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Abstract

This paper develops a dynamic model of crop production under uncertainty with intrasea-

sonal input choices. Crop production involves multiple stages, including at least seeding, post

emergence fertilizer/pesticide application and harvesting. If the farmer receives new information

about the output and/or price during the stages, he may wish to adjust the input use at each

stage in response to the future possible information. Whether future information leads to higher

or lower input use at earlier stages depends on the production function, in particular whether

inputs at di¤erent stages are substitutes or complements in the production function.
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Agricultural production under uncertainty: A model of optimal
intraseasonal management

Agricultural crop production takes place over an extended growing period during which a

farmer must undertake multiple decisions before obtaining a saleable output. The production

process is subject to production or yield uncertainty, as unpredictable growing conditions im-

pact transformation relationships between inputs and outputs, and price uncertainty caused by

random price ‡uctuations during the lag between input decisions and output realization. A

model that captures the key features of real world agriculture production should incorporate the

following characteristics:

1. Production takes place over an extended period of time and involves a sequence of multiple

management decisions.

2. Production is in‡uenced by price and yield uncertainty where most inputs are allocated

before output prices are known.

3. Production and market uncertainty is resolved during the production process providing

updated information that can be used to assist management decisions.

Static models of agricultural production, while tractably convenient, cannot incorporate the

three features listed above and consequently overlook important behavioral elements of agri-

cultural production under uncertainty. Empirical studies derived from static models of factor

demand and output supply functions face similar limitations (see the extensive discussion in Just

and Pope, Handbook of Agricultural Economics). For example, in a dynamic setting management

decisions today must consider interactions with future management actions. Factor demands and

output supplies will in general depend on a vector of production and market signals realized at

di¤erent stages of a growing season.

This paper develops a dynamic model of crop production under uncertainty involving three

management actions: planting, a post-emergence pesticide application and harvest. Each action

incorporates currently available information about production and market shocks, and allows for

future actions that will be made conditional on future information. Each stage’s inputs such as

labor and materials produce interim “products,” subject to random production shocks. These
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products in turn become one of the inputs in the next stage. Given the “product” from the

earlier stage, the farmer maximizes the expected payo¤ in choosing the inputs, incorporating

future management actions in later stages.

In a sense, production at an earlier stage creates an “option” for the farmer to respond

to new information in later stages. And, current management actions a¤ect the value of the

future management option. For example, it may be optimal to plant a crop even though market

conditions at planting time suggest output prices that are below average production costs. Market

uncertainty means that prices can rise as the growing season progresses. By incurring the cost

of planting a crop, the farmer purchases an option to respond to future market developments.

If future prices indeed increase, additional inputs can be applied to a planted crop, yielding a

positive return. In contrast, the traditional static approach ignores the option value of planting,

and predicts an expected price at which the crop is planted to be signi…cantly higher than is

predicted here.

On the other hand, excessive input use at early stages can also reduce the ‡exibility of future

responses to unfavorable shocks. For instance, a crop may be subject to a mid-season pest

infestation. If the infestation turns out to be severe and results in a total crop failure, all earlier

investments in the crop may be lost. Anticipating this possibility, the farmer may have incentive

to reduce his inputs in earlier stages, particularly if he can compensate for this lower input use

by more intensive farming at later stages, i.e., after the pest risk has been resolved.

After developing the general model, we analyze two special cases where the inputs allocated

at di¤erent stages can either be substitutes or complements in production. We use the cases

to illustrate the role of future information and intraseasonal linkage in determining the optimal

decisions.

1 Model Setup

This section develops a dynamic model of crop production. For concreteness, the model is

developed in the context of …eld crop management problem involving three sequential decisions

or input allocations by a crop manager. The …rst input allocation involves a planting decision in

which the manager selects the quantity of seed to apply. It is clear that planting a crop in practice
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involves more than simply selecting the quantity of seed to apply. Our focus on a single scalar

input simpli…es the model and presentation of the basic intuition. The second input choice is a

post-emergence pesticide application and the third input decision is a choice of inputs allocate

to harvesting the crop. Let xj 2 <+ denote the quantity of input allocated at management event

j = 0, 1, and 2. Input prices, wj are assumed to be known and constant.

