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Abstract:

Using 5 minute data, we examine market volatility in the Dow Jones Industrial Average
in the presence of trading collars. We use a polynomial specification for capturing
intraday seasonality. Results indicate that market volatility is 3.4 percent higher in
declining markets when trading collars are in effect. Results also support a U-shaped

intraday periodicity in volatility.
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Trading Collar, Intraday Periodicity, and Stock Market Volatility

In response to the stock market crash of 1987, the New York Stock Exchange (NYSE)
established a set of regulations to contain excessive market volatility and to regain investor
confidence. The most famous of these regulations are Rule 80A (trading collar), instituted on
August 1, 1990 and Rule 80B (circuit breaker), instituted on October 19, 1988. The Rule 80A
restricts index arbitrage form of program trading in component stocks of the S&P 500 stock
price index.

When implemented originally in 1990, Rule 80A imposed restrictions on index
arbitrage trading in component stocks of the S&P 500 index whenever the Dow Jones
Industrial Average (DJIA) moved above or below the previous day’s closing level by 50
points or more. Once imposed, these trading restrictions will be removed when the DJIA
returns to within 25 points of previous day’s closing level. In February 1999, percent based
triggering levels (as opposed to absolute values of 50 and 25) were implemented. These
triggering levels are adjusted quarterly and are announced by the NYSE at the beginning of
each quarter. Table 1 lists historical collar levels that have been set by the NYSE.

Numerous researchers have studied the volatility of the stock markets and GARCH
models have become ubiquitous for modeling market volatility. See Aydemir (1998) and
Diebold and Lopez (1995) for recent surveys of volatility modeling in finance. A great
majority of the GARCH models for market volatility have not taken the trading collars into
modeling consideration. Forecasts from models that do not incorporate the institutional

details might not be as accurate.



The presence of trading collars could conceivably alter volatility dynamics and
volatility models should account for this. To successfully model trading collars and their
effect on volatility one needs to use high frequency intraday data because trading collars are
imposed during a trading session and typically do not last for long time periods. For
example, one cannot discern the presence of trading collars from daily closing values of the
DJIA. In this study, we estimate GARCH models that explicitly account for the NYSE’s
trading collar rules using high frequency data.

Financial markets exhibit strong periodic dependencies across the trading day —
typically volatility is highest at the open and toward the close of the day — and failure to
account for this may seriously distort the inferences made from the models (Bolleslev 2001).
Two approaches have been used in the literature to capture intraday seasonal patterns in
volatility in the context of ARCH models: use of dummy variables in the conditional variance
equation (e.g., Baillie and Bollerslev 1990, and Ederington and Lee, 2001) and use of Flexible
Fourier forms (e.g., Andersen and Bollerslev 1997, 1998 and Martens 2001).

In this paper, we use a polynomial function to capture systematic intraday periodicities
in volatility and estimate the seasonal components simultaneously with the rest of the model.
The polynomial functional form, like the Fourier form introduced by Andersen and Bollerslev
(1997, 1998), can be viewed as a flexible form for approximating the true, unknown seasonal
pattern. By increasing the number of polynomial terms, the function could be made arbitrary
close to true seasonal component. Also, using simple parametric restrictions, the function
could be made continuous and smooth as it cycles from one day to the next.

Andersen and Bollerslev (1997, 1998) and Martens (2001) estimate the seasonal

component first and use the estimated seasonality to deseasonalize the returns data. Then,



they fit ARCH models to the deseasonalized data. In this paper, we estimate the seasonal
components and the ARCH parameters simultaneously. By estimating the seasonality
(intraday effects) simultaneously with the GARCH parameters, this approach provides
efficient estimates and avoids the short-falls of using estimated data (Pagan).

The polynomial form advocated in this paper is parsimonious in parameters and is
easy to estimate. For high frequency data, the dummy variable approach requires a lot of
parameters to completely specify the intraday seasonality. For example, for the 5 minute
interval data we use, it would take as many as 78 parameters using the dummy variables
approach to capture the time of the day effects on conditional volatility. With a polynomial
specification, a sufficiently flexible seasonal pattern can be estimated often times using just 4
or 5 parameters. This is the first study to examine the market volatility in the DJIA in the

context of the trading collars while simultaneously accounting for intraday seasonality.

Data

To model market volatility and how it is affected by the presence of trading collar, one
should use high frequency data for observing intraday fluctuations in returns that might
trigger the collar. We use five-minute interval data for the DJIA. We obtained the data from
the Tick Data Incorporated. The sample period is from February 16, 1999 to August 31,
2001, giving a total of 49,001 observations on returns. The sample period corresponds to the
current regime of collar levels which are set based on a percent of the DJIA. Overnight
returns are excluded so the sample contains exclusively 5 minute returns.

