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Abstract

In this paper we propose a methodology to measure the charac-
teristics and composition of intermediate products using productivity
indicators based on directional distance functions. We evaluate how
quality attributes interact with the quantity level in grapes produc-
tion, and find evidence of a trade-off between quantity and aggregate
quality for Chardonnay.
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1 Introduction

Measuring and evaluating the right attributes in raw materials, com-
modities, and intermediate products is a common problem in many
sectors of the economy. In food industries, for instance, it is well
known that the necessary condition for the making of a good wine is
the availability of grapes with the right attributes;1 but the same can
be said of the characteristics of milk for cheese production, of fruits
for juices, of beets or canes for sugar, of beans for coffee, and many
others. This problem is of interest also in other industries, like for
example in the case of chips for the computer industry, ores for steel
production, steel for construction works, crude oil for refined oil, etc.

In this paper we propose a methodology to measure the character-
istics and composition of intermediate products and we pursue three
objectives. First, with the methodological contribution, we address
the issue of how to measure quality attributes for intermediate goods
using a general representation of the technology. Although there are
other instances of this problem in the literature, especially in that
dealing with hedonic prices, there are few contributions that address
explicitly this topic on the production side.2

In this paper we model the quality attributes with a multiout-
put technology, using a general representation of technology based on
directional distance functions. These are a generalization of the ra-
dial distance functions which since Shephard’s contributions have been
used to give a single-valued representation of production relations in
case of multiple inputs and multiple outputs (Chambers, Färe, and
Chung, 1996, 1998). Directional distance functions indeed can be seen
as an alternative and more general way to represent technology and
to compare and measure input, output and productivity aggregates
(Chambers, 2001). With directional distance functions we can indeed
aggregate quality attributes and compare across firms, for instance.

The second objective of the paper, more policy-oriented, is to eval-

1Most practitioners would argue that the making of a good wine is more an art than
the mere result of scientific or technological efforts. Truth is that a necessary condition
to make a good wine is the use of good grapes. Indeed, an expert wine-maker can obtain
some decent wine even from lousy grapes, but surely she would make an excellent wine
from good grapes, where by good grapes we mean those with the right components and
quality attributes.

2For food industries, for example, one contribution considers food safety as a dimension
of quality and represents it with a multioutput model of the technology (Antle, 2000).

2



uate how quality attributes interact with the quantity level in the pro-
duction of these intermediate products. The reason for this interest
is that in many agricultural markets and food industries, especially in
Europe, producer groups are granted the authority to self-regulate the
production and trade of many commodities. While in the US the often
enforced policy for quality regulation is the use of minimum quality
standards, in the European Union a more common policy device is
the imposition of ceiling on yields per unit of land. This regulation
is common and allowed, for instance, for those producer groups that
regulate production and trade of wine with appellation contrôllée; for
those that regulate typical products; and for those operating in fruit
and vegetables industries.3

Advocates of this regulation claim that by reducing quantity one
can in fact increase quality, and thus it would benefit consumers and
producers alike.4 In other words, output control measures would be
justified because they increase economic welfare, and should not be
criticized and prosecuted by antitrust authorities (Canali and Boc-
caletti, 1998). The fact is that the economic analysis on this topic
is relatively scarce, one notably exception being, besides our work in
other parts of the manuscript, a paper by Arnaud, Giraud-Heraud and
Mathurin (1999). In a model with vertical differentiation of the final
product, i.e., wine, they are able to show that in some instances out-
put control by a producer group can indeed increase total economic
welfare.5

However, the results of the paper impinge on the assumption of the
substitutability between quality and quantity or, put in another way,
quality and quantity substitutability would be a necessary condition
for the regulation to be welfare-increasing.6 But while this assump-

3Respectively, UE Regulation no. 1493/99, no. 2081-2082/92, and no. 2200/96.
4Indeed, “The rationale often used to justify quality regulations runs as follows: re-

moval of off-grade product necessarily improves the average quality of the product moving
to market; a higher quality product for the consumers should, presumably, command a
higher price; consequently, producer returns can be enhanced by providing a higher quality
product, and everybody is better off” (Jesse e Johnson, 1981: 12, in Bockstael, 1984).