Management events are assumed to occur at …xed times during the growing season, and are

separated in time by a period in which the crop grows. The assumption that input allocations

occur at …xed points in time is also made to simplify the model. The choice of input timing is

itself an important element of the management process in agriculture, and in general, the option

to delay a management decision in order to acquire new information will represent a valuable real

option (see for example, Saphores, 2000). Extensions that consider input timing and multiple

real options are reserved for future work.1 For our purposes, planting occurs at management

event j = 0, is followed by the pesticide application at j = 1, which is followed by harvest at

j = 2. Because no growth occurs prior to planting, two growth stages are assumed. The …rst

growth stage takes place between management events j = 0 and j = 1 and the second between

management events j = 1 and j = 2. A chronology of the production problem is illustrated in

Figure 1.

Growing conditions and output prices are uncertain. Consider market uncertainty …rst. Pro-

ducers form expectations about future prices using all available information on current market

conditions. For example, active futures markets such as the Chicago Board of Trade provide a

continuous signal about the value of the crop that is being grown, i.e., the market conditions

expected to prevail at harvest time. The implication for producers is that price expectations can

change throughout the production period as new information arrives.

Let p denote the market price for the …nal output. Producers do not observe p until harvest

time, j = 2. Producers have expectations over p based on market signals sj, j = 0; 1. Let

Á(pjs0) denote the conditional distribution of the market price at j = 0. A new market signal

1The inputs under consideration may be interpreted broadly to include input quantities and more generally
the e¤ort that is allocated by the manager. We capture the essential features of the input timing, variety and
quantity decisions through our interpretation of the input xj . In particular, the input includes additional e¤ort
required to implement the optimal timing of each input application. Additional e¤ort, as indicated by larger xj ,
is expected to increase the productivity of a given quantity and quality of input.
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arrives between management events. For example, at the time of the post-emergence pesticide

application the conditional density of the output price is Á(pjs1), where s1 is the market signal

that is available at j = 1. Random market signals may be correlated.

Production uncertainty is caused by random weather and pest conditions that a¤ect crop

growth throughout the growth period. Let µ denote a random variable that a¤ects crop growth.

Prior to planting, there is no growth although random precipitation, temperature, and sunlight

impact the condition of the soil. µ0 thus re‡ects the suitability of the soil for planting, with

higher values indicating more favorable conditions. The …rst-growth-stage shock µ1 may re‡ect

the extent of a pest infestation coupled with the accumulation of favorable growing conditions

that have occurred during the …rst growing stage. And µ2 may re‡ect days without rain prior to

harvest thus a¤ecting the moisture content of the harvestable biomass. Let '(µ) denote the known

density function for µ. We assume that random growing conditions are serially independent.

There are two state variables in our model; cumulative crop growth or biomass, and the

market signal. Crop growth is in‡uenced by the actions of the manager, and random weather.

We assume that market developments are independent of the actions of the manager and biomass.

Crop growth is governed by a transition equation. Denote the state of the biomass as zj.

Realized biomass is functionally related to allocated inputs and random growing conditions:

(1) z1 = f(x0; µ1jµ0)

and,

(2) z2 = g(x1; µ2jz1):

The salable yield follows y = h(x3; z2), where h(:) describes the transformation relationship

between harvesting inputs and saleable output given the biomass at j = 2 (see Figure 1).

We assume that the manager is risk neutral and has the objective of maximizing the expected

returns from the production process, E
h
py ¡ P

j wjxj
i
. The manager exploits all available

information at each decision event. Let Ij denote the information set that is relevant for selecting

input xj. At planting time the manager observes market signal s0 and growing conditions µ0 and

5



Figure 1: Chronology of the Crop Management Problem.
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thus I0 = fµ0;Á(pjs0)g. At the time of the post-emergence pesticide application the manager has

acquired a new market signal s1, and observes the e¤ects of random growing conditions µ1 and

past management actions, which are summarized by the biomass z1. The relevant information

set at management event 1 is I1 = fz1; Á(pjs1)g. Similarly, the relevant information set at

management event 2, harvest time, is I2 = fz2; pg.

2 Analysis

In developing the intuition of the model, it is helpful to distinguish observable crop biomass levels

from future biomass. For this purpose, we will represent realized crop biomass levels using the

variable zj and unrealized biomass using the production function representations, i.e., the right

hand side of equations (1) and (2). Following this convention, the pre-planting expected payo¤

from growing the crop can be expanded as

(3) E0 [ph(x2; g(x1; µ2jf(x0; µ1jµ0)))] ¡ w0x0 ¡ w1x1 ¡ w2x2] ;

where E0 is the expectation over price and yield at management event 0.

At this point it is instructive to contrast the dynamic framework with a static model of

production under uncertainty. The static counterpart to the crop management problem assumes

the manager simultaneously selects inputs xj prior to the realization of price and production

uncertainty. The problem can be speci…ed as

(4) max
x0;x1;x2

Z Z
pF (x0; x1; x2; µ)Á(pjs0)'(µ)dsdµ ¡ P

j wjxj;

where F () is a static production function that maps (x0; x1; x2,µ) to output y. The model of

equation (4) must assume that all inputs are allocated simultaneously and under uncertainty.

The manager’s information set is I0 = fµ0;Á(pjs0)g and is not updated as production and market

uncertainty unravels.

In contrast, the optimization problem in equation (3) is sequential: at each stage, the input

decision is based on the state of the growing conditions and the available information about the

market price. Consider the last stage, when the farmer observes the crop biomass and has perfect
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information about price p, thus I2 = fz2; pg. The optimization problem is

(5) v2(p; z2) ´ max
x2
ph(x2; z2) ¡ w2x2;

where v2(p; z2) measures the payo¤ from harvesting the crop, given realized p and z2. If x2 > 0,

the optimal allocation of harvest inputs is obtained from a …rst order condition rx2ph(x2; z2) =
w2, where r denotes partial di¤erentiation with respect to the subscripted argument. Let

x¤2(p; z2) ´ argmaxx2 ph(x2; z2) ¡ w2x2. It should be emphasized that the allocation of x2 is

made with full information about price and biomass, whereas in the static model, all input

allocations are made under price and production uncertainty.

Consider the bene…t of selecting x2 with crop biomass and price observed. At j = 2, the

manager has an option but not an obligation to pay an exercise price w2x¤2 in order to receive an

asset that has value ph(x¤2; z2) (function arguments are dropped where no confusion can arise).

It is clear that the manager will exercise the option only if v2(p; z2) > 0. In other words,

with some positive probability, realized price and biomass may require abandoning the crop,

or plowing it back into the …eld thus avoiding additional losses (expenditures) from harvesting.

Favorable realizations of p and z2, on the other hand, can be exploited by allocating additional

harvest inputs; if h(:; z2) is an increasing and concave function of x2, the optimal x¤2(p; z2) will

be non-decreasing in p. Optimally responding to the information that is available at harvest

time allows the manager to avoid losses associated with low yields and/or weak markets while

taking advantage of favorable yield and market conditions. The management option implies that

v2(p; z2) is truncated at zero, and skewed positive.

