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Composed Error Model for Insect Damage Functions and 
Rotation Resistant Western Corn Rootworm in Illinois 

 
 

Abstract 

This paper describes a composed error model for estimating the conditional 

distribution of yield loss to serve as an insect damage function.  The two-part error 

separates yield variability due to pest damage from other non-pest factors such as soil 

heterogeneity, non-uniform application of agronomic practices, and measurement errors.  

Various common functional forms (linear, quadratic, Cobb-Douglas, negative 

exponential, hyperbolic, sigmoid) for the pest damage function are presented and 

parameter estimation is described. 

As an empirical illustration, the model is used to estimate a damage function for 

corn rootworm, the most damaging insect pest of corn in the United States.  The 

estimated damage function gives expected proportional yield loss as a function of the root 

rating difference and is used to estimate yield loss due to rotation resistant western corn 

rootworm in east-central Illinois.  The estimated average yield loss is 11.6%, more than 

enough to cover the cost of a soil insecticide application.  However, tremendous 

variability in actual loss exists, so that the probability that actual loss is less than the cost 

of a soil insecticide ranges 32-45%, depending on the assumed yield and price.  As a 

result, IPM methods potentially have great value, since they can eliminate uneconomical 

soil insecticide applications.   

 
Keywords: integrated pest management, Monte Carlo integration, root rating, rotation 

resistance, soil insecticide. 
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A common problem when using experimental plot data to estimate insect damage 

functions is the occurrence of “negative losses.”  For example, a field experiment 

evaluating a new insecticide may find that the average crop yield for the treated plots 

exceeds the average yield on the untreated control plots, and that the yield difference is 

statistically significant.  However, for some replicates within the same block, the yield for 

the untreated control plot exceeds the yield for the plot treated with an insecticide.  If the 

pest is truly damaging, then the yield on a treated plot should always exceed the yield on 

an untreated plot under equivalent conditions.  However, fields are not homogenous.  Soil 

characteristics vary, tillage and nutrient applications are not uniform, yields are measured 

with error, and the experimental treatments are applied with error.  Randomization and 

replication are used to prevent systematic biases so that valid statistical inferences can be 

made from the collected data.  Assuming proper experimental design, the usual method 

of analysis is to conduct ANOVA to determine if the difference in mean yields for the 

treated and untreated plots is statistically significant.   

For many types of economic analysis, determining whether a pest control 

treatment generates a statistically significant yield increase is insufficient.  For example, 

the magnitude of the increase and how it varies with measurable factors such as pest 

populations is needed for determining an action threshold for integrated pest management 

(IPM).  Similarly, the variance of the yield impact of a pest control treatment quantifies 

the consistency of the treatment and the risk associated with its use.  In these cases, the 

distribution of the yield difference conditional on observable factors such as the pest 

population or damage measures is needed.  The conditional mean of this distribution can 
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serve as an insect damage function, while the variance of the conditional distribution can 

be used for analyzing the risk associated with the insect pest or its control.   

Unfortunately, yield variability due to soil heterogeneity, the non-uniformity of 

tillage, nutrient and pesticide applications, and yield measurement error is confounded 

with yield variability due to the treatment.  As a result, assuming all the observed yield 

variability is due to the pest or the treatment effect over estimates the impact of the pest 

or the treatment on yield variability.  What is needed is a statistical technique that 

separately identifies the effect of the pest or the treatment on yield and the effect of these 

other non-pest factors on yield.   

This paper presents a model to separately estimate yield variability due to these 

two sources.  The model is for data from replicated plot experiments that use randomized 

complete block with split plot treatments to evaluate a pest control treatment such as an 

insecticide, the most common experimental design for such evaluations.  The estimated 

conditional distribution for yield loss is an insect damage function and characterizes the 

yield risk due to insect damage.  The model uses a composed error that separates 

observed yield variability into two components: (1) a mean-zero normal error to capture 

yield variability due to soil heterogeneity, non-uniformity of agronomic practices, 

measurement errors, and similar factors and (2) a strictly positive error to capture yield 

variability due to pest damage.  Characteristics of various useful forms of the model are 

presented and parameter estimation is described.  As an empirical illustration, the 

composed error model is used to estimate a damage function for corn rootworm, a group 

of related insect species that are the most damaging insect pest of corn in the United 

States.  Using data from the experiments of Gray and Steffey, the estimated damage 
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function is used to estimate expected yield loss due to rotation resistant western corn 

rootworm in east-central Illinois.   