5There is a long and controversial tradition in the literature on the welfare impact of
Marketing Orders, for instance, but most of the focus has revolved around the impact
of minimum quality standards (see, e.g., Bockstael 1984 and 1987; Chambers and Weiss,
1992).

6Thus we have that ”...the result of the collective coordination of the set of producers
is a direct consequence of this hypothesis. Therefore the more the increase in the supply
is followed by an objective decrease in the quality, the easier it is to justify a decentralized
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tion on the technological relationship may appear reasonable to the
reader and to many practitioners, in fact no empirical work has estab-
lished the nature of this relationship.7 In the paper we find evidence
of a trade-off between quantity and aggregate quality, although this
substitutability is stronger for Chardonnay and for some years.

The third objective, more geared towards industry applications, is
to investigate how one can create incentives for the production of the
right quality attributes given the information about the technology.
This is an important topic, which may be of interest to suppliers,
buyers, cooperatives, retailers, etc. How to compensate producers
for their efforts and how to give the right signal on which attribute
is more valuable is indeed prone to increase the efficiency of supply
chain relationships and of food industries in particular.

The next section reviews the literature that address the issue of
how to take into account quality in the production process. Then we
introduce the notation, the model and the mathematical programming
algorithms we use to calculate the distance functions. In section four
we illustrate the data we use, which are based on production prac-
tices and output results of two relatively well know grape varieties,
Chardonnay and Merlot. Section five presents and discusses the re-
sults. Section six concludes the paper with the suggestions for further
research work.

2 Review of the literature

The problem of taking into account the quality attributes of different
goods has a long tradition in economics, and the most well established
efforts in this direction are probably those of the hedonic pricing lit-
erature in the context of the Consumer Price Index statistics. The
question in this case is how to adjust consumer (or industry) prices
for increases in the quality of goods, such as computers, cars, and
other durable goods (Triplett, 1990).8

policy of regulation of the supply. Nevertheless in practice, it is obvious that the levels
reached by the technological constraint apply only within a well defined context which can
be altered every year in a wine growing area...” (Arnaud et al., 1999: 20).

7There is a vast literature in enology investigating these and other relationships using
multivariate statistics (for a review see, e.g., Jackson and Lombard, 1993).

8Another vast literature deals with the valuation of environmental quality (see, e.g.,
Bockstael, Hanemann and Kling, 1987).
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The hedonic pricing literature uses the relatively simple notion of
using regression techniques to relate the (market) prices of different
”models” or versions of a commodity to differences in their characteris-
tics or ”qualities”. The earliest references of this technique come from
agricultural economics, with the early work of Waugh on vegetable
prices and Vail on fertilizers (Griliches, 1990). However, few hedonic
studies have been undertaken to estimate the production technology,
the main point of hedonic prices techniques being the use of market
prices to identify consumers’ preferences.

One of the first attempt to incorporate quality attributes in a
model of producer behavior is a paper that views process and qual-
ity change as outcomes of a firm’s optimization problem (Fixler and
Zieschang, 1992). This contribution shows how a market-determined
price-characteristics locus can be used to adjust the Tornquist output-
and input-oriented multifactor/multiple output productivity indexes
of Caves, Christensen and Diewert (CCD) (1982) for changes in in-
put, output and process characteristics. Using distance functions, it
shows how the quality adjusted indexes proposed are the product of
two indexes, a quality index and a CCD-type Tornqvist productivity
index.

Extending the work on productivity of CCD, Färe et al. (1992)
define an input-oriented Malmquist productivity change index as the
geometric mean of two Malmquist indexes as defined by CCD, and
developed a nonparametric activity analysis model to compute pro-
ductivity using linear programming. In a subsequent paper, Färe,
Grosskopf and Roos (1995) extends this productivity index by in-
corporating attributes into the technology. By studying a panel of
Swedish pharmacies, they use the attributes together with ratios of
distance functions to measure the service quality of each pharmacy.
By further imposing a separability assumption on the distance func-
tions, they are able to decompose the Malmquist productivity change
index into three components, namely quality change, technical change
and efficiency change.

Another application of the same idea, i.e., of decomposing eco-
nomic indexes into various components, is the paper by Jaenicke and
Lengnick (1999). Merging the soil science literature on soil-quality
indexes with the literature on efficiency and total factor productivity
indexes, they isolate a theoretically preferred quality-soil index. In
addition, using common regression techniques they shed light on the
role of individual soil quality properties in a linear approximation of
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the estimated soil-quality index.
A different but somewhat related strand of the literature deals

with the environmental impacts in the measurement of efficiency and
productivity growth. Färe et al. (1989) indeed started what has be-
come now a relatively vast literature extending efficiency measurement
when some outputs are undesirable. 9 The central notion of this pa-
per, and of many that followed (for a recent application and partial
survey see Ball et al., 2001), is that of weak disposability of outputs.
To credit firms or industries for their effort to cut off on pollutants,
technology is modeled so that it can handle the case when the reduc-
tion of some (bad) outputs requires the reduction of some of the other
outputs and/or the increase of inputs.

While the idea of output weak disposability is of marginal interest
in our setting, a later idea developed in the same context is closer.
We are referring to the generalization of the radial distance function,
that is the directional distance function, divulged among production
economics by Chambers, Chung and Färe (1996) who extended and
adapted the idea of the benefit function introduced in consumer theory
by Luenberger (1996). The directional distance function allows to
compare different firms and to measure their distance from the frontier
of the technology moving along a preassigned direction. In this fashion
it is possible to evaluate the performance of the firms that need to
increase the production of the good outputs and decrease that of bad
outputs (Chung, Färe and Grosskopf, 1999).

The first attempt to use the directional distance function to take
into account the quality of outputs, in this case in a context different
from environmental pollution, i.e., health services, is a recent paper
by Dismurke and Sena (2001). In this paper, they consider as an at-
tribute of the hospital production process the mortality rate and they
use directional distance functions to calculate a Luenberger-Malmquist
productivity index. They are then able to decompose the index into
a quality index, plus a technical change and efficiency change compo-
nents.

In this paper we use the idea of the directional distance function
to incorporate quality attributes into the technology, but we depart
from the models reviewed above in the construction of an indicator

9As a matter of fact, the first contribution that takes into account bad outputs is
probably the work of Pittman (1983), who extends the approach of CCD, specifies a
modified Tornqvist output index and uses dual data on pollutants’ shadow prices to adjust
the revenue shares.
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instead of an index. In fact, following Chambers (1998 and 2001), we
use the directional distance function to construct an indicator, that
is an output aggregator that is expressed in difference forms rather
than in ratio forms like in the case of the more traditional Malmquist
productivity index. This difference stems from the property of the
directional distance functions, which make the Luenberger indicator
translation invariant in output, to contrast with the property of ho-
mogeneity of degree 0 in outputs of the Malmquist index coming form
the linear homogeneity of the output distance function à la Shephard.

We propose an indicator based on directional distance functions for
different reasons. First, as explained above, we compare firms based on
the distance from the frontier along a preassigned direction, direction
which reflects the preference and needs of the buyer or downstream
firm with respect to the quality attributes. Second, it may be the case
that to be valuable to a downstream firm, the composition of the raw
material has to be close to the ideal bundle of attributes preferred
by the buyer. In other words, in some instances the composition has
to be well balanced and some of the attributes have to be within a
certain range.10 The choice of the direction allows then to take into
account this and evaluate the quality attributes produced by a pool
of suppliers according to buyer’s needs.

3 Notation and model specification

Let x ∈ <N
+ be a vector of inputs and y ∈ <M+1

+ a vector of outputs.
In the following, superscripts on input and output vectors are used to
differentiate vectors across firms. For example, xh will be interpreted
as firm h’s input use (it could also be interpreted as input use in period
h). The technology can be defined in terms of a set T ⊂ <N

+ ×<M+1
+ :

T =
{
(x ∈ <N

+ , y ∈ <M+1
+ ) : xcanproducey

}
.

