of IPSS. The untransformed predicted
median IPSS can be obtained easily with the postestimation command lqregpred.

. lqregpred crude

. table tpac, c(mean crude50) f(%2.0f)

tpa
intervals mean(crude50)

<= 30 7
30.1-33 5
33.1-36 4
36.1-39 3
39.1-41 3
41.1-44 3
44.1-47 3
47.1-50 3
50.1-54 2

>54 2

The regression coefficients are differences in medians of logit transform of IPSS, be-
tween each physical activity level and the referent. The median IPSS decreases signifi-
cantly with increasing activity levels. However, men reporting different physical activity
levels may be different with respect to sociodemographic, biological, anthropometrical,
health, and other lifestyle factors. Age is the strongest predictor of urinary problems.
Urinary problems increase with age and occur in most elderly men, while total physical
activity decreases with age. Therefore, the estimated decreasing trend in the median
IPSS in subpopulations of men reporting higher physical activity levels might be partially
or totally explained by differences in the distribution of age.



N. Orsini and M. Bottai 337

We include age, centered on the sample mean of 59 years, in the logistic quantile
regression model.

. generate cage = age-59

. xi: lqreg ipss i.tpac cage, nodots seed(123)
i.tpac _Itpac_1-10 (naturally coded; _Itpac_1 omitted)

Logistic Quantile Regression Number of obs = 30377
Bounded Outcome: ipss(-.5, 35.5) Bootstrap(100) SEs

Bootstrap
ipss Coef. Std. Err. t P>|t| [95% Conf. Interval]

q50
_Itpac_2 -.1061739 .4390046 -0.24 0.809 -.9666414 .7542936
_Itpac_3 -.4440855 .4310596 -1.03 0.303 -1.28898 .4008094
_Itpac_4 -.5086374 .42238 -1.20 0.229 -1.33652 .3192452
_Itpac_5 -.5839941 .4212758 -1.39 0.166 -1.409712 .2417242
_Itpac_6 -.6493446 .418746 -1.55 0.121 -1.470104 .1714152
_Itpac_7 -.7247013 .4247918 -1.71 0.088 -1.557311 .1079085
_Itpac_8 -.772386 .4293875 -1.80 0.072 -1.614004 .0692316
_Itpac_9 -.8754148 .4365654 -2.01 0.045 -1.731101 -.0197283
_Itpac_10 -.8289242 .442902 -1.87 0.061 -1.697031 .0391823

cage .0376784 .0011155 33.78 0.000 .035492 .0398647
_cons -1.644483 .4237833 -3.88 0.000 -2.475116 -.81385

As expected, adjustment for age attenuates the magnitude of the association between
physical activity and IPSS. We see a statistically significant decreasing trend in age-
adjusted median IPSSs with increasing physical activity levels.

Postestimation commands for calculating p-values and predictions are the same as
those for other Stata regression commands. For example, to obtain the p-value for the
null hypothesis that there is no association between physical activity and the median
IPSS, we test the joint null hypothesis that all the regression coefficients of the indicator
variables used to model physical activity are simultaneously equal to zero.

. testparm _I*

( 1) [q50]_Itpac_2 = 0
( 2) [q50]_Itpac_3 = 0
( 3) [q50]_Itpac_4 = 0
( 4) [q50]_Itpac_5 = 0
( 5) [q50]_Itpac_6 = 0
( 6) [q50]_Itpac_7 = 0
( 7) [q50]_Itpac_8 = 0
( 8) [q50]_Itpac_9 = 0
( 9) [q50]_Itpac_10 = 0

F( 9, 30366) = 16.25
Prob > F = 0.0000

The small p-value indicates a statistically significant association between physical ac-
tivity and median IPSS.
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4.2 Simultaneous logistic quantile regression

So far, we have examined the association between physical activity and one quantile (me-
dian) of IPSS. We now consider four quantiles (0.25, 0.50, 0.75, 0.95) to assess whether
the association between physical activity and IPSS varies according to the quantile of
IPSS. We can get the age-adjusted predicted quantiles with the lqregpred command:

. quietly xi: lqreg ipss i.tpac cage, quantiles(25 50 75 95) seed(123) nodots

. lqregpred vpadj, for(_Itpac_2- _Itpac_10) at(cage=0)

Figure 3 shows that the predicted 0.25, 0.50, 0.75, and 0.95 age-adjusted quantiles
are decreasing with increasing physical activity levels.

