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Ex Post Moral Hazard in Crop Insurance: Costly State Verification or Falsification? 

 
ABSTRACT 

 
 This article examines the extent to which actual crop insurance indemnification behavior 

conforms to the theoretical predictions of two ex post moral hazard models – costly state 

verification and costly state falsification. A nonparametric regression technique is used to 

estimate the crop insurance indemnification profile for non-irrigated cotton in Texas. The results 

suggest that indemnification behavior in crop insurance is more in line with the costly state 

falsification paradigm. Thus, crop insurers seem to indemnify based on the assumption that it is 

not easy to verify actual ex post loss magnitude and eliminate the asymmetric information held 

by the insured farmers. 

 

Keywords: Crop Insurance; Costly State Verification; Costly State Falsification; Ex post Moral 

Hazard; Fraud; Indemnification Behavior       

 



Ex Post Moral Hazard in Crop Insurance: Costly State Verification or Falsification? 
 

Introduction 
 
 There is a substantial agricultural economic literature about moral hazard in crop 

insurance.1 However, these studies mainly dealt with hidden action or ex ante moral hazard, 

where the insured takes less care to prevent a loss than they would if uninsured. In this case, the 

insured possess asymmetric information about their likelihood of suffering insurable losses and 

the incentive problem exists prior to the resolution of uncertainty. Another aspect of moral 

hazard that has not been fully explored in the crop insurance context is ex post moral hazard. 

Here the asymmetric information held by the insured involves the actual magnitude of the 

economic loss and the incentive problem exists following the resolution of uncertainty. 

Therefore, ex post moral hazard is normally taken as synonymous to insurance fraud because it 

occurs after the resolution of uncertainty. 

The theoretical literature on ex post moral hazard may be divided into two distinct 

paradigms – costly state verification or costly state falsification. The costly state verification 

paradigm attributed to Townsend is where the insured knows the actual magnitude of the loss 

and the insurer can observe that loss only by incurring a fixed monitoring cost. Therefore, in this 

setting, the insurer can choose to eliminate the informational advantage of the insured, but in so 

doing must incur some cost. The relevant economic problem here is to find an optimal contract 

that utilizes the costly monitoring technology in an efficient fashion.  

On the other hand, in the costly state falsification paradigm attributed to Lacker and 

Weinberg, it is assumed that there is no economically feasible monitoring technology that can be 

implemented by the insurer to alleviate the informational asymmetry. In this model the main 

assumption is that the insured’s private information on the magnitude of the actual loss is 
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immutable. Costly state falsification occurs because the insured is able to manufacture an 

observed claim that exceeds the loss actually suffered, by incurring a resource cost. The main 

economic problem in this case is to find an optimal contract that balances the need for insurance 

to smooth income with the incentives for claims falsification that insurance payments provide. 

In the crop insurance area, Hyde and Vercammen is the only study that addressed the 

issue of optimal contract form in the presence of ex post moral hazard. However, their focus is 

mainly on the implications for optimal contract form under the condition of costly state 

verification – both with and without hidden action moral hazard. Although costly state 

falsification is somewhat addressed in the paper it was not the main focus of their modeling 

efforts. Their purely theoretical findings suggest that the costly state verification model more 

accurately coincides with many important features of actual crop insurance contracts. Aside from 

Hyde and Vercammen there has been no published study in the crop insurance area that 

addressed the issue of both costly state verification and costly state falsification. Furthermore, no 

study has yet investigated whether the theoretical predictions from the costly state verification 

model or the costly state falsification model more closely reflect the actual indemnification 

behavior in the crop insurance markets. Only Crocker and Tennyson, who used actual claims 

data from bodily injury liability insurance, have empirically examined these predictions.       

This article examines the extent to which actual crop insurance indemnification behavior 

conforms to the theoretical predictions of the two ex post moral hazard models. We first review 

the economically optimal contract design and the corresponding theoretical predictions, for the 

case of costly state verification and falsification, respectively. Then we use actual crop insurance 

data to empirically determine which ex post moral hazard model more closely coincides with 

actual behavior. The remaining sections proceeds as follows. The next section reviews the 
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theoretical predictions from both models. The data and empirical methods are discussed in 

section three. The last two sections discuss the results and conclusions of the paper. 