10In the paper we refer to quality attributes. In the literature quality is usually asso-
ciated with vertical differentiation, that is the situation in which given the same price all
consumers unambiguosly prefer more to less of a certain attribute. The other case is that
of horizontal differentiation, in which case there is not such a unique ordering among con-
sumers (see, e.g., Tirole, 1988). In our paper we use quality generically, but according to
the above definition it would be more appropriate to call it quality only when it is always
better for the buyer to have more of the attributes. Accordingly, it would be inappropriate
to use it when there is a need for a well balanced composition of the raw commodity.
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T satisfies the following properties (Chambers, 2001):
T.1: T is closed;
T.2: Inputs and outputs are freely disposable, i.e., if (x′,−y′) ≥

(x,−y) then (x,y) ∈ T ⇒ (x′,y′) ∈ T ;
T.3: Doing nothing is feasible, i.e., (0n, 0m) ∈ T .
Related to T are the input set, V (y) = {x : (x,y) ∈ T}, and the

output set, Y (x) = {y : (x,y) ∈ T}.
Following Chambers, Chung, and Färe (1996, 1998), and Cham-

bers (2001), we can define the directional technology distance function
as:

−→
DT (x,y;gx,gy) = max{β ∈ < : (x− βgx, y + βgy) ∈ T},

gx ∈ <N
+ , gy ∈ <M+1

+ , (gx,gy) 6= (0N ,0M+1),

if (x − βgx, y + βgy) ∈ T for some β and dT (y,gy) =inf{δ ∈ < :
y + δgy ∈ <M+1

+ } otherwise. Note that (gx,gy) is a reference vec-
tor of inputs and outputs which determines the direction over which
the distance function is determined. −→DT (x,y;gx,gy) represents the
maximal translation of the input and output vector in the direction of
(gx,gy) that keeps the translated input and output vector inside T .

The properties of the directional distance function are the following
(Luenberger 1992a, 1994, 1995; Chambers, Chung, and Färe 1995,
1996):

- −→DT (x− αgx,y + αgy;gx,gy) = −→
DT (x,y;gx,gy)− α;

- −→DT (x,y;gx,gy) is upper semicontinuous in x and y jointly;
- −→DT (x,y; λgx, λgy) = 1

λ

−→
DT (x,y;gx,gy), λ > 0;

- y′ ≥ y =⇒ −→
DT (x,y′;gx,gy) ≤ −→

DT (x,y;gx,gy);
- x′ ≥ x =⇒ −→

DT (x′,y;gx,gy) ≥ −→
DT (x,y;gx,gy);

- if T is convex, −→DT (x,y;gx,gy) is concave in (x, y).
As shown by Chambers, Chung, and Färe (1996), all known (ra-

dial) distance and directional distance functions can be depicted as
special cases of the directional technology distance function. One
example, which will be used in this paper, is the directional output
distance function (Chambers, Chung, and Färe 1998), which can be
defined as:

−→
DT (x,y;0N ,gy) = max{β ∈ < : (x, y + βgy) ∈ T},

gy ∈ <M+1
+ , gy 6= 0M+1,

if (x, y + βgy) ∈ T for some β and +∞ otherwise. −→DT (x,y;gx,gy)
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represents the maximal translation of the output vector in the direc-
tion of (gy) that keeps the translated output vector inside T .

As a matter of comparison, it is useful to compare the directional
output distance function with the Shephard (radial) output distance
function, which is defined as the following:

Do(x,y) = inf
θ
{θ > 0 : (x,

y
θ

) ∈ T},

and represents the minimum (technically, the infimum) that the out-
put bundle can be expanded and still be feasible. It is worth reminding
the reader that the Shephard distance function is related to the direc-
tional output distance function when gy = y, i.e., when the direction
is given by the firms’ choices of outputs, by the following (see, e.g.,
Chambers, Chung, and Färe 1998: 355):

−→
DT (x,y;0N ,gy) =

1
Do(x,y)

− 1.

In this paper we are interested in constructing an index - more pre-
cisely, an indicator in the case of the directional distance function -
of quality attributes of the output. The general purpose of the index
is that it can create a summary measure of inputs or outputs that
can be used to evaluate how these aggregate quantities vary across
firms (or time). For our purpose, we use the directional output dis-
tance function, and we slightly change notation to accommodate for
the quality attributes of the intermediate product. Thus, we partition
the output vector y ∈ <M+1

+ into y ∈ <+ and s ∈ <M
+ , where y is

now a scalar indicating the production level in terms of quantity of
output, i.e., total amount of grapes production per hectare, and s is a
vector of the output attributes, i.e., the components of grapes, like for
example sugar content, pH, etc. We can then rewrite the directional
quality distance function with the following:

−→
DT (x,y, s;0N , gy,gs) = max{β ∈ < : (x, y + βgy, s + βgs) ∈ T},

gy ∈ <+, gs ∈ <M
+ , (gy,gs) 6= (0,0M ).

In a similar fashion, we redefine the Shephard quality distance function
with the following:

Do(x,y, s) = inf
θ
{θ > 0 : (x, y,

s
θ
) ∈ T}.
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3.1 The Luenberger Quality Indicator

For our purposes, we need to compare input/output/attribute combi-
nations of different suppliers, i.e., firms. Let us suppose we want to
compare a firm i = 1 to a reference firm i = 0. Adapting the indi-
cator suggested by Chambers (2001), we can define the 1-technology
Luenberger quality indicator for (x1, y1, s1, s0) by the following:

Y 1(s0, s1, y1,x1) = −→
D

1

T (x1,y1, s0;0N , 0,gs)−−→D1

T (x1,y1, s1;0N , 0,gs).

−→
D

1

T (x1,y1, s0;0N , 0,gs) may be seen as representing the number of
units of the reference vector, gs, that can be added to s0 while using
the input-output bundle for firm 1, (x1,y1). It can be a positive num-
ber, meaning that the input-output bundle of firm 1 is consistent with
a ”higher” quality level than that of firm 0. Or it can be a negative
number, in which case it is consistent with a ”lower” quality level. So
if Y 1(s0, s1, y1,x1) > 0 we can conclude that quality is higher for firm
1 than for firm 0 from the input-output perspective of firm 1, since
we consider (y1,x1).

The 0-technology Luenberger quality indicator for (x0, y1, y0, s1, s0)
by the following:

Y 0(s0, s1, y0,x0) = −→
D

0

T (x0,y0, s0;0N , 0,gs)−−→D0

T (x0,y0, s1;0N , 0,gs).

Note that in this case we are computing the indicator from a different
basis of comparison, i.e., from firm 0’s perspective, since we consider
its input-output bundle (x0,y0). If Y 0(s0, s1, y0,x0) > 0, the quality
is higher for firm 1 than firm 0 from firm 0’s input-output perspec-
tive. It would be better to have an indicator that is invariant to the
technology chosen to make the comparison. A natural compromise is
to take the average of these two indicators (Chambers, 1998). Thus
the Luenberger quality indicator is the average of Y 1(s0, s1, y1,x1) and
Y 0(s0, s1, y0,x0):

Y (s0, s1, y0, y1,x0,x1) =
1
2

(
Y 1(s0, s1, y1,x1) + Y 0(s0, s1, y0,x0)

)
.

We can show the indicator with a graphical representation. In fig-
ure 1, in the attributes’ space we represent two output sets, Y (x1)
and Y (x0), consistent with x1 and x0 respectively. We also repre-
sent firm 1’s quality bundle, s1, with its components, i.e., s1

1 and s1
0,

together with the base s0 and its components, s0
1 and s0

0. For exposi-
tion simplicity, for the direction we use a simple reference vector, and
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we set it equal to the unitary vector, i.e., gs = 1, 1. Now consider−→
D

1

T (x1,y1, s0;0N , 0,gs): it is the distance from s0 to the outer con-
tour of Y (x1), moving in the direction parallel to the bisector, since
gs = 1, 1. Similarly, −→D1

T (x1,y1, s1;0N , 0,gs) is the distance from s1, in
the same direction, to the outer contour of Y (x1). Given the picture,
relative to the output set of firm 1, the distance of firm 1 is lower and
hence firm 1 has lower quality than the reference firm 0. The same
distances must be calculated referring to the technology Y (x0),11 and
the average of the two differences in the distances calculated gives the
Luenberger quality indicator.