Three dummy variables, D®, D? and D, have been created to represent the periods

when the collar is in effect. Dummy variable D° takes a value of one when the collar is in



effect and if the collar has been triggered from below. Thus, D® represents the periods when
the Rule 80A is in effect due to decreases in the DJIA. Similarly, D* takes a value of 1
whenever the collar is in effect due to increases in the DJIA. Finally, dummy variable D is
created which takes the value of one whenever the collar is in effect and zero otherwise.
Obviously, D* + D° =D.

The sample means for Db, D, and D, respectively, are 0.0355, 0.0245 and 0.0600
indicating that the Rule 80A has been in effect for about 6.0% of sample observations.
During the sample period, which is about two and years long, the collar was triggered a total
of 99 times. Once triggered, the collar stayed on for about 30 observations on average. Given
the 5 minutes data used in this study, this corresponds to about two hours and 30 minutes.
Thus, the average length of trading collar is about two and half hours.

The sample mean and standard deviation for 5 minute returns for the DJIA are

8.540x10° and 1.182x10°. Assuming returns are uncorrelated, the standard error for the
mean equals 1.182x 107 / 149,001 = 5.340x10™® making the mean indistinguishable from zero

at standard significance levels. The sample skewness and kurtosis are 0.0591 and 22.110
indicating that the distribution for returns have thick tails. A Jarque-Bera test static of
745,644.28 provides a strong evidence of departure from normality. To accommodate thick

tails, we use a Student t distribution for modeling returns in our analysis.

The Model
We specify the following model for log-returns:

n=pte,
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where, . =In(DJIA, / DJIA, ), ¢1is Student t distribution with 1/v degrees of freedom, zero
mean and variance of /,, and x and v are parameters to be estimated. To capture volatility

dynamics during the periods of trading collars, we estimate the following four specifications

for the conditional variance:

Model A: h, = [a)t +ae’ + Bh ]-(1 +yD,)

Model B: h, = [a)t +ae’ + Bh ]-(1 +y'Df +y"D))

Model C: 4, =(1+y,D)o, +(1+y,D,)a,e™, +(1+y,D)Bh,_,

Model D: A, =(1+y{D +y D), +(1+y D! +y! D a,g’, +(1+yiD + ¥ D) Bih,
Where o, is intraday seasonality term, D, D“, and D" are dummy variables defined earlier,
and a,, B, 7,7 7 Vs VisVasVes Ve vyt vs,and y) are parameters to be estimated. The
intraday seasonality component is defined as:

o, = exp(a0 +aS, +a,S’ +a,S’ +..+a.S! )

where, S, is a seasonality time index variable that takes values between 0 and 1 and

a,,a,,...,a, are parameters to be estimated. Data on § are obtained as follows. Let n

represent the number of periods in a day (which is the length of the seasonality cycle). Then,

for given trading day with n five minute returns, the ith observation of variable S for that day

is given by i/n. The seasonality term can be made continuous by restricting @, | s = a),| P

k
ie., Z a, =0. Similarly, the seasonality term can be made smooth as it cycles from one day
i=1
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conventional GARCH models with no seasonality when the parameters a Gy .-, @, ATC

restricted to zero.

Given a previous day’s closing value for the DJIA (which is will be in the
conditioning information set), the models can endogenously determine whether a collar would
be in effect for the next period. Thus, conditional volatility forecasts from these models
appropriately account for the presence of collars, if any.

Models A and B allow the conditional variance dynamics to be different during the
trading collar periods without allowing the GARCH parameters to be different when the
trading collar is in effect. Models C and D allow conditional variance dynamics to be
different during the trading collars by allowing the GARCH parameters to vary when the
trading collar is in effect. Models A and C treat up and down markets the same while models
B and D allow the volatility dynamics to behave differently during up and down markets.
Model D is the most general model and nests the other three models in it while model A is the

most restrictive and nests in the other three models.

Results

Maximum likelihood estimates of the parameters for the four models are given in table
2. One over the degrees of freedom parameter (1/v) is significantly different from zero for all
four models supporting the choice of t distribution over the normal. Estimated degrees of
freedom for all four models is remarkably close at 7.2.

Estimated GARCH coefficients, o, and f,, are highly significant in all four models.
Estimated magnitudes of the coefficients are similar across the four models. In all models, £,

coefficient is estimated to be much higher than ¢, and the sum of estimated GARCH



coefficients is close to 1 indicating persistence of memory. This is expected in high
frequency data.