Next consider the pesticide application decision. The manager’s information set is I1 =

fz1; Á(pjs1)g. The pesticide application is made under price and production uncertainty, but

with knowledge that x2 will be chosen optimally at j = 2 and the payo¤ from harvesting the

crop is v2(p; z2). The optimization problem is

(6) v1(s1; z1) ´ max
x1
E1

£
v2(p; z2) ¡ w1x1

¤
;

where E1 is an expectations operator that is conditional on information set I1. Applying the
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envelope theorem to (5), yields

(7) rz2v2(p; z2) = rz2ph(x¤2(p; z2); z2):

Assuming an interior solution for the choice of x1, and noting that z2 = g(x1; µ2jz1), the …rst

order condition for the problem in equation (6) is

(8) E1
£
rgv2(p; g(x1; µ2jz1)) ¢ rx1g(x1; µ2jz1)

¤
= w1

or, after substituting in (7),

(9) E1 [rgph(x¤2(p; g); g) ¢ rx1g(x1; µ2jz1)] = w1

or, more explicitly,

(10)
ZZ

[rgph(x¤2(p; g); g) ¢ rx1g(x1; µ2jz1)]Á(pjs1)'(µ)dsdµ = w1:

Let x¤1(s1; z1) = argmaxx1 v1(s1; z1).

In general, management “‡exibility” in later stages of the production process will a¤ect earlier

input allocations. Equation (9) illustrates. At the time of the pesticide application, the manager

has knowledge that x¤2(p; z2) will be selected at j = 2. Let ~x2 denote the expected allocation of x2

given expected price and harvestable biomass; at j = 1 the manager forms a price expectation

conditional on s1 and knows the expected growth given current biomass z2 =
R
g(x1; µ2; z1)'(µ)dµ,

and can thus solve ~x2(z1) = argmaxx2 E1ph(x2; g) ¡ w2x2. Further, let ~x1 denote the optimal

pesticide quantity under the assumption that ~x2(z1) will be allocated at j = 2. That is, ~x1

satis…es

(11) E1 [prgh(~x2(z1); g)rx1g(x1; µ2jz1)] = w1
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which is more explicitly written as

(12)
ZZ

[rgph(~x2(z1); g(x1; µ2jz1)) ¢ rx1g(x1; µ2jz1)]Á(pjs1)'(µ)dsdµ = w1:

Now consider the e¤ects of management ‡exibility on input choices. In a dynamic framework,

the choice of x1 will in general a¤ect the crop biomass distribution at j = 2, through z2 =

g(x1; µ2jz1), and thus the value of the management option v2(p; z2). An interesting question is

whether v2(p; z2) is more valuable when x1 is low or when x1 is high. The answer to this question

will depend, possibly in complex ways, on the production technology and random prices and

growing conditions.

Suppose that the mid-season biomass z1 is low, and that market indications, s1, suggest weak

demand. In this case, the value of v2(p; z2) is likely to be low. If in addition, the manager is

committed to allocating ~x2(z1) at j = 2, the expected payo¤ from allocating x1 at j = 1 may not

justify the expenditures on this input. However, by allocating x1 at j = 1, the manager changes

the conditional distribution of the biomass through z2 = g(x1; µ2jz1). And, with some probability,

weather conditions during the second growing stage will be favorable, in which case, the crop

biomass at harvest time can exceed expectations. Similarly, with some probability favorable

market developments may lead to a realized price that exceeds expectations. Finally, with some

joint probability, both growing and market conditions will exceed expectations that are held at

j = 1: By allocating x1 at j = 1 the crop manager maintains the option to optimally respond to

these future developments if they arise. This suggests that x¤1(s1; z1) will exceed ~x1(z1).

It is conceivable that the substitution possibilities that underlie the production technology

could have an opposing e¤ect on the optimal x1. Suppose that the low mid-season biomass and

weak demand are such that with some probability the crop will be abandoned at harvest time, in

which case v2(p; z2) = 0: The cost of allocating x1 at j = 1 represents an irreversible investment

in the crop. It makes sense to wait for and utilize the new information that will be available

at j = 2. For example, suppose that the structure of h allows a large degree of substitutability

between x2 and z2. The manager thus has the option to allocate a larger x2 if growing and/or

market conditions improve. The opportunity to acquire additional information has value that

should be included as a cost of allocating x1.
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3 Special Examples

In this section, we consider two examples with only price uncertainties to illustrate how intrasea-

sonal adjustment can lead to more or less input use in early stages of the production process.