. twoway
> (line vpadj25 tpa, lp(dash) lc(black) sort c(J))
> (line vpadj50 tpa, lp(longdash_dot) lc(black) sort c(J))
> (line vpadj75 tpa, lp(longdash) lc(black) sort c(J))
> (line vpadj95 tpa, lp(l) lc(black) sort c(J))
> if inrange(tpa,30,60),
> ytitle("International prostate symptom score")
> ylabel(0(5)35, angle(horiz)) ymtick(0(1)35)
> xtitle("Total physical activity, MET-hours/day")
> xlabel(30(5)60) xmtick(30(1)60)
> legend(label(1 "0.25") label(2 "0.50") label(3 "0.75")
> label(4 "0.95") textfirst ring(0) pos(1) col(1)
> subtitle("Age-Adjusted" "Quantiles") order(4 3 2 1))
> scheme(sj)
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Figure 3. Age-adjusted quantiles of IPSS as a function of physical activity estimated
with lqreg
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One can also perform statistical tests about differences in associations across quan-
tiles of IPSS. For example, is the change in the 0.50 quantile significantly different from
the change in the 0.95 quantile, comparing the highest versus the lowest physical activity
level?

. test [q95]_Itpac_10 = [q50]_Itpac_10

( 1) - [q50]_Itpac_10 + [q95]_Itpac_10 = 0

F( 1, 30366) = 0.36
Prob > F = 0.5488

The large p-value of the test indicates no evidence for differences between the two age-
adjusted quantiles.

4.3 Continuous predictor

We now model physical activity as a continuous covariate, assuming a linear relationship
between physical activity and each quantile of the logit transformation of IPSS. The
model is

Qy(p) = βp0 + βp1tpa + βp2cage

. lqreg ipss tpa cage, quantiles(25 50 75 95) nodots seed(123)

Logistic Quantile Regression Number of obs = 30377
Bounded Outcome: ipss(-.5, 35.5) Bootstrap(100) SEs

Bootstrap
ipss Coef. Std. Err. t P>|t| [95% Conf. Interval]

q25
tpa -.0290973 .0039163 -7.43 0.000 -.0367735 -.0214211

cage .032492 .002633 12.34 0.000 .0273312 .0376528
_cons -1.931836 .1505163 -12.83 0.000 -2.226854 -1.636818

q50
tpa -.0268447 .0021013 -12.78 0.000 -.0309634 -.0227261

cage .0378809 .0010609 35.71 0.000 .0358016 .0399603
_cons -1.14027 .0842382 -13.54 0.000 -1.30538 -.9751592

q75
tpa -.0233426 .0018965 -12.31 0.000 -.0270599 -.0196253

cage .0417262 .0011054 37.75 0.000 .0395597 .0438928
_cons -.4093629 .078281 -5.23 0.000 -.562797 -.2559288

q95
tpa -.0178706 .0032533 -5.49 0.000 -.0242471 -.0114941

cage .0422159 .0018143 23.27 0.000 .0386598 .0457721
_cons .7177373 .1313472 5.46 0.000 .4602914 .9751833

With only the exception of the 0.95 quantile, there are decreasing trends of similar
magnitudes for the age-adjusted percentiles. Every 1 MET-hours/day increase in total
physical activity is associated with a statistically significant reduction in the 0.25, 0.50,
0.75, and 0.95 quantiles of IPSS.
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Figure 4 is a twoway plot overlaying a scatterplot and a line plot of predicted re-
sponses for each quantile. The figure is obtained directly with the lqregpred postesti-
mation command with the for() and plotvs() options.

. by ipss tpa, sort: generate flag = _n==1

. lqregpred adjl if flag == 1, for(tpa) plotvs(tpa)

One can customize the twoway plot by using the saved predicted quantiles.
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Figure 4. Scatterplot and four age-adjusted quantiles (0.25, 0.50, 0.75, and 0.95 from
bottom to top) estimated with lqreg assuming linearity for physical activity

A plot of any regression coefficient with its 95% confidence interval for a dense set
of quantiles (0.05, 0.06, . . . , 0.95) can be obtained with the postestimation command
lqregplot.