 
Composed Error Model 

Let Yc and Yt respectively denote the measured yield on the control plot and the 

treated plot.  Each treated plot receives a pest control treatment such as an insecticide that 

reduces or eliminates the pest population.  The control plot paired with each treated plot 

receives no pest control treatment and so should suffer more pest damage than the treated 

plot.  Define λ as proportional yield loss due to pest damage:  

(1)  tct YYY /)( −=λ .   

If the control yield exceeds the treated yield, λ is negative, while the opposite is true if 

the treated yield exceeds the control yield.   

The composed error model uses two independent errors, a normal (Gaussian) 

error ε and a strictly positive error δ.  Specifically, the model assumes 

(2)  ))(exp(1 εδλ +−−= . 

The normal error ε has a zero mean and variance σ2, while δ has an exponential 

distribution with mean θ.  This specification ensures that 1<<∞− λ , which is the range 

consistent with the definition of λ in equation (1).  Maximum loss occurs if Yc = 0 and Yt 

> 0, when equation (1) gives λ = 1.  The other extreme occurs if the treated plot 

completely fails and Yc > 0 and Yt = 0, when equation (1) gives λ = –∞. 

For notation, define εδ +=y .  Meeusen and van Den Broeck report the 

probability density function for a random variable such as y.  From their specification, the 

appendix derives an alternative expression for g(y), the probability density function of y:  
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−  (see appendix).  Figure 1 plots the probability density function h(λ) for a 

variety of parameter values to illustrate the ability of the composed error model to capture 

a wide range of shapes for the distribution of proportional losses, from relatively 

symmetric to highly skewed in either direction.  Maximum likelihood can be used to 

estimate θ and σ and their standard errors, then the results used to test whether the 

expected proportional yield gain due to the treatment is zero ( 0=λµ ).  

 
Conditional Models 

Often the goal of field experiments is not to determine whether a treatment has a 

significant yield effect.  For example, to develop an IPM action threshold, pest 

populations are measured in order to predict when yield loss will be sufficient to justify 

the expense of a pest control.  Alternatively, the goal may be to assess damage ex post in 

order to determine when economic yield loss has occurred.  Both cases require estimating 
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λµ  as a function of an observed x, where x is some measure of the pest population or a 

damage assessment signal. 

Maximum likelihood is useful for estimating this type of conditional model.  For 

models presented here, assume that the treatment does not affect σ, the variance 

parameter of the normal error.  Estimation first requires specifying a function θ = q(x) to 

describe how θ depends on x, then substituting this θ = q(x) into equation (4) to obtain the 

likelihood function in terms of x.  Maximum likelihood can then be used to estimate σ 

and the parameters of q(x).  In the empirical section, several commonly desired functional 

forms for the damage function are derived and estimated to illustrate.   

 
Purged Models 

After estimating σ and θ, or a conditional model with )(xq=θ , it is often 

desirable to drop the variability in yield loss due to the ε error and focus solely on 

variability due to the pest.  For example, if the goal is to determine yield variance due to a 

specific pest, or the impact of pest control on yield variance.  We term these “purged 

models,” since yield loss has been purged of any dependence on non-pest factors 

captured by the ε error and only depends on the pest effect as captured by the δ error.  To 

differentiate between the full and purged models, use λ~ for proportional yield loss with 

the purged model, where )exp(1~ δλ −−= .   

The purged model first requires estimating the full model λ = ))(exp(1 εδ +−− , 

then setting σ = 0 to purge the variability in yield loss of dependence on the non-pest 

factors associated with the ε error and using only the estimated θ or parameters of θ = 

q(x).  The probability density function for λ~  is  
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for 1~0 ≤≤ λ , and 0 otherwise (see appendix).  The cumulative distribution function is  

(6)  θλλ /1)~1(1)~( −−=H . 

Note that θ = q(x) in both equations if applicable.  Once purged of non-pest factors, pest 

damage logically cannot exceed 100%, or be negative, a range consistent with the range 

1~0 ≤≤ λ  imposed by the purged model.  The mean and variance are 
θ

θµλ +
=

1
~  and 

)21()1( 2

2
2
~

θθ
θσ λ ++

=  (see appendix).  Figure 2 plots the probability density function for 

a variety of parameter values to illustrate the range of possible shapes.   