Introducing production uncertainties will complicate the model and, in some cases, prevents an

analytical solution. But the intuition from price uncertainty only carries over to the more general

case. In both cases, we consider versions of the von Liebig production function (see Paris, 1992

for additional discussion).

3.1 Additive Inputs: Stages as Perfect Substitutes

Suppose the production function at the three stages are given by

(13)

Stage 0: z0 = µ0x0

Stage 1: z1 = z0 + µ1x1

Stage 2: z2 = minfz1 + µ2x2; ¹zg;

where ¹z is the exogenously given von Liebig bound on the output level. The bound represents

a natural restriction imposed by the size of the land, the kind of seed, or other conditions that

the farmer cannot control. Thus the …nal output is given by

(14) Y = min

(
2X

i=0

µixi; ¹z

)
:

This is a form of von Liebig production function, and inputs at the three stages are perfect

substitutes. Up to the limit ¹z, the farmer can increase inputs at either of the three stages to

raise the output level.

Consider the benchmark case where there is no future information about the output price p.

Since we assume that there is no production uncertainty (i.e., µi, i = 0; 1; 2, are known), this

case is equivalent to choosing xi, i = 0; 1; 2, at period 0:

(15) max
x0;x1;x2

¹pmin

(
2X

i=0

µixi; ¹z

)
¡

2X

i=0

wixi;
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where ¹p is the expected price. Since the farmer can increase input at any of the three stages

to boost the output, he will choose the one that gives the highest “bene…t-cost ratio.” Let

¹{ = fi = 0; 1; 2 : wi=µi = minfwj=µj; j = 0; 1; 2gg be the stage where the input has the lowest

cost/bene…t ratio. We can verify that in the optimal solution, xj = 0 if j 6= ¹{, x¹i = ¹z=µ¹i if

¹p ¸ w¹i=µ¹i and x¹i = 0 otherwise. That is, the farmer uses the maximum level of inputs at the

stage that is the most e¢cient in increasing his pro…t, if, based on the current information, the

expected pro…t from production is positive. Otherwise, if the expected pro…t is negative, the

farmer produces nothing.

With intraseasonal adjustment, suppose the farmer receives signal si at stage i, i = 0; 1; 2,

about the price level. Consider …rst stage 2. Given s2 and z1, the farmer’s decision is

(16) max
x2

¹p(s2)min fz1 + µ2x2; ¹zg ¡ w2x2;

where ¹p(s2) is the expected price level given signal s2. In the optimal solution, z1 · ¹z: otherwise,

the farmer could have saved input costs while maintaining his output level. Clearly, the optimal

decision is

(17) x2(z1; s2) =

8
><
>:

¹z ¡ z1
µ2

if ¹p(s2)µ2 ¸ w2

0 otherwise

The payo¤ at this stage given s2 is

(18) V2(z1; s2) =

8
><
>:

µ
¹p(s2) ¡ w2

µ2

¶
¹z +
w2

µ2
z1 if ¹p(s2) ¸ w2=µ2

¹p(s2)z1 otherwise

At stage 1, the farmer observes signal s1 and knows the distribution of signals s2. The

distribution of s2 may or may not depend on the value of s1, and for generality, we denote the

cumulative distribution function of ¹p(s2) given s1 as F¹p(¹p(s2)js1): signal s2 is independent of s1

if dF¹p=ds1 = 0. Further, let ¹¹p¡2 =
R w2=µ2
0 ¹p(s2)dF¹p(¹p(s2js1)) and let ¹¹p+2 =

R1
w2=µ2

¹p(s2)dF¹p(¹p(s2js1))
be the expected price levels conditional on all possible “bad” (i.e., ¹p(s2) < w2=µ2) or “good”
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(i.e., ¹p(s2) > w2=µ2) stage two signals, given information at stage one. Then we know

Es2js1V2(z1; s2) =
µ
¹¹p¡2 + (1 ¡ F¹p(w2=µ2))

w2

µ2

¶
z1 +

µ
¹¹p+2 ¡ (1 ¡ F¹p(w2=µ2))

w2

µ2

¶
¹z:

The stage one decision, given s1 and z0, is

(19) max
x1
Es2js1V2(minfz0 + µ1x1; ¹zg; s2) ¡ w1x1;

where we have imposed the condition that z1 · ¹z through the function minf¢g. The optimal

decision is given by

(20) x1(z0; s1) =

8
><
>:

¹z ¡ z0
µ1

if ¹¹p¡2 + (1 ¡ F¹p(w2=µ2)w2=µ2 ¸ w1=µ1

0 otherwise

To compare x1(z0; s1) with the benchmark case, note that if w2µ2 <
w1
µ1

, ¹¹p¡2 +(1¡F¹p(w2=µ2)w2=µ2 <

¹¹p¡2 + (1 ¡ F¹p(w2=µ2)w1=µ1 < w1=µ1. Thus x1(z0; s1) = 0 if input at stage two is more e¢cient

than that at stage one. However, the reverse is not true: even if w2µ2 >
w1
µ1

, it is still possible

that ¹¹p¡2 + (1 ¡ F¹p(w2=µ2)w2=µ2 < w1=µ1 and thus x1 = 0. The farmer may be willing to wait

until stage two to raise his output even if the stage two input is less e¢cient than the stage one

input. He does so in order to utilize the new information that will be available at stage two.

Further, ¹¹p¡2 + (1 ¡ F¹p(w2=µ2)w2=µ2 < ¹p: even if ¹p > w1=µ1, it is still possible that x1 = 0: even

if the expected price overcomes the marginal cost, the farmer may still wish to choose no input

at stage one and wait to stage two to utilize the new information.

Similarly we can show that for x0 to be positive, or for x0 = ¹z=µ0, the farmer demands more

than w0=µ0 = w¹i=µ¹i and ¹p > w0=µ0. In fact, the condition for x0 > 0 is more strict than that for

x1 > 0.

The intuition is that more information about p arrives at each production stage. Since the

inputs are perfect substitutes, whenever the farmer chooses to “lock in” the output ¹z at an earlier

stage, he kills the option of deciding whether or not to lock in the output in the future with

better information. Thus, to induce him to decide in earlier stages, the payo¤, or advantage over

deciding in later stages, in terms of ¹p¡wi=µi and wi=µi relative to the ratio in later stages, must
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be able to overcome the option value of delaying for better information. With this production

process, the farmer reacts “strongly” (weakly) to negative (positive) price information in earlier

stages of production, and less (more) strongly in later stages.

3.2 Leontief Inputs: Stages as Perfect Complements

Now consider a di¤erent production function:

(21)

Stage 0: z0 = minfµ0x0; ~zg

Stage 1: z1 = minfµ1x1; z0g

Stage 2: z2 = minfµ2x2; z1g;

where ~z is the von Liebig bound. Thus the …nal output is given by

(22) Y = min fµ0x0; µ1x1; µ2x2; ~zg :

According to this speci…cation, input choice at each stage determines to what extent the farmer

can increase the output at other stages. The inputs are perfect complements: the production

function is in fact Leontief, subject to the von Liebig bound ~z.

Again, we …rst consider the benchmark case without any future information about p. The

farmer’s decision at period 0 is

(23) max
x0;x1;x2

¹pmin fµixi; i = 0; 1; 2; ~zg ¡
2X

i=0

wixi:

Suppose the expected price is such that the farmer decides to produce. Given that the technology

is linear, he will produce up to the full potential ~z. Then clearly the choices will be xi = ~z=µi and

the expected payo¤ is ¹p~z ¡ P
i ~zwi=µi. The farmer should produce if and only if ¹p ¸ P

iwi=µi.