In model A, yis positive and significant. An estimated value of 0.02 indicates that
market volatility is 2.0% higher during the periods of trading collar. However, model A does
not distinguish rising and declining markets. To distinguish the effects of trading collar in
rising and declining markets, we look at results from model B. The y“coefficient is
insignificant indicating that in rising markets, the presence of collar has no bearing on market
volatility. In contrast, »”is significant indicating that market volatility is appreciably higher
in declining markets. A value of 0.034 indicates that market volatility is 3.4% higher when
the collar is in effect in declining markets. All three trading collar coefficients (y,,y,,,) are
significant in Model C implying that volatility dynamics are different during trading collar
regimes. However, results from Model D indicate that volatility dynamics are not affected by
the presence of trading collar during rising markets. However, volatility dynamics are
significantly affected by the presence of trading collar in declining markets.

In the estimation, a third order polynomial was found to adequately model the intraday

seasonal patterns. Results in table 2 indicate that the estimated seasonality parameters, q,,

a,, and a,, are highly significant for all four models. These seasonality parameters are
markedly similar for all the four models indicating that the estimated intraday seasonality
polynomial is robust across the four model specifications. The null hypothesis on no intraday
seasonality (a, = a, = 0) is soundly rejected for all four models. Empirical results indicate the
presence of significant intraday seasonal patterns in the DJIA.

Figure 1 is a graphical depiction of the estimated intraday seasonal pattern in volatility

for model D. Seasonal patterns for other three models are similar. Figure 1 indicates that the



DIJIA is about three times more volatile at the open and the end of the day than at midday.
Estimated seasonality polynomial supports a U shaped volatility pattern reported by earlier
studies for other equity markets (e.g., Andersen and Bollerslev, 1997).

Likelihood ratio tests favor Model D over the other three models. Testing one at a
time, the null hypothesis of restrictive model (A,B, and C) is rejected in favor of model D at
standard levels of significance. Akaike Information Criteria given in table 2 also indicate that
Model D is the preferred model. Thus, empirical results suggest that volatility dynamics are
significantly different when trading collar is imposed and that these dynamics are not identical
during up and down markets.

Conclusions

In this paper, we estimate volatility models for the DJIA that account for the presence
of trading collars that have been instituted by the NYSE. Using a polynomial specification,
we simultaneously estimate intraday seasonality in volatility. Results support a U-shaped
intraday periodicity in market volatility. We estimate that market volatility is 2% higher
when trading collars are in effect and 3.4% higher when trading collars are in effect in

declining markets.
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Table 1. New York Stock Exchange’s Historical Trading Collar Levels

Period Collar Level

August 1, 1990 - February 15, 1999 50-25

February 16, 1999 - March 31, 1999 180-90
April 1, 1999 - June 30, 1999 190-90
July 1, 1999 - December 31, 1999 210-100
January 3, 2000 - March 31, 2000 220-110
April 3, 2000 - June 30, 2000 200-100
July 3, 2000 - March 30, 2001 210-100
April 2, 2001 - June 29, 2001 200-100
July 2, 2001 - September 28, 2001 210-100
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Table 2. Maximum likelihood estimates of market volatility models for the DJIA.

Parameter Model A Model B Model C Model D
7 0.00066 0.00065 0.00064 0.00062
(1.71) (1.67) (1.65) (1.60)
a -6.75 -6.74 -6.82 -6.74
0 (-78.65) (-92.61) (-81.23) (-99.75)
a -18.26 -18.11 -18.35 -18.02
! (-13.49) (-19.57) (-13.43) (-22.05)
4 38.52 38.12 38.97 37.62
2 (10.94) (15.87) (11.00) (17.99)
a, 0.0740 0.0732 0.0701 0.0709
(23.05) (24.98) (22.03) (24.93)
B, 0.888 0.888 0.893 0.891
(187.94) (232.74) (199.93) (252.98)
% 0.020
(5.24)
a -0.0016
Y (-0.27)
b 0.034
Y (7.63)
1.228
Yo (2.76)
0.843
4 (3.16)
-0.060
V2 (-3.14)
a 0.752
Yo (3.02)
b 1.156
Yo (2.46)
a -0.013
7 (-0.06)
b 0.807
4 (2.94)
a -0.026
V2 (-1.35)
b -0.037
V2 (-2.16)
1/v 0.1395 0.1395 0.1393 0.1393
(34.21) (34.26) (34.21) (34.26)
Log-likelihood 71169.33 71182.55 71192.63 71205.94
Akaike Information Criterion  142322.66 142347.10 142365.26 142385.88

Note: Numbers in parentheses are f-ratios. Estimation period is 2/16/1999 — 8/31/2001 with a sample size of 49,001.



Figure 1. Estimated intraday seasonal patterns in volatility of the Dow Jones Industrial Average

0.0014

0.0012 1

0.0010 A

0.0008 -

0.0006 -

Volatality of returns

0.0004 -

0.0002

0.0000

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
Time of the day



	Data
	The Model
	Results
	Conclusions
	
	
	
	
	
	August 1, 1990-February 15, 1999






	�

