
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Calibrated Stochastic Dynamic Models

For Resource Management∗

Richard E. Howitta, Arnaud Reynauda,b, Siwa Msangia, and Keith C. Knappc

Abstract

In this paper we develop a positive calibrated approach to stochastic
dynamic programming. Risk aversion, discount rate, and intertemporal
substitution preferences of the decision-maker are calibrated by a
procedure that minimizes the mean squared error from data on past
decisions. We apply this framework to managing stochastic water
supplies from Oroville Reservoir, located in Northern California. The
calibrated positive SDP closely reproduces the historical storage and
releases from the dam and shows sensitivity of optimal decisions to a
decision-maker’s risk aversion and intertemporal preferences. The
calibrated model has average prediction errors that are substantially lower
than those from the model with a risk-neutral expected net present value
objective.
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1. Introduction

Most natural resource management problems are inherently dynamic and stochastic in their

evolution over time. Stochastic dynamic programming (SDP) provides a unifying framework for the

economic analysis of natural resource management, since it is able to formally integrate stochastic

biophysical relationships with the imputed value functions of economic users of the resources. In most

cases, constraints, non-linearity in the equations of motion, and non-gaussian stochastic processes

make certainty equivalent approximations inappropriate (Bertsekas, 1976). In addition, many resource

management problems and policies are concerned with the effect of changes in the higher moments of

the dynamic distributions, and not just their expected value. For example, preliminary investigations

of the hydrologic impact of global warming indicate that the change in the distribution of precipitation

will be more pronounced than changes in the mean. While a few natural resource papers show risk

included within an SDP formulation (Knapp & Olson, 1996; Krautkramer et al., 1992), none are

calibrated to observed decisions to show ‘revealed’ level of risk-aversion. The approach in this paper

elicits those parameter values that are most likely to reflect the underlying inter-temporal preferences

of the decision-maker. Models that do not account for risk-driven behavior will tend to be trusted less

by public decision-makers who seek reliable analytical tools for application to the problems they face1.

Despite its methodological appeal, SDP has not been as widely used for the empirical analysis

of natural resource problems as was initially expected (Burt & Allison, 1963).  Forty years after its

introduction, there are still relatively few published economic resource management studies that use

SDP as an empirical tool. One reason that may influence the application of SDP to policy problems is

that it is specified, in most applications, with a normative objective function. In other words SDP is

often viewed as a method for normative policy optimization under uncertainty. The ability of SDP to

be used as a positive analytical method that can reproduce the historical behavior of decision-makers

has been somewhat neglected in policy analysis applications, and confined mostly to discrete-choice

econometric applications (Keane & Wolpin, 1994; Provencher & Bishop, 1997; Provencher, 1995;

Miranda & Schnitkey, 1995). Yet, demonstrated prediction precision is important, especially if SDP is

to become a decision tool for managing natural resources.  We believe that the specification of SDP

models on a positive rather than a normative basis will reassure decision makers that the base model

                                                                
1 This paper was motivated by a comment made at an agency workshop in response to the presentation of results from a
conventional SDP solution. The commentator was Dr. Francis Cheung of the California Department of Water Resources.
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incorporates their decision preferences, which may help to make SDP a more useful tool for managing

natural resources under uncertainty.

Fulton and Karp (1989) used an inverse control problem approach to infer the objective

function parameters of a dynamically-optimizing mining firm. By using the optimal feedback rule of

their stochastic programming problem jointly with the underlying equation of motion, they obtain

estimating equations that recover the parameters of their linear quadratic utility function. They then

simulate alternative economic scenarios, and infer the relative importance of profit maximization with

respect to other possible objectives of the firm, such as maintaining levels of employment, output or

mineral reserves. In our case, we are weighing the relative importance of risk aversion and

intertemporal substitution in explaining the observed behavior of our agent, within the context of a

more general set of preferences.

Several notable papers have addressed the problem of estimating the relevant parameters

within a discrete choice dynamic programming problem, such as Keane and Wolpin’s 1994 paper,

where they address the computational difficulties associated with finding the relevant functions for

both the discrete choice problem and the inter-temporal optimization problem. The fact that our

decision problem is a continuous one, allows us to concentrate our efforts on developing a robust and

efficient algorithm to obtain the value function, so as to solve the dynamic problem over the possible

combinations of the decision-maker’s risk-aversion and resistance to inter-temporal substitution. The

focus of their paper, however, is on developing a tractable numerical procedure to approximate the

value functions that span the possible discrete choice set of the decision-maker at each stage of the

dynamic problem. In an earlier, seminal paper (Rust, 1987) chose to simplify the discrete-choice

mechanism for numerical tractability, in order to solve the stochastic dynamic problem and use it to

explain the observed behavior of an agent, as we aim to do in this paper.

In this paper we specify SDP as a positive analytical method, rather than a normative

prescriptive tool. Like all positive methods, the calibration of SDP solutions requires a set of observed

actions by decision makers, and one or more parameters that can be calibrated to improve the fit of the

model to the observed past actions. Analysis of recursive utility has shown that risk aversion, the

subjective discount rate, and intertemporal substitution all influence dynamic economic allocation

(Knapp & Olson, 1996). Accordingly we solve the SDP problem over a grid of parameter values and

select the parameter set that has a minimum mean squared error from the observed decisions. Of

course, resource decisions that are optimal for the decision-makers are not guaranteed to be optimal

                                                                                                                                                                                                                            
He pointed out that optimization models tend to be discounted by decision-makers because they ignore the presence of risk
in the objective function.
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for their clients. However given the accountability of democratic institutions, it is reasonable to

assume that decision-makers will not consistently depart from their constituent’s preferences over a

long period of time; in our case twenty three years.

2. An SDP Specification of Natural Resource Management

This section develops the calibrated SDP framework for a hypothetical natural resource

management problem with reservoir management as an example. Two important points should be

emphasized. First, the majority of natural resource management problems require the specification of

an interdependent multi-state model, and any simplification to a single state must take into account the

rest of the resource network. Second, managing risk and inter-temporal substitution is an integral part

of resource management. This requires a correct specification of the risk and substitution preferences

of the decision-maker.

2.1 Decoupling network states

A general characteristic of natural resource management is that decision-makers do not operate

in a closed system. They have to take into account the uncertainty in the rest of the system. We assume

that we can decouple management of the natural resource being modeled from the rest of the network.

There are two reasons to decouple a single state from the resource network. The first is the reduction

in the dimensionality of the SDP problem and an increase in its empirical tractability. The second

reason is that a central aim of the approach is to calibrate the SDP model to a historic series of

observed decisions. In most resource systems, decisions are split between agencies or levels of

agencies. A convincing calibration that reflects past decision parameters must be focused on a single

decision maker (or unit) who is cognizant of, but decoupled from, the rest of the system. An example

of this is in Rust (1989) where he models the actions of a single individual.

Since resource states are usually interconnected, the management of a given resource or

location depends on the state of the rest of the system.
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Figure 1: Natural resource management model

te1
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te2
~
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In Figure 1, we consider the simplest representation of a resource network based on a single

state representation in a complex network system. The single state is decoupled from the network by

approximating the network by two elements: a natural resource, with stochastic inflow te1
~  and storage

tS  at each date t, and the rest of the system characterized by a stochastic inflow te2
~ . The system

dynamics are given by:

tttt weSS −+=+ 11
~ (1)

The change in natural resource stock must balance the local inflow and the release. For

reservoir management, equation (1) states that the variation of the reservoir storage plus the stochastic

inflow must be equal to the water release tw . The index t in (1) denotes time period. Final demand for

water in Figure 1 may either be satisfied by water release tw  or by flows from the rest of the system

te2
~ .

2.2 Exogenous stochastic variables

We assume that exogenous stochastic variables, in the reservoir management example, water

inflows ( )21
~,~ ee , are i.i.d over time2 on a compact space and subject to a common joint distribution

)(•Φ . )(1 •Φ  and )(2 •Φ  respectively represent the marginal distribution of the reservoir inflow and of

the rest-of-network.

                                                                
2 This assumption is clearly difficult to justify on a daily or monthly basis. It is more likely to hold at the yearly basis used
in this model, and in the absence of any long term trend.
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We define the following timing of information and controls. First, the decision-maker observes

tS  and the realization of the exogenous stochastic variable te1
~ , in the reservoir management example,

the local stochastic inflow. Second, the decision-maker chooses the control tw , the level of water

release. This choice is a function of the future local stochastic inflow. The natural resource available

for consumption is, at each date, made of resource release and the realized rest-of-network inflow.

Thus the value of the natural resource stock is a function of the stochastic flow in the rest of the

network. We assume that the decision-maker cannot directly observe the rest-of-network inflow, but

knows its distribution. Usually, resource networks are complex, and it may be the case that the

decision-maker, for a given part of the system, is not aware of the state of the system in the rest of the

network. This is especially true if different authorities (state versus federal level, private versus public)

manage different parts of the water network, or if the network is managed on a large spatial scale. A

direct consequence of this information structure is that a decoupled decision-maker, when computing

the optimal release, should take into account the realized local inflow and the distribution of rest-of-

network inflow that is conditional on this realized local inflow. We denote the distribution of the

inflow to the rest of the network, conditional on the local inflow, by )(1/2 •Φ  .

2.3 The objective function

Natural resource demand may either be satisfied by flows from the single decoupled system or

by flows from the rest of the system. At each date, the consumption of resource flows is tq  defined as:

ttt ewq 2
~+= (2)

Resource demand is defined by the inverse demand function )(qP . The net surplus, )(qW , derived

from resource consumption is denoted by:

∫=
q

uuPqW
0

d)()(
(3)

The net surplus of resource consumption is a concave increasing function of q.

We use a recursive utility specification to represent decision-maker preferences. Koopmans

(1960) presents, in a deterministic context, the first axiomatic presentation of recursive preferences.

While Kreps and Porteus (1978) generalized this structure to stochastic models, Epstein and Zin

(1989) later developed an isoelastic formulation of Kreps and Porteus preferences. This formulation
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has been used in applications ranging from macroeconomic modeling (Weil,1990), to farm production

behavior (Lence, 2000),  and more recently to resource management by Knapp and Olson (1996), Ha-

Dong and Treich (2000) and Peltola and Knapp (2001). Three main arguments are advanced in favor

of this class of preferences. First, it encompasses a wide range of preferences (expected utility, Kreps

and Porteus specification among others). Second, it enables a distinction to be drawn between risk and

intertemporal substitution effects3. Third, this specification satisfies the properties of intertemporal

consistency and stationarity of preferences. Following Epstein and Zin (1991), we use an isoelastic

formulation of Kreps and Porteus preferences. Given a current net profit tW  resulting from natural

resource use in period t , recursive utility is given by:

( )
1

1(1 ) E   t t tU W U
ρ

ρ α ραβ β +

  = − ⋅ +    (4)

where [ ]0,1β ∈  is the subjective discount factor, β  = 1/(1+δ), δ is the subjective rate of discount,

[ ]1, 0α ∈ < ≠  is the risk-aversion parameter, and [ ]1, 0ρ ∈ < ≠  the constant resistance to intertemporal

substitution. Given this specification, the elasticity of intertemporal substitution (EIS), σ , is equal to

1/(1- ρ), [ )+∞∈ ,0σ . It follows that a decrease of the constant inter-temporal substitution resistance, ρ,

below 1 results in a lower inter-temporal elasticity of substitution. Finally, note that recursive

preferences nest expected utility as a special case: by setting α ρ=  we get the familiar constant

relative risk aversion expected utility function. In what follows, we endogenously calibrate the

decision-maker’s risk aversion, discount factor, and resistance to inter-temporal substitution. Three

main reasons support the endogenous calibration of these parameters.

Reason 1: there is no consensus in the economic literature on the level of the two recursive

utility parameters. Various authors have proposed estimates of the EIS that range from 0 (Hall, 1988)

all the way to 0.87 (Epstein and Zin, 1991), while estimates of the risk aversion coefficient (1-α )

range from 0.82 (Epstein and Zin, 1991) to 1.5 (Normandin and Saint-Amour, 1998).

Reason 2: The impact of risk related parameters on optimal policies is known to be important.

Knapp and Olson (1996) show that increasing risk-aversion results in more conservative decision

rules, while Ha-Duong and Treich (2000) show that larger risk aversion strengthens optimal pollution

                                                                
3 Attitude toward variations in consumption across states of the world can be characterized by risk aversion. Attitude
toward variations in consumption across time is represented by the degree of intertemporal substitutability. With the usual
expected utility preferences (intertemporally additive and homogeneous von Neuman-Morgenstern utility index) these two
notions are unattractively linked. Recursive preferences allows risk attitudes to be disentangled from the degree of
intertemporal substitutability.
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control. They also find that a larger resistance to intertemporal substitution rotates the optimal control

path toward less pollution control in the current period and more control in the future.

Reason 3: It is very important to have a model that closely represents behavior of decision-

makers. By endogenously calibrating some parameters to fit past decisions, we move from a normative

perspective of SDP to a more positive analytical approach.

The approach that we adopt to obtain these parameters differs from that of other authors

dealing with recursive utility (Lence, 2000; Epstein & Zin, 1991), since we do not observe the data

that would  allow us to statistically fit our model parameters to empirical moments using GMM or a

similar procedure. Instead we adopt a least-squares criterion to search over the space of parameter

values, such that we obtain the parameter set that is most consistent with the observed behavior . We

prefer to call this an  “endogenous calibration” procedure, rather than an estimation procedure, since

we don’t claim any statistical properties for our “best-fit” parameters. This also differs from the type

of ‘calibration’ done in the traditional macroeconomics literature (Kydland & Prescott, 1991; King,

Plosser & Rebelo, 1988), where the parameters in the model are chosen to match moments observed in

empirical studies.

2.4 The SDP for resource management

We assume that the decision-maker wishes to maximize utility subject to the equation of

motion for the natural resource stock and the feasibility constraints:

2 1

1

1Max   (1 ) E   ( ) E    t e t t e tw
U W q U

ρ ρ
ρ α αβ β +

 
 = − ⋅ +  

 
(5)

s.t. 
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The stochastic control problem consists of choosing a sequence of decision rules for resource flows

that maximize the objective function (5) subject to (6a)-(6e). At each date, the current net surplus

depends on the resource allocation and the stochastic level of flows in the rest of the network. The

objective function is therefore the expected current net surplus. All model parameters and functions
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are the same for all decision stages, which means that the problem is stationary. If the planning

horizon is infinite, the optimal decision vector in state space for any decision stage is the same for all

stages. The optimized value of the system at any stage is the same for all stages, and is finite even

though the planning horizon is infinite, because stage returns are discounted. The stochastic dynamic

recursive equation defining optimal natural resource management is:

( )
1

2 2 1 1, Max (1 ) ( )d ( , )d    t /w
V S e W w e F V S e F

ρ
ρ α ραβ β

  = − ⋅ + +   
∫ ∫% %

(7)

where  V(.)  is the value function and w must be feasible. We have to solve a standard SDP problem.

The value iteration method used for solving (7) consists of assigning an initial value for the value

function, and then recursively solving the maximization problem until the implied carry-over value

function converges to an invariant approximation.

2.5 Solving the Calibrated SDP problem

Given that we don’t want to specify a priori values for the Arrow-Pratt constant relative risk-

aversion, the discount factor, and the constant resistance to intertemporal substitution, a better

formulation of (7) is:

( )
1

2 2 1 1, ; , , Max (1 ) ( )d ( , ; , , )d    t /w
V S e W w e F V S e F

ρ
ρ α ραα β ρ β β α β ρ

  = − ⋅ + +   
∫ ∫% %

(8)

We use a grid-search in order to determine the optimal discount factor and the resistance to

intertemporal substitution conditional on a grid of 11 risk aversion values from 1 to – 5. Since initial

empirical solutions suggested that α, the risk aversion parameter, had the least effect on the predicted

MSE of the model, we search over the discount factor and intertemporal substitution parameters

conditional on 11 rates of risk aversion. Defining the limits of the parameter space as [ ,  ]β β β∈ and

 ],[ ρρρ ∈ , we discretize these intervals into nβ  and ρn  values and solve the n nβ ρ×  corresponding

stochastic dynamic programs. This results in n nβ ρ×  value functions. Given the historical data of the

local and the rest-of-network inflows, we obtain the resulting n nβ ρ×  optimal policies, *( , )tw β ρ  for

Tt ,,1 …= . We can now compute a measure of the difference between the predicted model allocations

*( , )tw β ρ  and the historical observed allocations o
tw .
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Finally, the optimal discount factor and the constant resistance to intertemporal substitution

parameters are those values that minimize the sum of squared prediction errors. In other words, the

selected parameters are those that best reproduce historical actions of the decision-makers.

3. A Calibrated SDP for Oroville reservoir

Oroville Reservoir is located on the Feather River in Northern California. The State of

California operates this reservoir within the State Water Project. Water releases from Oroville

reservoir are used for electrical power generation, irrigated agriculture and to satisfy domestic and

industrial user demands. Oroville also provides flood control and enhancement of sport fisheries and

wildlife habitat in the Delta area. Most of the hydrologic data  used comes from the ‘State Water

Project Annual Report of Operations’ published each year by the California Department of Water

Resources from 1974 to 1996.

3.1 Specification of the problem

We consider the optimal annual use of Oroville reservoir and limit our analysis to the inter-

year management problem. In the following paragraphs we determine the annual optimal water

releases and carryovers4.

The water network considered is similar to that in Figure 1 with the addition of a spill flow

from the stock St. The change in the reservoir storage plus the stochastic inflow must be equal to the

water release tw , and the spills from the reservoir, tsp . The spills balance the system in times of high

flows, but have no economic value in the model.

 Distribution of inflows

We assume that yearly inflows ( )21
~,~ ee  are i.i.d over time with a Gaussian joint distribution:

                                                                
4 Focusing only on inter-year reservoir management does not mean that intra-year management is without interest. Intra-
year management would, however, require some model important changes. First, the temporal independence assumption of
inflows would not hold, and inflows should be modeled as an auto regressive process. Second, adaptive stochastic dynamic
programming should be used to take into account any updated information, which would make the resulting model much
less tractable.
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2
1 1 1 12

2
2 2 12 2

N ,
e
e

µ σ σ
µ σ σ

     
            

% ∼% .
(9)

It follows that the marginal distributions )(•Φ i , 2,1=i , are defined by:

( )2N ,i i ie µ σ% ∼ (10)

and the distribution of the rest-of-network inflow conditional on the reservoir inflow, )(1/2 •Φ , by:

( )
2

212 12
2 1 2 1 1 22 2

1 1

| N ,e e e
σ σ

µ µ σ
σ σ

 
+ − − 

 
% ∼ .

(11)

The joint distribution of inflows is estimated by maximum likelihood using GAUSS. The estimate is

based on nineteen years of observed flows into Oroville and the rest of the network. Inflow parameter

estimates are presented in Table 1, below.

Table 1: Estimate of inflow distribution
Parameter Estimates Standard Error Student t

1µ 3.7957 0.6009 6.317

2µ 15.7583 2.2742 6.929
2
1σ 6.8594 2.2257 3.082
2
2σ 98.2635 31.8850 3.082

12σ 24.1569 8.1346 2.970

From Table 1, the marginal distribution of Lake Oroville inflow is given by:

( )1 N 3.7957, 6.8594e% ∼ (12)

and )(1/2 •Φ , the distribution of the rest-of-network inflow is conditioned on  the reservoir inflow by:

( )2 1 1| N 2.3910 3.5217 , 13.1896e e e+ ⋅% ∼ . (13)

The reservoir inflow and rest-of-network conditional inflow distributions are discretized over 8 points.

 The demand function

As previously mentioned, the demand for water is represented by an aggregate inverse demand

function . The inverse demand function was adopted from the function used in the CALVIN 5 model.

CALVIN is run for a seventy two year hydrologic sequence and reflects the current level of
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development of the water system. The inverse demand is computed using total inflow to the Delta per

year and associated shadow values. A  quadratic form is fitted to the data generated by CALVIN. The

resulting inverse demand function is:

( ) 202.09.2150 qqqP ⋅+⋅−= (14)

where q is the quantity of water in millions of acre-feet (MAF) and P(.) is the associated marginal

value in dollars per acre-feet. When water quantity varies from 10 MAF to 40 MAF, the resulting

demand price per acre-feet varies from $123 to $66, an acceptable price range for California.

The resulting net benefit function from water consumption may be written as:

( ) 32 0067.045.1150 qqqqW ⋅+⋅−⋅= . (15)

which is increasing and concave in water consumption for q within the relevant ranges of value.

 Spillways

Optimal management of a reservoir aims to minimize the occurrences of both shortages and

spills. By keeping a high storage level of water from year-to-year, the decision-maker can smooth

water consumption over dry years. However, keeping a high level of water storage increases the

probability of important spills in the case of a wet year. Optimal reservoir management must tradeoff

between these two effects. We assume that the spill during year t, ( tsp ), is a function of the realized

inflow during this period ( te1
~ ) and the available storage capacity at the beginning of the period

( tcap ). The available storage capacity in t is defined as the difference between the maximum storage

capacity of the reservoir ( S ) and the storage at the beginning of the year ( tS  ). Different functional

forms were tested in the estimation of this relationship. The one giving the best fit for the realized

spills is:

tttttttt capeeeecapesp ⋅⋅⋅+⋅+⋅= 1
3

1
2

111
~0.02305-~0.000993~0.005024~0.095382),~( (16)

with an adjusted R-square of 0.657. Spill is an increasing function of inflow and decreasing in the

available storage capacity. However, the greater the inflows, the more important storage capacity

becomes in reducing spills. Finally, we assume that the relationship in equation (16) that links spills,

inflows and storage capacity is known by the decision-maker.

                                                                                                                                                                                                                            
5 CALVIN is an economically-driven optimization model of California’s statewide inter-tied surface and groundwater
system, Jenkins et al (1999). CALVIN optimizes the operations of system resources over a given hydrologic sequence to
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 Discount rate and inter-temporal substitution preferences

We consider 11 possible values for the discount factor β . The values are uniformly distributed

on the interval [0.645,0.943]  which represents discount rates from 6% to 55%. Similarly, we consider

11 possible values for ρ, the (constant) resistance to intertemporal substitution which are uniformly

distributed on the [1, 19]−  interval. As a result, 121 SDPs must be solved for each level of risk

aversion, one for each possible pair ),( ρβ , to generate a grid from which the optimal calibration

parameters are selected. We selected the risk aversion parameter to be exogenous to the grid search

based on the results of other empirical studies of macro economic and natural resource problems that

indicate that the optimal controls are least sensitive to the risk aversion parameter value (e.g. Peltola

and Knapp (2001)).

 The SDP formulation

Given flood control constraints, the maximum storage capacity in Lake Oroville is on January

first of each year and is 2.861 million acre-feet (MAF). We assume a minimum storage constraint

equal to 0.987 MAF. This value corresponds to the minimum storage observed from 1974 to 1996.

The model assumes that decision-makers maximize their utility subject to the equation of motion for

the reservoir stock and the feasibility constraints. The stochastic optimization program is:

2

1

1 1Max   (1 ) E   ( ) E    t e t e tw
U W q U

ρ ρ
ρ α αβ β +

 
 = − ⋅ +  

 
(17)

s.t. 
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where the spill function is given by equation (16).

                                                                                                                                                                                                                            
maximize statewide net willingness-to-pay of urban consumers and agricultural producers for additional water.
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3.2 Solving the model

 The SDP solution and Value Iteration process

The state variable (reservoir storage) is discretized in eight points from 0.987 MAF to 2.861

MAF. We use a 6th-order Chebyshev orthogonal polynomial approximation of the value function6:

( ) ( )
5

0

ˆ ˆ ,  whereS= (S)C i i
i

V S a T S
=

= ⋅∑ M .
(19)

The Chebyshev polynomial coefficients ia  5,,1 …=i  are iteratively computed using the Chebyshev

regression algorithm, and (S)M  is a mapping of S onto the [–1, –1] interval, Judd (1998). For each

possible value of the discount factor and inter-temporal substitution preferences of decision-maker, the

SDP program is first solved with some initial values for Chebyshev polynomial coefficients. The

resulting SDP solution allows us to compute new ia ’s. If the resulting coefficients differ from those in

the previous step, the SDP is re-solved with new Chebyshev coefficients. The program ends once

quasi-stabilization of ia ’s is achieved. For details of the solution method and its implementation using

Gams, see Howitt et al (2002).

Figure 2:  Parameter Calibration Surface
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6 Provencher and Bishop (1997), in a different context, also use such a polynomial approximation of the value function.
They nest the dynamic programming approach with a maximum of likelihood procedure.
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Positive calibration of parameters
The next step of the analysis consists of selecting the set of discount factor and resistance to

inter-temporal substitution parameters, conditional on risk aversion, that best fit the historic

realizations of the decision-maker. Figure 2 gives the sum of squared prediction errors7 for a risk

aversion parameter = 1 (risk neutral) , as a function of the two other parameters. For simplicity, the

ordinate in Figure 2 is the negative of the sum of squared prediction errors. The higher the ordinate,

the smaller the sum of squared prediction errors. The unique minimum sum of squared error is

achieved for at ρ = -9 and β  = 0.645. This corresponds to an EIS equal to 0.1 and a subjective discount

rate of 55%. These values are admissible but extreme. Moreover, as shown in Figure 2, the sum of

square errors is influenced much more by the intertemporal substitution preferences than by the

discount factor. For a given value of either ρ or β , the sum of squares is a concave function of the

other parameter. However the MSE measure hardly changes when the risk aversion parameter is

changed over the range of 1 to –1. This is consistent with the results reported by Peltola and Knapp

(2001)

To evaluate the quality of fit of the SDP, we simulate the optimal predicted releases and

storage for Oroville Lake Reservoir under two scenarios. The first simulation is the calibrated SDP

with the intertemporal substitution parameter ( ρ = –9.0 ) set at the value that minimizes the mean

squared error, while the discount factor ( β  ) and the risk aversion parameter ( α ) are set to 0.893 and

–1, respectively. While these are not the values of α  and β  that minimize the mean squared error,

they are very close, and conform more closely to parameter values that are more commonly observed

in the literature. These parameter values imply mild risk aversion and a subjective discount rate of

utility of 12.5%.

The second simulation has the same discount rate (β  = 0.893), while the risk aversion and

substitution parameters are set such that α = ρ = 1. These values result in a risk neutral objective

function that simply maximizes the expected net present value ( ENPV ) from operating the reservoir.

The results for these two simulations are compared for water releases (the control variable), and

storage (the state variable) with the observed releases and storage. Both the releases and storage show

significant differences in the average prediction error between the calibrated preferences and the risk

neutral ENPV specifications.  Figure 3 presents the results of the two policy simulations plotted with

                                                                

7The sum of prediction square errors is equal to [ ]∑
=

∗ −
1996

1974

20),(
t

tt ww ρβ  where 0
tw  is the observed water release from

Oroville Lake Reservoir at time t and ),( ρβ∗
tw  is the optimal release predicted by the model
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the observed levels for reservoir releases. It shows the optimal releases that result from solving the

annual optimization problem under the two sets of alternative parameters. The average absolute

percent error differs substantially between the runs. The ENPV objective has an average error of

23.13%, while the calibrated solutions with a substitution parameter ( ρ = –9 ) and risk aversion ( α =

–1 ) reduces the error by thirty seven percent to an average error of 14.51 %.

The ENPV objective function run over-shoots the turning points both on high and low releases,

as one would expect due to the absence of a precautionary cost incorporated into the calibrated

simulation. For example, in 1984 when actual releases were 4.30 MAF the calibrated model predicts

3.71 MAF while the ENPV model predicts 5.58 MAF. The equivalent storage results (Figure 4) show

that this high release by the ENPV model drew the storage level down to its lower limit of 0.987 MAF

at the end of 1984, while the calibrated model carried over two and a half times as much at 2.86 MAF.

The actual storage level was 2.67 MAF. In the following year (1985) the storage under ENPV was

again at its lower bound.  Due to the lower inflow that year, the ENPV releases are forced to be lower

that year than the calibrated run ( 2.27 MAF vs 3.12 MAF), and the actual releases which were 2.80

MAF. This shows that ignoring intertemporal preferences causes the ENPV model to both over and

under shoot the observed releases.

Figure 3: Simulation of Water Releases
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In other years, the prediction precision of both models is influenced by the spill equation (16).

In 1986, both models overshot the actual release of 3.75 MAF with the calibrated model at 5.04 MAF

and the ENPV model at 5.93 MAF.  The difference is due to the high level of spills of 2.10 MAF, the

second highest level from 1974 to 1996. This level was not accurately captured by the spill model

which predicted 0.90 MAF using equation (16).

Figure 4: Simulation of Storage
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The quantitative differences between the simulations are even more marked in water storage

behavior, where the ENPV solution hits the lower bound of reservoir capacity in 18 out of 23 years, in

contrast to the calibrated simulation which tracks the observed storage levels fairly closely, hitting the

lower bound once, and the upper bound thirteen times. The average storage error for the calibrated

model is 12.14%, while the ENPV model has an average error of 41.17%.  Significantly, the calibrated

model correctly simulates nearly all of the major turning points (1977, 1984, 1985, 1993 and 1994).
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Without the lower bound constraint on storage, both the releases and storage would have fluctuated

more wildly under the ENPV preference model.

3.3 Using the SDP as a policy tool

This last section shows how the calibrated SDP framework can be used as a policy-oriented

tool. There are several ways in which the model can lead to a better understanding of the optimal

policy rule.

Figure 5: Optimal water release policy
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First, the SDP solution defines the optimal policy rule for the decision-makers. The response

surface gives the optimal policy for the current operating environment known to the decision-maker,

namely, storage level constraints, the uncertainty of inflows and the level of demands. For example,

given the net benefit function (15) and the conditional distribution for the inflow from the rest of the

system (13), Figure 5 gives the optimal water release as a function of the initial water storage and the

local inflow realization. The level of storage in the reservoir seems to have a greater effect on the

optimal release than the level of inflow. The shape of the surface is steeper as a function of initial
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storage than as a function of local inflow. This is not at all surprising, given that a good portion of

high inflow levels results in spillage, as they can neither be consumed nor stored.

Second, given that the calibrated parameters (subjective discount factor, constant relative risk

aversion and constant resistance to intertemporal substitution) reflect the characteristics of the

decision-maker, these parameters can be used to define the optimal policy in a marginally modified

operating environment, such as a small exogenous shock affecting the water demand, or a change in

the reservoir flood control limit. For example, let us assume that the maximum storage increases from

the observed level 2.861 MAF to 3.5 MAF. Given the calibrated risk and intertemporal substitution

preferences of the decision-maker (ρ  = –9.0, α  = –1, and β  = 0.893), we can estimate the value

function corresponding to these new parameter values and simulate the new optimal reservoir

management policy over time. The simulation results are presented in Table 2 where we also compute

the annual net benefits from water release and from the rest of the network inflow.

Table 2: Simulation of optimal policy, calibrated case
Year Maximum Storage 2.86 MAF Maximum Storage 3.5 MAF Profit

Release
MAF

Storage
MAF

Profit* Release
MAF

Storage
MAF

Profit* Change
%

1974 6.00 2.86 3.62 5.46 3.50 3.58 -1.14
1975 4.38 2.86 2.79 4.38 3.50 2.79 0.00
1976 2.57 1.62 1.40 2.89 1.93 1.44 2.82
1977 1.64 0.99 0.89 1.96 0.99 0.93 4.75
1978 2.85 2.86 2.71 2.74 3.05 2.70 -0.40
1979 3.09 2.74 2.12 3.16 2.88 2.13 0.38
1980 4.36 2.86 2.96 3.92 3.50 2.92 -1.34
1981 3.98 2.86 2.18 3.98 3.50 2.18 0.00
1982 6.43 2.86 4.14 6.43 3.50 4.14 0.00
1983 8.30 2.86 4.69 8.30 3.50 4.69 0.00
1984 3.71 2.86 1.78 3.71 3.50 1.78 0.00
1985 2.90 2.14 2.70 3.17 2.50 2.72 0.98
1986 5.04 2.86 3.39 4.80 3.50 3.37 -0.57
1987 2.80 1.98 1.69 3.10 2.31 1.73 2.07
1988 2.26 1.38 1.54 2.44 1.55 1.56 1.41
1989 2.55 2.00 1.90 2.65 2.10 1.91 0.59
1990 2.27 1.39 1.39 2.34 1.44 1.40 0.59
1991 2.01 1.15 1.27 2.06 1.18 1.28 0.46
1992 1.89 1.04 1.30 1.93 1.06 1.31 0.36
1993 3.42 2.86 2.75 2.87 3.50 2.70 -1.87
1994 2.65 1.75 1.48 2.97 2.06 1.52 2.60
1995 6.91 2.86 3.82 6.66 3.50 3.80 -0.48
1996 6.23 2.86 3.40 6.23 3.50 3.40 0.00
Mean 3.84 2.28 2.43 3.83 2.68 2.43 0.49
Std. Dev. 1.83 0.72 1.05 1.72 0.94 1.03 1.47
* Profit: profits (in  billion $)  current value.
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Table 2 shows that increasing the maximum storage limit from 2.86 MAF to 3.5 MAF

(+23.7%) results in an average increase in the annual benefits that is less than 0.5%. The direct gains

to be expected from an increase of the reservoir capacity are likely to be small. However, a risk-averse

decision-maker will consider two other positive effects resulting from the reservoir capacity

expansion. The first effect is the reduction of water release variability. The increase in the maximum

storage limit allows additional smoothing of water consumption from year to year. The standard

deviation of water releases is, on average, reduced from 1.83 to 1.72. This reduction of release

variability results from the increase in average water storage levels from 2.28 to 2.68 MAF. This

reduction in variability is valued by risk-averse decision-makers. Second, for a correct financial

assessment of a discrete project such as this, it is important to know the distribution of the gains from

reservoir expansion as well as the average benefit. In this example the average benefit increase

corresponds to 0.5% but the stochastic realizations show that the benefits vary with a maximum

change as high as 4.82%. Of course high levels of profits occur after drought years when water storage

levels are low and the additional storage capacity is most useful.

We have run the same policy simulations in the case where the decision-maker maximizes the

expected net present value. Complete results are available from the authors upon request. As expected,

maximizing the expected net present value results in a less conservative management of the resource.

The average storage of water goes down from 2.28 with calibrated parameters to 1.23 MAF (for a dam

capacity equal to 2.86 MAF). Both average current profits and water releases increase. For a dam

capacity equal to 3.5 MAF, they are respectively to $2.445 billion and a mean release of 4.01 MAF .

Notice that to get these higher yields, the decision-maker has to accept a higher level of uncertainty.

The standard deviation of releases and current profits are higher than in the calibrated case (2.17

versus 1.72 for releases and 1.08 versus 1.03 for profits).

The measure of the net benefit gains from the simulation results could be used in traditional

cost / benefit analysis based on a single measure of expected net benefits from the reservoir expansion.

However, using the stochastic properties and higher moments of the benefit stream enables

comparison using more sophisticated financial instruments. The same type of computation could be

done for any other parameter changes, such as a change in minimum storage, or a change in the

distribution of inflows due to environmental restrictions on river operations.
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4. Conclusion

The calibration of risk and substitution parameters add a positive component to the SDP

approach that should help to reassure decision makers that their preferences are being incorporated

into the basic model. In addition, the calibration process improves the fit of the model to historic data.

The resulting model is more likely to be accepted as a policy tool than results from normative

optimization. In addition, the empirical solution of the model uses the standard GAMS optimization

routine, which means that the method is easily applied to different resource policy problems.

We have applied the calibrated SDP framework to model the management of Oroville

Reservoir in California. The results show that inter-temporal substitution preferences have a

significant impact on optimal policies and are more critical than the level of risk aversion or the

discount factor. These empirical results underscore the importance of using a more general

specification of inter-temporal preferences, such as recursive utility, in the objective function rather

than relying solely on risk aversion to explain observed dynamic behavior under uncertainty.