 
Corn Rootworm Damage Function 

To illustrate the composed error model, a conditional distribution for proportional 

yield loss is estimated and used as a corn rootworm pest damage function.  Corn 

rootworm is a complex of related species that is the most damaging insect pest of corn in 

the United States.  Yield losses and control costs have been estimated to exceed $1 billion 

annually (Metcalf).  Generally, the most problematic species in the complex are the 

western corn rootworm (Diabrotica virgifera virgifera) and the northern corn rootworm 

(Diabrotica barberi), but in some areas the southern corn rootworm (Diabrotica 

undecimpunctata howardi) and the Mexican corn rootworm (Diabrotica virgifera zeae) 

are more damaging.  Corn rootworm adult females lay eggs in the summer.  These eggs 

hatch the next spring and the larvae feed on the roots of corn plants.  These larvae pupate 

and emerge as adults from the soil in late summer, then mate and lay eggs.   
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Larval feeding damage results in direct yield loss and makes corn plants more 

likely to lodge and suffer additional yield loss.  Because corn rootworm larvae feed 

almost exclusively on corn roots, females generally lay eggs in existing corn fields.  As a 

result, crop rotations with a single year of corn are a widely used control strategy, since 

eggs laid in a corn field during the summer will hatch in field planted to a non-corn crop 

the next spring.  For continuous or multi-year corn rotations, soil insecticides applied at 

plant are the most common control strategy in the central and eastern Corn Belt.   

In recent years, yield losses and control costs have been increasing because of the 

development and spread of rotation resistance among western corn rootworm (Levine and 

Oloumi-Sadeghi).  Adult females of rotation resistant western corn rootworm lay eggs 

not only in corn, but also in other crops.  As a result, in areas where a corn-soybean 

rotation is common, eggs laid in soybean fields hatch in a corn field the next spring.  The 

emerging adults mate and increase the genes responsible for this alternative egg-laying 

behavior among the population.  Rotation resistance first appeared in east-central Illinois 

and has spread eastward into Indiana, Michigan and Ohio (Onstad et al.).   

Because hundreds of corn rootworm larvae can infest a single plant and root 

feeding occurs underground, accurately measuring larval populations is difficult.  As a 

result, corn rootworm larval damage is usually assessed by a root rating, after larvae have 

pupated and emerged as adults.  The root rating is a measure of corn root damage based 

on the number of corn root nodes exhibiting feeding scars or completely destroyed by 

corn rootworm larval feeding.  Though other root rating scales exist, the most widely 

used is the 1 to 6 scale of Hills and Peters, in which 1 indicates no corn rootworm feeding 

damage and 6 indicates three or more root nodes completely destroyed.   
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The composed error model is applied to estimate a corn rootworm damage 

function for use in estimating the annual expected yield loss due to corn rootworm in 

first-year corn in east-central Illinois, where rotation resistance originated.  Data from 

experiments comparing yields and root ratings for plots treated with soil insecticide and 

untreated control plots are used for the estimation.  The probability density function for 

proportional yield loss is estimated conditional on the difference in root ratings between 

the soil-insecticide treated and untreated plots.  Field data collected in east-central Illinois 

concerning root ratings in untreated first-year corn are then used to determine the 

unconditional distribution of the root rating difference and thus the expected proportional 

yield loss due to rotation resistant western corn rootworm.   

 
Conditional Distribution of Proportional Yield Loss 

Three years (1994-1996) of data from experiments conducted in near Urbana, 

Illinois were used for estimation (Gray and Steffey).  Whole plot treatments were 12 

commonly grown hybrids.  Sub-plot treatments were 2 rows treated with the soil 

insecticide Counter® (terbufos) and 2 untreated rows.  Depending on the year and 

location, 8-10 replicates for each hybrid were planted.  Collected data included machine-

harvested yield and the average root rating for five plants, using the 1-6 scale of Hills and 

Peters.  Only data with treated and untreated yields and root ratings for both sub-plots 

were used, so that both the root rating difference and proportional yield loss could be 

calculated.  The final result was 330 observations of the soil insecticide yield (Yt) and 

average root rating (Rt) and the untreated control yield (Yc) and average root rating (Rc).  

Proportional yield loss λ is calculated via equation (1) and the root rating difference x is 

calculated as tc RRx −= .  Table 1 summarizes the data used for estimation. 
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Several common functional forms for expected proportional loss conditional on 

the root rating difference were estimated, i.e. =]|E[ xλ )(xλµ .  A zero intercept was 

imposed so that plots with equal root ratings have the same expected yield.  Note that a 

zero intercept may not be desired for all applications.  Table 2 reports the required 

functions θ = q(x) for several functional forms for )(~ xλµ .  For notation, )5.0exp( 2σω =  

and α and β be parameters to estimate.  For the purged model, σ = 0, so that ω = 1.  

Model names in Table 2 describe the functional form of )(~ xλµ  for the purged model, not 

the conditional mean )(xλµ  of the full model or of q(x).  

Table 3 reports maximum likelihood parameter estimates and standard errors, as 

well as goodness of fit and model selection measures, for each model.  The adjusted R2 

and root mean square error (RMSE) were calculated using )(xλµ , the conditional mean 

of the full model, since the data were fit to this mean.  The adjusted R2 and RMSE 

support the linear model, while the Likelihood Dominance Criterion (Pollack and Wales) 

and Akaike’s Information Criterion (AIC) support the Cobb-Douglas model.  Given these 

mixed results, we selected the linear model since it is both parsimonious in terms of the 

number of parameters and gives the best fit.  Figure 3 illustrates the fit and indicates why 

the adjusted R2 and RMSE are low for all models.  The data show tremendous variation 

in proportional yield loss for the same root rating difference, so that no univariate model 

can provide a good fit. 

The conditional mean of the purged model, )(~ xλµ , is appropriate for a corn 

rootworm damage function, since only yield variability due to corn rootworm is pertinent. 

As a result, proportional yield loss follows the probability density reported in equation 
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(5), where θ = q(x) as reported in Table 2, with parameters as reported in Table 3.  Thus 

mean proportional yield loss is xx 114.0)(~ =λµ  for the linear model.  The cumulative 

distribution given by equation (6) allows calculation of a 95% confidence interval around 

the purged model’s predicted mean.  

 
Empirical Application 

Conditional Distribution of the Root Rating Difference 

The Gray and Steffey data were used to estimate the probability density function 

for the root rating difference conditional on the untreated root rating.  The root rating 

difference has upper and lower limits.  When the untreated root rating is 6 and the soil 

insecticide treated root rating is 1, the root rating difference reaches its maximum of 5.  

The minimum of zero occurs when the two root ratings are equal, assuming that the 

untreated root rating must equal or exceed the treated root rating.  The minimum and 

maximum in the data are 0.2 and 4.0 respectively.   

Given the existence of upper and lower limits, a conditional beta distribution is 

assumed.  Plots indicated a linear or quadratic relationship between the mean root rating 

difference and the untreated root rating with a constant standard deviation.  A zero 

intercept was imposed, so that no root rating difference is expected when the untreated 

root rating indicates no corn rootworm damage.  The lower and upper limits of the 

distribution were fixed at 0.0 and 5.0.  Specific models for the linear and quadratic means 

are )1()( 1 −= ccx RrRµ  and +−= )1()( 1 ccx RrRµ 2
2 )1( −cRr , with constant standard 

deviation xσ .   
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The standard beta density with parameters ν and γ has mean )/( γννµ +=x  and 

variance )]1()/[( 22 +++= γνγννγσ x .  Solving these equations for ν and γ gives 

xxxx µσµµν −−= ]/)1([ 22  and )1(]/)1([ 22
xxxx µσµµγ −−−= .  Substituting the linear or 

quadratic equation for µx into these gives the density function in terms of σx, r1, and r2 so 

that maximum likelihood can be used to estimate these parameters.  Table 4 reports 

parameter estimates and standard errors for both models.  Because all reported goodness 

of fit and model selection measures support the quadratic model, the quadratic model is 

used for this analysis.  Figure 4 illustrates the fit.  

 
Unconditional Distribution of the Untreated Root Rating 

The experiments conducted by Gray and Steffey used late-planted corn the 

previous season as a trap crop to ensure high corn rootworm larval populations.  As a 

result, their data for the untreated root rating are not indicative of the unconditional 

distribution of the untreated root rating in first-year corn.  O’Neal et al. report monitoring 

data from first-year corn fields of several cooperating farmers in different counties in 

east-central Illinois for 1996-1999.  Collected data included the average and standard 

deviation of the root rating in several untreated fields.  These root rating data indicate the 

natural pressure from rotation resistant western corn rootworm laying eggs in soybeans.   

Table 5, adapted from O’Neal et al. Table 1, reports the mean and standard 

deviation of the untreated root rating each season.  Because a root rating must range 1 to 

6, the beta density is an appropriate choice for the unconditional distribution for the 

untreated root rating in first-year corn.  First, the reported means and standard deviations 

are rescaled to the standard beta density range of 0 to 1.  For the mean, rescaling requires 
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subtracting the minimum of 1 and dividing by the range of 6 – 1 = 5, and for the standard 

deviation, rescaling requires dividing by the range of 5.  Table 5 reports the ν and γ for 

the standard beta density consistent with the rescaled means and standard deviations for 

each year, using the equations for ν and γ as functions of the mean µ and variance 2σ .  

For notation, denote the implied rescaled untreated root rating as 5/)1(~ −= cc RR .  