Theory 

Costly State Verification 

 The costly state verification paradigm is attributed to the work of Townsend and has been 

examined in an insurance context by Dionne and Viala, Kaplow, and Bond and Crocker. The 

theoretical predictions elucidated here are based on the work of Bond and Crocker and is 

discussed in the context of multiple peril crop insurance (MPCI). In this model there exists a 

continuum of risk averse farmers, each of which possess a von Neumann Morgenstern utility 

function U , where W  is the wealth of a farmer in state i. This wealth is a function of profits 

derived from his farming operation and his assets. Assume that each farmer has the same initial 

wealth W, but may suffer some financial loss due to adverse yields with probability π. Further 

assume that when a farmer suffers a loss it is publicly observable, but the magnitude of that loss 

is private information to the farmer suffering the loss. The actual loss can be verified, however, if 

the insurer bears the fixed monitoring cost γ. Moreover, it is assumed that the farmers cannot 

take actions that have the effect of manipulating the monitoring cost γ. Conditional on the farmer 

suffering a loss due to low yields, the actual magnitude of that loss is denoted as x and is 

distributed on [

)( iW i

x,x ] according to the probability density function g. 

 In this situation, an insurance allocation )}(,{ xrpA ≡ consists of an insurance premium 

p, which is paid by the farmer prior to experiencing any loss, and a state-contingent indemnity 

payment, r(x). The farmer’s expected utility can then be expressed as: 

(1)   )()1()())(()( pWUdxxgxrxpWUAV
x

x

−−++−−≡ ∫ ππ .   
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The profit of the insurer can also be written as: 

(2)    ∫ ∫−−≡Π
x

x M

dxxgdxxgxrpMA )()()(),( γππ     

where M ⊂ [ xx, ] denotes the range of losses where the insurer monitors (the monitoring 

region). An insurance contract C ≡ {A,M} is a specification of both an allocation A, and a 

monitoring region, M.  

 The magnitude of the actual loss is private information to the farmer, which places 

constraints on the structure of an implementable insurance contract. For example, to obtain 

truthful revelation of the actual loss due to adverse yields by the farmer in the no-monitoring 

region Mc, the optimal contract must specify a constant payment r  for such losses. If not, the 

insured farmer would always elect to report the magnitude of loss associated with the highest 

indemnity in Mc. In addition, were the payment in Mc to exceed that associated with a portion of 

the monitoring region M, then the insured farmer would elect to misrepresent any losses in this 

region of M. Formally, the incentive constraints created by the informational asymmetries of this 

model require that an optimal contract satisfies: 

(3)    




∈≥
∈=

=
Mxforr
Mxforr

xr
c

)(        

where r  is a constant and Mc is the complement of M. 

 Therefore, an optimal crop insurance contract with costly state verification is a solution to 

the problem that maximizes farmer’s expected utility in (1) subject to the incentive constraints in 

(3) and the zero profit constraint for the insurers 0),( ≥Π MA . Following this maximization, the 

optimal crop insurance contract with costly state verification entails a fixed payment r  and no 

monitoring for losses less than a critical value m( > r ). Furthermore, the insured farmer is 
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monitored and receives full indemnity (r(x)=x) for losses exceeding m. In other words, an 

optimal contact entails no monitoring and a fixed indemnity payment for small losses, and 

monitoring with full loss indemnification for more adverse outcomes (Figure 1). Formal proof of 

this general result can be seen in Bond and Crocker (see theorem 1) and a proof is also expressed 

within a crop insurance context in Hyde and Vercammen. Note also that as the cost of 

monitoring γ declines, both m and r  decline as well, resulting in an expansion of the monitoring 

region ),( xmM ≡ . In the extreme case of costless monitoring (γ = 0), insurers verify all claims 

]),[ xx(M ≡ and the insured farmers receive full indemnity for their losses (r(x)=x for every x). 