References

BELLMAN, R. (1961): “Adaptive Control Processes: A Guided Tour”, Princeton University Press.

BERTSEKAS, D.P. (1976): “Dynamic Programming and Stochastic Control”, Academic Press, New

York.

BURT, O., and J.R. ALLISON (1963): “Farm Management Decisions with Dynamic

Programming,” Journal of Farm Economics, 45(1): 1-22.

CALIFORNIA DEPARTMENT OF WATER RESOURCES (1974-96): “State Water Project

Annual Report of Operations, ” edited by the State of California.

EPSTEIN, L.G., and S.E. ZIN (1989): “Substitution, risk aversion and the temporal behavior of

consumption and asset returns: A theoretical framework,” Econometrica, 57(July), 937-969.

EPSTEIN, L.G., and S.E. ZIN (1991): “Substitution, risk aversion and the temporal behavior of

consumption and asset returns: An empirical analysis. Journal of Political Economy 99(April), 263-

286.

EPSTEIN, L.G. (1992): “Behavior Under Risk: Recent Developments in Theory and Applications,”

in Advance in Economic Theory, Vol II, edited by Jean-Jacques Laffont. Cambridge: Cambridge

University Press, 1-63.



22

FULTON, M., and L. KARP (1989): “Estimating the Objectives of a Public Firm in a Natural

Resource Industry,” Journal of Environmental Economics and Management, 16, 268-287.

HA-DONG, M. and N. TREICH (2000): “Recursive Intergenerational Utility in Global Climate Risk

Modeling, ” Working paper LEERNA-INRA. University of Toulouse 1.

HALL, R.E. (1988): “Intertemporal Substitution in Consumption,” Journal of Political Economy,

96(April), 339-357.

HOWITT, R.E., S. MSANGI, A. REYNAUD, and K.C. KNAPP (2002):“Using Polynomial

Approximations to Solve Stochastic Dynamic Programming Problems”. Working Paper, Department

of Agricultural & Resource Economics, University of California, Davis.

JENKINS, M.W., et al. (2001): “Improving California Water Management: Optimizing Value and

Flexibility”, Center of Environmental and Water Engineering, Report No 01-1, University of

California, Davis

JUDD, K.L. (1998): “Numerical Methods in Economics,” M.I.T Press. Cambridge.

KEANE, M.P., and K.I. WOLPIN (1994): “The Solution and Estimation of Discrete Choice

Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence,” The Review

of Economics and Statistics, 76(Nov.) 648-672.

KING, R., C. PLOSSER & S. REBELO (1988): "Production Growth and Business

Cycles I: The Basic Neoclassical Model," Journal of Monetary Economics, 21: 195-232.

KNAPP, K.C. and L.J. OLSON (1995): “The Economics of Conjunctive Groundwater management

with Stochastic Surface Supplies,” Journal of Environmental Economics and Management, 28(May),

340-356.

KNAPP, K.C. and L.J. OLSON (1996): “Dynamic Resource Management: Intertemporal

Substitution and Risk Aversion,” American Journal of Agricultural Economics, 78(November), 1004-

1014.

KOOPMANS, T.C. (1960): “Stationary Ordinal Utility and Impatience,” Econometrica, 28(April),

287-309.

KRAUTKRAMER, J.A., G.C VAN KOOTEN, and D.L. YOUNG (1992): “Incorporating Risk

Aversion into Dynamic Programming Models,” American Journal of Agricultural Economics,

74(November), 870-878.

KREPS, D.M. and E.L. PORTEUS (1978): “Temporal Resolution of Uncertainty and Dynamic

Choice Theory,” Econometrica, 28(January) 185-200.

KYDLAND, F.E. &  E.C. PRESCOTT (1991): “ The Econometrics of the General Equilibrium

Approach to Business Cycles, “ Scandinavian Journal of Economics, 93 (2):161-178.



23

LENCE, S.H. (2000): “Using Consumption and Asset Return Data to Estimate Farmers’ Time

Preferences and Risk Attitudes,” American Journal of Agricultural Economics, 82(4): 934-947.

MIRANDA, M.J., and G.D. SCHNITKEY (1995): “An Empirical Model of Asset Replacement in

Dairy Production,” Journal of Applied Econometrics, 10(Dec, Special Issue):S41-S55.

NORMANDIN, M., and P. SAINT-AMOUR (1998) “Substitution, Risk Aversion, Taste Shocks and

Equity Premia,” Journal of Applied Econometrics, 13(3), 265-291.

PELTOLA, J, and K.C. KNAPP (2001): “ Recursive Preferences in Forest Management,” Forest

Science, Vol 47, 5: November 2001, 455-465.

PROVENCHER , B, and R.C. BISHOP (1997): “Estimable Dynamic Model of Recreation Behavior

with an Appication to Great Lakes Angling”,  Journal of Environmental Economics and Management,

33, 107-127.

PROVENCHER , B. (1995): “Structural Estimation of the Stochastic Dynamic Decision Problems of

Resource Users: An Application to the Timber Harvest Decision”,  Journal of Environmental

Economics and Management, (29): 321-338.

RUST, J. (1994): “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher,” Econometrica, 55(Sep.) 999-1033.

WEIL, P. (1990): “Non-Expected Utility in Macroeconomics,” Quarterly Journal of Economics,

105(February), 29-42.