Assuming that the rescaled untreated root rating follows a beta density with a ν 

and γ equal to the average ν and γ reported in Table 5 would underestimate its actual 

variability.  As a result, a hierarchical model is specified, in which the parameters ν and γ 

follow a bivariate normal distribution with means and variance-covariance matrix as 

reported in Table 5.  

 
Empirical Results 

For the specified model, the unconditional expected value of proportional yield 

loss is E[λ] = αE[x] and E[x] = 5.0(r1(E[ cR ] – 1) + r2(E[ 2
cR ] – 2E[ cR ] + 1)).  However, 

calculating E[ cR ] = E[ )/( γνν + ] and E[ 2
cR ], where ν and γ follow a bivariate normal 

distribution, is analytically intractable.  As a result, Monte Carlo integration (Greene p. 

192-195) is used to estimate E[ cR ] and E[ 2
cR ].  Similarly, the unconditional variance of 

proportional yield loss is Var[λ] = α2Var[x].  However, the unconditional Var[x] is not 

the 2
xσ  reported in Table 4, since σx was estimated conditional on Rc.  As a result, Monte 

Carlo methods are also used to estimate the unconditional Var[x] and obtain a 95% 

confidence interval for λ.   
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A C++ program using algorithms reported in Press et al. and Cheng drew random 

variables from the bivariate normal and beta distributions.  First 5,000 draws of ν and γ 

from the bivariate normal distribution were obtained, then for each pair, 5,000 draws of 

the scaled untreated root rating cR~  from the beta distribution were obtained, for a total of 

25 million draws.  Each cR~  was then transformed to Rc by multiplying by 5 and adding 1.  

The average of these Rc and the squared Rc is the Monte Carlo integral estimate of E[Rc] 

and E[ 2
cR ] respectively.   

To estimate Var[λ] and obtain a 95% confidence interval required further Monte 

Carlo draws of the root rating difference x and proportional yield loss λ.  Each Rc was 

used to parameterize the beta density and draw a root rating difference x.  By inverting 

the cumulative distribution for the purged model and using the Inverse Transform 

Method (Cheng), a random draw for λ is λ = θ)1(1 u−− , where u is a uniform random 

variable and )1/( xx ααθ −= .  The equation for θ is derived from the reported equation in 

Table 3 for the linear model, but for the purged form of the model with ω = 1, since σ2 = 

0.  The average of these λ and λ2 is a Monte Carlo estimate of E[λ] and E[λ2], so that the 

Monte Carlo estimate of Var[λ] = E[λ2] – E[λ]2.  Similarly, the lower 2.5% and upper 

97.5% quantiles are Monte Carlo estimates of the 95% confidence interval.   

Table 6 reports all Monte Carlo estimates, as well as the correct values for those 

that can be determined analytically.  The unconditional expected proportional yield loss 

due to rotation resistant corn rootworm in untreated first-year corn in east-central Illinois 

is 0.116.  The standard deviation is 0.125 and the lower and upper limits of the 95% 
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confidence interval are 0.00149 and 0.460 respectively.  These results indicate that not 

only is yield loss on average is quite substantial, but also quite variable.   

Converting these proportional yield loss estimates into revenue loss requires using 

an expected yield and price and assuming that corn rootworm damage is independent of 

yield and price.  Table 7 reports the expected revenue loss, as well as the lower and upper 

limits of the 95% confidence interval, using parameter estimates in Table 6.  Estimates of 

the direct cost of purchasing and applying a soil insecticide for corn rootworm control 

typically range $12-$15/ac.  Thus, the estimated revenue loss is on average more than 

enough to cover the direct cost of a soil insecticide.   

The tremendous variability in the actual yield loss realized implies that though on 

average the direct cost will be covered, the probability that the cost will not be covered in 

a specific year on a specific field is substantial.  The last column in Table 7 reports Monte 

Carlo estimates of these probabilities for the different yield and price assumptions.  The 

revenue loss for each Monte Carlo draw of λ was calculated, then the losses were sorted 

and the cumulative probability for each loss determined empirically.  Table 7 reports the 

probabilities that revenue loss < $15/ac.   

In general the average losses in Table 7 indicate that farmers should be concerned 

about corn rootworm damage on first-year corn in east-central Illinois.  However, the 

probabilities that the loss is less than $15/ac in Table 7 are large and indicate that 

applying a soil insecticide on all first-year corn acres will quite often result in a revenue 

loss, since the cost of the soil insecticide will not be recovered.  As a result, an IPM 

method that measures the adult corn rootworm population or egg laying in soybean fields 

to be planted in corn the next season could be profitable if scouting costs are low and 
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provide reliable information.  As an example of such an IPM method, O’Neal et al. have 

developed an economic threshold using Pherocon AM traps to measure adult populations 

in soybean fields.  