Thus the optimal solution is given by

(24) xi =

8
>><
>>:

~z
µi

if ¹p ¸
2X

i=0

wi=µi

0 otherwise
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Consider now the case of intraseasonal adjustment. Again, at stage two, given z1 and s2, the

farmer’s decision problem is

(25) max
x2

¹p(s2)min fµ2x2; z1g ¡ w2x2:

The optimal solution is

(26) x2(z1; s2) =

8
><
>:

z1
µ2

if ¹p(s2) ¸ w2=µ2

0 otherwise

and the expected payo¤ is

(27) W2(z1; s2) =

8
><
>:

µ
¹p(s2) ¡ w2

µ2

¶
z1 if ¹p(s2) ¸ w2=µ2

0 otherwise

At stage one, given s1 and z0, the farmer’s decision is

(28) max
x1
Es2js1W2(minfµ1x1; z0g; s2) ¡ w1x1;

where Es2W2(z1; s2) =
³
¹¹p+2 ¡ (1 ¡ F ¹¹p(w2=µ2))w2=µ2

´
z1 ´ ¢2z1. Then the optimal choice of x1

is

(29) x1(z0; s1) =

8
><
>:

z0
µ1

if ¢2 ¸ w1=µ1

0 otherwise

Now we analyze the condition for x1 > 0: ¢2 ¡ w1=µ1 ¸ 0. Note that ¢2 ¡ w1=µ1 =
R1
w2=µ2

(¹p(s2) ¡ w2=µ2)dF¹p ¡ w1=µ1 >
R1
0 (¹p(s2) ¡ w2=µ2)dF¹p ¡ w1=µ1 = ¹p ¡ w1=µ1 ¡ w2=µ2. In

the benchmark case without learning, given z0, the condition for x1 > 0 is ¹p > w1=µ1 + w2=µ2.

Thus, with intraseasonal adjustment, the farmer is more likely to choose x1 > 0: even if ¹p <

w1=µ1 +w2=µ2, he may still choose to have x1 > 0. Similarly, we can show that the condition for

x0 = ~z=µ0 is less strict than ¹p >
P
iwi=µi.

The intuition for the higher willingness to raise the input in earlier stages is that, by increasing
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µixi, the farmer creates the option of being able to respond to future information about the

output price. If the farmer responds to low price signals in earlier stages by choosing zero input,

he cannot increase his production in later stages even if new signals predict higher prices. Thus,

to induce the farmer to stop production in earlier stages, the expected price must be su¢ciently

low so that the option value of responding to future price information cannot overcome the

expected pro…t loss in earlier stages.

4 Conclusion

The ability to respond to new information in the production process, rather than only at the

beginning of a growing season, implies that intraseasonal adjustment can be an important factor

in determining how the output responds to weather and price shocks. We constructed a stylized

model to study this situation, and found that the output response depends on the production

function, in particular whether the input use at di¤erent stages are complements or substitutes.

The major intuition is that the farmer has incentive to adjust his input use at earlier stages to

preserve the option of being able to respond to future new information.

Our model is a simple stylized representation of a complex management problem. For exam-

ple, labor, machinery, fuel, the quality of seed, and the timing of the planting must be considered

when sowing a crop. Our assumptions of a single decisions variable, seed quantity, and a …xed

planting time allows us to present the important intuition of the model.

In order to illustrate the magnitude of the importance of intraseasonal adjustment, we plan

to conduct a case study of a representative farm in Iowa, using the farm budget data. Using

this example, we will illustrate the magnitude of the option values, and how the input demand

and output supply responses to the …nal price can be di¤erent from the static models. We will

also study how the responses depend on the correlation of the signals overtime. Finally, we

will discuss the new paradigm based on our approach for data collection, empirical analysis and

ultimately our understanding of agricultural production under uncertainty.
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