Costly State Falsification 

   The costly state falsification paradigm was first attributed to Lacker and Weinberg but 

has been recently extended by Crocker and Morgan. We follow the format of Crocker and 

Morgan in the discussion here. Again we consider a setting in which farmers possess a von 

Neumann Morgenstern utility function U , where W  is the wealth of a farmer in state i. As 

before, all farmers have the same utility function U and initial wealth W, and may suffer a 

financial loss due to adverse yields 

)( iW i

],[ xxx =∈ , the magnitude of which is assumed to be private 

information to the farmer suffering the loss. Under this paradigm, the farmer can generate an 

observed claim y that differs from the actual loss x suffered due to adverse yields.2 The 

difference between the farmer’s actual loss and the loss observed by the insurer, |x - y|, is defined 

here as claims falsification. In order to falsify a claim, the insured farmer incurs a falsification 

cost s(x - y), which is assumed to be an increasing function of the amount of falsification. 

 Assuming that the actual loss is x, the farmer’s final wealth can be expressed as: 

(4)     W – x + r – s(x – y)       
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where r is the indemnity payment. Letting π be the probability of a loss occurring due to adverse 

yields, f be the distribution of the loss magnitudes given that some loss has occurred, and p be the 

premium paid by the farmer prior to the loss occurring, the farmer’s expected utility can be 

written as: 

(5)  )()1()())(()( pWUdxxfyxsxprWUCV
x

x

−−+−−−−+≡ ∫ ππ .   

The insurance contract C , in this case, is a specification of a constant premium p, and 

an indemnity payment r associated with each observed claim y.  The profit of the insurer can be 

written as: 

),,{ pyr≡

(6)    ∫−≡Π
x

x

dxxfxrpMA )()(),( π .     

The revelation principle is used here to characterize a solution because the magnitude of actual 

loss is private information (Myerson, 1979). Letting C )}ˆ(),ˆ({ xyxr≡ denote the contractual 

allocation assigned to an insured who announces his type to be , incentive compatibility 

requires that a contract must satisfy the following constraint: 

x̂

(7)  U(W + r(x) – p – x – s(x - y(x)))  ≥  U(W + r(x’) – p – x – g(x - y(x’))),  

 for every x, x’∈ [ xx, ] . 

 An optimal insurance contract for the costly state falsification case is a solution to the 

problem that maximizes farmer’s utility in (5) subject to the incentive compatibility constraint in 

(7) and the zero profit constraint for the insurers 0),( ≥Π MA . This maximization results in an 

optimal insurance contract for costly state falsification where there are overpayment of small 

claims (r > y) and underpayment of large claims (r < y). In addition, all insured farmers except 
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those with the smallest ( x ) or largest ( x ) possible losses engage in some claims falsification. 

Formal proof of this theoretical prediction is seen in Crocker and Morgan (theorem 3).  

 The optimal contract under costly state falsification is graphically depicted in Figure 2. If 

insurers are able to costlessly observe the actual loss, then the optimal contract coincides with the 

45-degree line and entails full indemnification for any losses suffered. On the other hand, when 

the actual loss is private information to the farmer and the insurer can only observe a potentially 

falsified claim, the optimal contract exhibits a reduced sensitivity of the indemnity to the 

observed claim amount. This feature reduces the returns to claims falsification. At the extreme, a 

fixed indemnity payment r  can eliminate the incentive to falsify completely, but this fixed 

payment does not smooth the wealth of the farmer over the various loss states. Therefore, the 

optimal contract for the case of costly state falsification exhibits a tradeoff between reducing 

incentives for claims falsification and income smoothing. 

Data and Empirical Methods 

This study utilizes MPCI data from the Risk Management Agency (RMA) of the U.S. 

Department of Agriculture (USDA) for reinsurance year 2000. In the spirit of homogeneity, only 

MPCI policies for non-irrigated cotton production in Texas are considered for analysis. To 

further assure a relatively similar claiming environment, cotton farmers with 55 percent coverage 

and above are the only ones considered in the analysis (non-catastrophic policies). The RMA 

data set contains information about the indemnity payments and the liabilities of insured farmers 

at the crop unit level. Thus, the analysis here is at the crop unit level. The liability figure is the 

dollar amount of insurance protection outstanding. This results to 28,984 observations with 

liabilities amounting to $222,438,910 and indemnities amounting to $182,617,520. The mean 
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liability and indemnity for the whole sample are $7,674 and $6,300, respectively. The 

distribution of liabilities and indemnities are reported in Table 1. 