 
Conclusion 

This paper describes a composed error model for use with experimental plot data 

to estimate a conditional distribution for yield loss to serve as an insect damage function.  

The model uses a two-part error to separate yield variability due to pest damage from 

other factors such as soil heterogeneity, non-uniform application of agronomic practices, 

and measurement errors.  Various functional forms for the pest damage function are 

presented for the conditional model and parameter estimation is described. 

As an empirical illustration, the composed error model is used to estimate a 

damage function for corn rootworm, the most damaging insect pest of corn in the United 

States.  Using data from the experiments of Gray and Steffey, the estimated damage 

function is used to estimate expected yield loss due to rotation resistant western corn 

rootworm in east-central Illinois.  The estimated average yield loss is 11.6%, which is 

more than enough to cover the cost of a soil insecticide application which typically 

ranges $12-$15/ac.  However, tremendous variability in actual loss exists, so that the 

probability that actual loss is less than $15/ac ranges 32-45%, depending on the assumed 

yield and price.  As a result, IPM practices such as described by O’Neal et al. potentially 

have value, since they can eliminate uneconomical soil insecticide applications.   

Various improvements or extensions of the composed error model are possible.  

The conditional models reported in Table 2 impose a zero intercept, so that the insect pest 

can only cause non-negative damage.  However, some experimental evidence indicates 
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that at low populations, some insect pests can actually increase yields by stimulating 

plant growth.  Similarly, the zero-intercept form of the composed error model prevents 

estimating any negative impacts that pest control may have, such as crop damage due to 

herbicide application or a “yield drag” due to a transgenic gene conferring herbicide or 

insect resistance.  As a result, some applications require models without a zero-intercept. 

Additionally, the composed error model specified here uses an exponential error 

to capture yield variability due to the pest.  The exponential error is quite restrictive in 

terms of the shape of the probability density function and has only one parameter.  As a 

result, estimating models with flexible relationships for both the conditional mean and 

conditional variance is difficult.  More flexible conditional models require a different 

error assumption for the pest effect, but deriving the associated composed error for the 

joint distribution of the errors can become difficult.  
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Table 1.  Summary statistics for proportional yield loss and root rating difference data 
from Gray and Steffey used for estimation.   

 
 

Variable 
 

Year 
 

Average 
Standard 
Deviation 

 
Minimum 

 
Maximum 

 
n 

 
n < 0 

Proportional 
Yield Loss 

1994 0.272 0.157 -0.163 0.808 115  5 

 1995 0.488 0.214 -0.363 0.850 113  2 

 1996 0.197 0.110 -0.123 0.585 102  2 

 Pooled 0.323 0.207 -0.363 0.850 330  9 

Root Rating 
Difference 

1994 2.76 0.53  0.8 4.0 115  0 

 1995 2.68 0.68  0.2 4.0 113  0 

 1996 2.03 0.52  0.6 3.2 102  0 

 Pooled 2.51 0.67  0.2 4.0 330  0 

 



 19 

Table 2.  Required functions θ = q(x) for the full model that give common functional 
forms for the conditional mean of proportional yield loss for the purged model.   

 
 
Functional Form 

Purged Model 
)(~ xλµ  

Full Model 
)(xλµ  

 
Required θ = q(x) 

Linear xα  ωαx  
ωα

ωαω
x

x
−

+−
1

1  

Quadratic 2xx βα +  ωβωα 2xx +  
ωβωα

ωβωαω
2

2

1
1

xx
xx

−−
++−  

Cobb-Douglas βαx  ωα βx  
ωα

ωαω
β

β

x
x

−
+−

1
1  

Negative Exponential ))exp(1( xβα −−  ωβα ))exp(1( x−−  
ωβα

ωβαω
))exp(1(1

))exp(1(1
x

x
−−−

−−+−  

Hyperbolic 
1+x

x
α

α  
ωα

α
+x
x  

xαω +−1  

Sigmoid 

12

2

++
+

xx
xx

βα
βα  

ωβα
βα

++
+

2

2

xx
xx  

21 xx βαω ++−  
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Table 3.  Estimated parameters (standard errors in parentheses) and goodness of fit 
measures for various corn rootworm damage functions. 

 
 
Parameter 

 
Linear 

 
Quadratic 

Cobb 
Douglas 

Negative 
Exponential 

 
Hyperbolic 

 
Sigmoid 

α 0.114 

(0.00398) 

0.191 

(0.0155) 

0.218 

(0.0238) 

0.311 

(0.0237) 

0.177 

(0.00987) 

0.291 

(0.0400) 

β -- -0.0297 

(0.00541) 

0.286 

(0.115) 

1.0369 

(0.350) 

-- -0.0413 

(0.0128) 

σ 0.237 

(0.0481) 

0.343 

(0.0634) 

0.357 

(0.0674) 

0.353 

(0.0653) 

0.293 

(0.0503) 

0.344 

(0.0613) 

Adjusted R2* 0.123 0.060 0.060 0.053 0.109 0.062 

RMSE 0.194 0.200 0.200 0.201 0.195 0.200 

Log-likelihood 116.0 128.3 131.1 130.9 124.7 130.0 

AIC -228.0 -250.5 -256.2 -255.7 -245.3 -253.9 

 
* Since a zero intercept is imposed, the adjusted R2 is appropriate (Greene p. 255). 
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Table 4.  Estimated parameters (standard errors in parentheses) and goodness of fit 
measures for the linear and quadratic mean models of the distribution of the root 
rating difference conditional on the untreated root rating.   

 
 
Parameter 

 
Linear 

 
Quadratic 

1r  0.667 

(0.00491) 

0.544 

(0.0309) 

2r  -- 0.0304 

(0.00758) 

xσ  0.348 

(0.0131) 

0.336 

(0.0127) 

Adjusted R2* 0.732 0.744 

RMSE 0.342 0.335 

Log-likelihood -113.9 -106.0 

AIC 231.7 218.1 

 
* Since a zero intercept is imposed, the adjusted R2 is appropriate (Greene p. 255). 
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Table 5.  Data concerning the unconditional distribution of the untreated root rating in 
first-year corn in east-central Illinois. 

 
 ------- Reported* ------- ----- Rescaled -----   
 
Year 

 
n 

 
Mean 

Standard 
Deviation 

 
Mean 

Standard 
Deviation 

 
ν 

 
γ 

1996 14 2.25 0.16 0.250 0.032 45.53 136.58 

1997 17 3.40 0.19 0.480 0.038 82.49   89.36 

1998 15 2.82 0.20 0.364 0.040 52.30   91.39 

1999 28 2.26 0.15 0.252 0.030 52.53 155.91 

     Average 58.21 118.31 

     Variance   204.4 827.6 

     Covariance −247.3  

 
* Source: O’Neal et al., p. 100, Table 1. 
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Table 6.  Monte Carlo estimates of various statistics concerning yield loss due to rotation 
resistant western corn rootworm in east-central Illinois.   

 
Statistic Monte Carlo Estimate Correct Value 

E[ν] 58.21 58.21 

E[ω] 118.31 118.31 

Var[ν] 272.35 272.52 

Var[ω] 1103.1 1103.5 

Cov[ν,ω] -246.7 -247.3 

Cor[ν,ω] -0.450 -0.451 

E[ cR ] 2.694 --- 

E[ 2
cR ] 7.610 --- 

E[x] 1.020 --- 

E[λ] 0.116 --- 

Var[λ] 0.0156 --- 

Standard Deviation of λ 0.125 --- 

2.5% Quantile of λ 0.00149 --- 

97.5% Quantile of λ 0.460 --- 
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Table 7.  Monte Carlo estimated expected revenue loss due to rotation resistant western 
corn rootworm in first-year corn in east-central Illinois for a variety of yield and 
price assumptions, as well as the probability that the revenue loss is < $15/ac.   

 
   95% Confidence Interval 

Yield 
(bu/ac) 

Price 
($/bu) 

Expected Revenue Loss 
($/ac) 

Lower 
($/ac) 

Upper 
($/ac) 

Probability 
Revenue Loss 

< $15.00 
120 2.00 27.84 0.36 110.30 0.448 

120 2.15 29.93 0.38 118.58 0.427 

120 2.30 32.02 0.41 126.85 0.408 

130 2.00 30.16 0.39 119.50 0.425 

130 2.15 32.42 0.41 128.46 0.405 

130 2.30 34.68 0.44 137.42 0.387 

140 2.00 32.48 0.42 128.69 0.404 

140 2.15 34.92 0.45 138.34 0.385 

140 2.30 37.35 0.48 147.99 0.368 

150 2.00 34.80 0.45 137.88 0.386 

150 2.15 37.41 0.48 148.22 0.367 

150 2.30 40.02 0.51 158.56 0.351 

160 2.00 37.12 0.47 147.07 0.369 

160 2.15 39.90 0.51 158.10 0.351 

160 2.30 42.69 0.55 169.13 0.335 

170 2.00 39.44 0.50 156.26 0.355 

170 2.15 42.40 0.54 167.98 0.336 

170 2.30 45.36 0.58 179.70 0.321 
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θ = 0.10 