. lqregplot tpa
Bootstrap(100) 95% Confidence Intervals

The coefficient associated with physical activity is highly significant for all quantiles
greater than 0.11; its confidence interval does not include 0 (figure 5).
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Figure 5. Estimates and 95% confidence bands for the regression coefficient of physical
activity for a dense set of quantiles

Similarly to logistic regression for binary outcomes, the linearity assumption between
each continuous predictor, either main exposure (physical activity) or confounder (age),
and the logit transform of IPSS needs to be assessed. To perform a graphical check of
linearity, one can obtain the logistic transformation of the bounded outcome with the
generate() option of lqreg, generate the residuals (observed logit minus predicted
logit), and then plot the residuals as a function of the covariate of interest.

A formal p-value for the hypothesis of linearity can be obtained by fitting a logis-
tic quantile regression model with some transformations (polynomials, splines) of the
continuous predictors. For instance, we generate restricted cubic spline transformations
(3 knots at fixed percentiles 10, 50, and 90 of the distribution) for physical activity
and age, and then we fit the logistic quantile regression model with these 3 − 1 = 2
transformations for each predictor.
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. mkspline tpas = tpa, nknots(3) cubic

. mkspline cages = cage, nknots(3) cubic

. lqreg ipss tpas1 tpas2 cages1 cages2, quantiles(25 50 75 95) nodots seed(123)

Logistic Quantile Regression Number of obs = 30377
Bounded Outcome: ipss(-.5, 35.5) Bootstrap(100) SEs

Bootstrap
ipss Coef. Std. Err. t P>|t| [95% Conf. Interval]

q25
tpas1 -.0442398 .0092667 -4.77 0.000 -.0624029 -.0260766
tpas2 .0179152 .012842 1.40 0.163 -.0072557 .043086

cages1 .0790713 .0057497 13.75 0.000 .0678015 .090341
cages2 -.0566192 .0079938 -7.08 0.000 -.0722874 -.040951
_cons -1.167755 .36403 -3.21 0.001 -1.881269 -.454241

q50
tpas1 -.0403511 .0056028 -7.20 0.000 -.0513328 -.0293694
tpas2 .0193159 .0079029 2.44 0.015 .003826 .0348059

cages1 .0427258 .0030189 14.15 0.000 .0368086 .0486431
cages2 -.007072 .0045496 -1.55 0.120 -.0159894 .0018455
_cons -.5970202 .2177509 -2.74 0.006 -1.023821 -.1702193

q75
tpas1 -.0469142 .0057808 -8.12 0.000 -.0582447 -.0355836
tpas2 .0341496 .008237 4.15 0.000 .0180048 .0502945

cages1 .042501 .0033169 12.81 0.000 .0359997 .0490023
cages2 -.000555 .0048004 -0.12 0.908 -.0099639 .0088539
_cons .4806698 .2190229 2.19 0.028 .0513758 .9099638

q95
tpas1 -.0456865 .0077517 -5.89 0.000 -.0608802 -.0304928
tpas2 .0419179 .0117526 3.57 0.000 .0188823 .0649535

cages1 .0563585 .0058072 9.70 0.000 .0449762 .0677408
cages2 -.0227971 .0077858 -2.93 0.003 -.0380575 -.0075367
_cons 1.874565 .286916 6.53 0.000 1.312198 2.436933

The linear-response model for physical activity is nested within the restricted cubic
spline model because tpas1 = tpa. Therefore, some departure from linearity can be
tested by testing the hypothesis that the regression coefficient of tpas2 is equal to
0. The restricted cubic spline model indicates some evidence of nonlinearity both for
physical activity and for age. Once again, the lqregpred command can be useful to
depict the estimated percentiles.

Figure 6 shows that the decreasing trends for 0.25, 0.50, 0.75, and 0.95 quantile
IPSSs reach the plateau at about 41 MET-hours/day (median physical activity).
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. lqregpred adjs if flag == 1, for(tpas1 tpas2) plotvs(tpa)
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Figure 6. Scatterplot and four age-adjusted quantiles (0.25, 0.50, 0.75, and 0.95 from
bottom to top) estimated with lqreg modeling physical activity with restricted cubic
splines
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