  The theoretical predictions in the previous section provide testable hypotheses about the 

indemnification behavior associated with each ex post moral hazard paradigm. The costly state 

verification framework predicts an indemnification profile where there is a minimum payment of 

r  for any claim below some threshold m. Furthermore, all claims above that level should be 

fully insured so that the indemnity paid should equal the amount claimed (or in this case the 

liability amount). In contrast, under the costly state falsification paradigm, the theoretical 

prediction is that small claims should be overpaid and large claims underpaid, so that the slope 

for indemnity payments as a function of the claimed amount should be less than one. Therefore, 

these are the two hypotheses that we wish to empirically test using the crop insurance data set. 

Given these two hypotheses, we are interested in the empirical relationship between the 

indemnities paid and the claimed amount or liability amount. Note that the amount of liability is 

used in the analysis instead of the claim amount because claim amount information is not 

available. Using the liability figures instead of the claim amount implicitly assumes that the 

farmer always claims the full amount of the liability when he submits a claim for a particular 

crop unit.  Since the level of aggregation is at the crop unit level, this assumption is reasonable. 

Hence, we can still test the theoretical prediction above using the indemnity and liability 

variables.  

A nonparametric regression technique called locally weighted regression (LOESS), 

which is attributed to Cleveland, is used here to estimate this relationship. We use a 

nonparametric approach because we do not want to arbitrarily impose a functional form on the 

relationship between indemnities and liabilities. Furthermore, this nonparametric technique 
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smoothes the data and is robust to potential outliers (Cleveland; Hardle). LOESS compromises 

between a global assumption of functional form and purely local averaging by using a weighted 

least squares algorithm. LOESS accommodates data of the form: 

(8)     iii xgy ε+= )(        

where g is a smooth regression function and iε is a random error with mean zero and a constant 

scale. In our case, the dependent variable y represent the indemnity paid and the independent 

variable x represents the claim or liability amount.  

The “local” part of LOESS refers to a “k-nearest neighbor (K-NN)” type neighborhood. 

The K-NN is specified as a proportion α of the n data points to be used at each point of 

estimation. The proportion or “bandwidth” α used here is 5%. For each value of , the n points 

are ranked according to the absolute value of their distance from , and the k = αn nearest points 

are identified. Let 

ix

ix

ki xxd −=

ix

 be the distance from  to the kth nearest neighbor . A 

weighted least squares linear regression is fit to the αn points. The weights  decrease as 

the distance from  increases: 

ix kx

)ix(mw

(9)          ))(()( 1
imim xxdWxw −= −

where  is the inverse of d, ( ) is the distance of the mth observation (m = 1,…,k) from 

, and W is the tricube weight function W . Thus, points close to (far from)  

play a large (small) role in the determination of the fitted  values. Increasing the neighborhood 

of points influencing the fitted values increases the overall smoothness of the smoothed points.  

1−d im xx −

ix 33 )1()( uu −= ix

iy

 Fitted values for each target value are estimated using a second-order polynomial for the 

defined neighborhood using weighted least squares. Thus, the )( ixβ ’s are chosen to minimize: 
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(10)     .     ∑ −−
m mmim xyxw 2

10 ))(( ββ

Note that the )( ixβ  values are estimated for each target . ix

 Fitted values for ( ) are computed from the β vector that minimizes equation (10) 

and corresponding regression residuals are also computed. The model is “robustified” by using 

computed residuals to reweigh values in the neighborhood of the target values. New weighted 

least square values are estimated and the procedure re-iterated to estimate the LOESS fitted 

values. Outliers have smaller robustness weights and do not play a large role in the estimation of 

fitted values. In summary, LOESS is a nonparametric curve fitting method that starts off with a 

local polynomial least squares fit and then attempts to make the estimate more robust by using 

weights from the local neighborhood around the observation point. This procedure gives us a 

graphical indemnification profile that allows us to evaluate whether the crop insurance data 

coincides with the costly state verification or costly state falsification model. 