    σ = 0.10 
 
 
 
    σ = 0.20 
 
    σ = 0.30 
 
 
 
 
 
 
 
 
 
 
 
 
 σ = 0.20 
 
 

  θ = 0.05 
 

  θ = 0.15 
 

  θ = 0.25 
 
 
 
 
 
 
 
 
 
Figure 1.  Probability density function )(λh  with θ = 0.10 and σ = 0.10, 0.20, and 0.30 

(top) and σ = 0.20 and θ = 0.05, 0.15, and 0.25 (bottom). 
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 θ = 0.1 
 
 

 θ = 0.2 
 
 
 
 
 
 

     θ = 0.3 
 
 
 
 
         λ~  
 
Figure 2.  Probability density function )~(λh with θ = 0.10, 0.20, and 0.30. 
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Figure 3.  Observed proportional yield loss and predicted mean as a function of the root 

rating difference for the linear model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Observed root rating difference and predicted mean as a function of the 

untreated root rating for the quadratic model. 
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Appendix 
 

Derivation of equation (3) 

Meeusen and van Den Broeck report the probability density function for w = z + 

v, where z has an exponential distribution with mean 1/λ and v is normal with zero mean 

and variance σ2.  Converting their notation to the notation used in this paper, w = y, z = δ, 

v = ε and the parameters θ = 1/λ and σ2 = σ2.  Making these conversions, their equation 

(4) is the probability density function of y:  

(A1)  
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where erfc(⋅) = 1 – erf(⋅) is the complementary error function and =)(erf x  

∫ −
x

dss
0

2 )exp(2
π

is the error function (Press et al., p. 220).  Greene (p.187) reports that 

)2/(erf5.05.0)( xx +=Φ , where Φ(⋅) is the standard normal cumulative distribution 

function.  Rearrange this expression to obtain ))(1(2)2/(erf1 xx Φ−=− , and then use 

this result to give 
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θσ
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12
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erfc .  Substitute this into equation (A1) 

and simplify to obtain equation (3).   

 
Derivation of equation (4) 

Given probability density function g(y) for y, the transformation of variable 

technique gives the probability density function h(λ) for )exp(1 y−−=λ .  Since 

)1ln( λ−−=y  and 
λλ −

=∂
∂

1
1y :  
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)1()1(
1

)1( .  Substitute this simplification into equation (A2) to 

obtain equation (4).   

 
Derivation of mean and variance of λ 

By equation (2), )exp()exp(1 εδλ −−−= .  Define two random variables 

)exp( δ−=a  and )exp( ε−=b , so that ab−= 1λ .  As Evans, Hastings and Peacock 

report, since ),0(N~ 2σε , b has a lognormal distribution with mean and variance  

(A3)  )5.0exp( 2σµ =b  

(A4)  )exp()2exp( 222 σσσ −=b .   

Since δ has an exponential distribution with mean θ, it has probability density 

function =)(δw  θθδ /)/exp(− .  The transformation of variable technique gives f(a), the 

probability density function of a:    
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θ
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for 10 ≤≤ a  and 0 otherwise.  The mean of a is ∫∫ ==
1

0

11

0

1)( daadaaafa
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θ
µ , which is  
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The mean of λ = 1 – ab is baµµµλ −=1  because a and b are independent, since δ 

and ε are independent.  Using (A3) and (A5),  
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The variance of λ = 1 – ab is ][Var2 ab=λσ .  Because a and b are independent, 

222222][Var abbabaab µσµσσσ ++= .  Substitute (A3)-(A5) into this equation and simplify:  
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Derivation of equation (5) 

 By definition, a−=−−= 1)exp(1~ δλ , where )exp( δ−=a .  From (A8), a has 

probability density function 
1

11)(
−

= θ

θ
aaf , so that the transformation of variable 

technique can be used to find )~(λh , the probability distribution function of λ~ .  Because 

λ~  = 1 – a, a = 1 – λ~  and 11~ =−=
∂

∂
λ

a .  Thus  
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θ
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Derivation of mean and variance of λ~  

 Because λ~  = 1 – a, ][E1]~[E~ a−== λµλ .  By equation (A6), E[a] = 
θ+1

1 , so that  
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Similarly, 22
~ ][Var]1[Var]~[Var aaa σλσ λ ==−== , which is reported in equation (A7).  