ii xy ,

Results and Discussion 

The estimated indemnification profile for the whole crop insurance data suggests that 

bigger claims or liabilities tend to be underpaid (Figure 3). Furthermore, as the claim or liability 

amount increases, the degree of indemnity underpayment also increases. This finding supports 

the costly state falsification paradigm more than the costly state verification paradigm. As 

mentioned above, underpayment of large claims is more in line with the costly state falsification 

framework because it reduces incentives for falsification but still provides farmer income 

smoothing. Under the costly state verification framework, the theoretical prediction is that above 

a certain threshold there should be full indemnification because higher claims are most likely 

verified. Full indemnification of big losses is not evident in the crop insurance data examined 

here. 
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Furthermore, under the costly state verification paradigm, the indemnification profile 

should have a discontinuity at the lower bound of the monitoring region. Again, this is not 

evident in the estimated indemnification profile based on the crop insurance data for non-

irrigated cotton in Texas. There appears to be a smooth and flatter indemnification profile 

present in the crop insurance program based on the LOESS procedure for estimating the 

indemnification profile. This conforms more to the theoretical predictions of the costly state 

falsification paradigm. 

    Another characteristic of the estimated indemnification profile in Figure 3 is that 

smaller claims or liabilities (≤ 25000) look to be fully indemnified. However, upon closer 

inspection of the smallest claims (≤ 1000), the visual evidence also shows a systematic 

indemnity underpayment (Figure 4). This feature of the estimated profile is neither supported by 

the costly state verification paradigm nor the costly state falsification paradigm. For costly state 

verification, a flat indemnification profile ( r ) for claims lower than a certain threshold (m) 

should be the optimal behavior. For very low claims, r  should be larger than the 45-degree line 

( r  is higher than the value of the loss). This is not evident in the estimated indemnification 

profile of crop insurance for non-irrigated Texas cotton. For costly state falsification, there 

should also be overpayment of smaller claims, but this is also not evident in the estimated 

indemnification profile in Figures 3 and 4. 

Given these findings, we investigate the presence of indemnity overpayment from the 

raw data. Figure 5 shows that there are crop units where the indemnity payments exceed the 

claimed amount. Note that majority of the indemnity overpayments are clustered towards the 

lower claims level. Furthermore, there appears to be no flat overpayment of indemnities 

consistent with the costly state verification. The variability of overpayment is also visually larger 
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at the lower claims level as compared to the higher claims level. Therefore, the overpayment 

characteristics of the data at the lower claims level are more in line with the costly state 

falsification framework than the costly state verification framework. 

In summary, the crop insurance indemnification behavior at higher claim levels and the 

existence of a majority of overpayments at the lower claim levels more closely support the 

theoretical predictions of the costly state falsification paradigm.  This result seems to be different 

from Hyde and Vercammen where they argue that the costly state verification paradigm is more 

in line with actual crop insurance contract form. Their result is based on their observation in crop 

insurance contracts that indemnification occurs only for big losses (low yield states) and only if 

it is verified. However, from our results based on actual indemnities paid out, there are actual 

indemnity payments even for low loss states. Moreover, at the low loss states there is indemnity 

overpayment behavior that is more in line with costly state falsification. Thus, even if observed 

insurance contract form seem to support the costly state verification framework (as argued by 

Hyde and Vercammen), actual indemnification behavior from insurance coverage of non-

irrigated Texas cotton more closely follow the theoretical predictions of the costly state 

falsification framework.       

Conclusions 

  This paper explores whether actual crop insurance indemnity payments more closely 

conforms to the theoretical predictions of either the costly state verification or the costly state 

falsification models. Using a nonparametric regression technique to estimate the crop insurance 

indemnification profile for non-irrigated cotton in Texas, we found that actual behavior is more 

in line with the costly state falsification paradigm than the costly state verification paradigm. 

Larger claims tend to be underpaid, while smaller claims tend to be overpaid. Moreover, the data 

 12



do not indicate the presence of a discontinuity that is a part of the theoretical prediction in the 

costly state verification framework. The estimated profile is a flat and smooth function consistent 

with costly state falsification. 

   The results indicate that insurers seem to indemnify based on the assumption that it is 

not easy to verify actual loss magnitude and eliminate the informational asymmetry of the 

farmer.  Intuitively, with the number of farmers and crop units involved in the crop insurance 

program it would be hard for insurers to verify and fully indemnify each and every loss above a 

certain threshold. The optional units provision of the crop insurance program, which allows a 

framer to divide his farm into several insurable units, makes it very difficult to monitor actual 

yield losses on the farm. For example, a farmer can shift bushels from one unit to the next and it 

is very difficult to verify which bushels came from which insurable unit. Furthermore, if farmers 

were able to collude with agents and adjusters to falsify the magnitude of losses then verification 

would even be more difficult.  

 Another aspect of the crop insurance program that supports the indemnity behavior in the 

costly state falsification paradigm is the difficulty in proving fraudulent claims and the 

constraints insurers have on imposing penalties on farmers found to falsify claims. Note that 

penalties for farmers that falsify claims are a part of the costly state verification paradigm 

because if a claim is verified to be fraudulent then there should be a corresponding punishment. 

Without penalties there is no incentive to truthfully reveal the magnitude of the loss. In the crop 

insurance program, penalties have been intensified in the Agricultural Risk Protection Act 

(ARPA) of 2000, but there is no definite menu of penalties for various offenses that is publicly 

circulated to insured farmers, adjusters, and agents. This uncertainty in terms of penalties also 

supports the costly state falsification framework in the crop insurance program.  
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Although crop insurance contract form can be argued to have some characteristics that 

follow costly state verification, as suggested by Hyde and Vercammen, the difficulty in verifying 

actual loss magnitudes and the constraints on imposing punishment makes it more attractive to 

follow the theoretical predictions of the costly state falsification paradigm as a means to deter ex 

post moral hazard. In terms of crop insurance program design, therefore, provisions that make it 

difficult to verify actual loss magnitudes (i.e. allowing optional units) should be reviewed 

carefully and probably be revised if the costly state verification paradigm is to be effective in 

controlling ex post moral hazard.  
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Footnotes 

1 Knight and Coble gives an excellent review of the crop insurance literature since 1980, 

including a review of the literature on moral hazard in crop insurance.  

 

2 In this case, a farmer exerts effort to physically alter apparent yield and alter the magnitude of 

the loss. This can be done in a variety of ways such as feeding grain to stock, hiding grain off-

farm, hiding grain in concealed on-farm storage, collude with adjusters to alter loss magnitude, 

and/or selling part of the production in the name of a relative (i.e. son-in-law, son).
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Table 1. Distribution of insurance liability and indemnity for cotton (Texas, 2000) 
Range (dollars) Liability (dollars) 

  Mean St. Deviation Frequency
Cumulative 
Percentage

     
0 to 50                    29                      13  100 0.35
51 to 100                    79                      15  161 0.90
101 to 500                  304                    115  1,919 7.52
501 to 1,000                  738                    143  2,360 15.66
1,001 to 5,000               2,703                 1,133  11,273 54.56
5,001 to 10,000               7,225                 1,434  6,228 76.05
10,001 to 25,000             15,049                 4,011  5,424 94.76
25,001 to 50,000             33,485                 6,801  1,229 99.00
50,001 to 100,000             64,579               13,135  256 99.88
100,001 to 400,000           156,439               67,310  34 100.00
          
Range Indemnity (dollars) 
     
0 to 50                    26                      14  383 1.32
51 to 100                    79                      14  430 2.80
101 to 500                  293                    117  3,007 13.18
501 to 1,000                  739                    143  2,860 23.05
1,001 to 5,000               2,620                 1,132  11,334 62.15
5,001 to 10,000               7,173                 1,424  5,507 81.15
10,001 to 25,000             15,012                 4,016  4,320 96.06
25,001 to 50,000             33,216                 6,607  942 99.31
50,001 to 100,000             64,705               13,301  186 99.95
100,001 to 400,000           147,460               68,160  15 100.00
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Figure 1. Optimal indemnification profile with costly state
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Figure 2. Optimal indemnification profile with costly state
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Figure 3. Estimated indemnification profile using LOESS regression 
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Figure 4. Estimated indemnification profile for smaller liabilities (≤1000) 
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Figure 5. Scatterplot of indemnity overpayment 
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