For comparison, we would like to compare our results to those
obtainable using a more common methodology. For this purpose we
employ a Malmquist index (Färe, Grosskopf and Roos 1998), which is
modified to take into account quality attributes, and which becomes
the following:

M1
0 (s0, s1, y0, y1,x0,x1) =

[
Do(s0, x1, y1)
Do(s1, x1, y1)

Do(s0, x0, y0)
Do(s1, x0, y0)

] 1
2

.

While the Luenberger indicator is the average expressed in difference
form, the Malmquist quality index is the geometric mean of the ratio
of comparisons of different quality attributes levels attainable with
different input-output bundles. The main difference between the two
measures, based in their respective distance function, is the fact that
the direction is chosen by the researcher and equal for all firms in the
case of the directional distance function. In the case of the radial dis-
tance function, the direction is not given and may be different among
all firms. In fact, the direction is that from the observation to the
frontier along the ray emanating from the origin. In figure 1, for firm
1, the distance is represented with the broken line continuing the ray
emanating from the origin and going through s1.

Given the properties of the directional distance functions and the
way we constructed the quality indicator, we know that Y (·) is non-
decreasing with the quality of firm 1 with respect to the reference firm
0, i.e., it is non-decreasing in the quality of the firm under considera-
tion. In order to evaluate the trade-off between output quantity and
quality, and to evaluate the impact of individual quality attributes,
inputs or climatic conditions on the quality indicator, we can approx-

11See the broken lines in figure 1, to compare with the solid lines referring to Y (x1).
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imate this relationship with a linear function and estimate a linear
regression:

Y (s0, s1, y0, y1,x0,x1) = α + βX + ε,

where the dependent variable is the quality indicator (or index) and
among the independent variables X we may include the quantity, the
quality attributes, and the inputs. This would allow us to reach the
second objective of the paper outlined in the introduction, and we are
particularly interested in the sign of the quantity coefficient. Were this
coefficient statistically negative, we would have empirical support that
there is indeed a trade-off between aggregate quality and quantity.
In addition, with a statistical test we can also check whether this
relationship is different across years and cultivars.

3.2 The computation models

To calculate the Luenberger quality indicator introduced above, as-
sume that we have K observations of inputs, output level and quality
attributes, i.e., (xk, yk, sk), with k = 1, ..., K. The technology asso-
ciated with the observations, under constant returns to scale,12 is the
following (Färe, Grosskopf and Lovell, 1994):

T =

{
(x, y, s) :

K∑

k=1

zkyk ≥ yk′ ,

K∑

k=1

zkskm ≥ yk′m, m = 1, ..., M,

K∑

k=1

zkxkn ≤ xk′n, n = 1, ..., n,

zk ≥ 0, k = 1, ..., K} .

In our problem, we have set gx = 0N , gy = 0, and gs = sM , where
sM = (s1, .., sm, .., sM ) and sm =

∑K
k=1

skm
K . In other words, the direc-

tion is given by the average attributes content of the grapes for the

12As explained below, we perform a Banker’s test (Banker, 1996) on the radial distance
function and are unable to reject the null hyphotesis of constant returns to scale.
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whole sample.13 The Linear Program problem to solve then becomes
the following: −→

DT (x,y, s;0N , 0,gs) = max β :

K∑

k=1

zkyk ≥ yk′ ,

K∑

k=1

zkskm ≥ sk′m + βsm, m = 1, ...,M,

K∑

k=1

zkxkn ≤ xk′n, n = 1, ..., n,

zk ≥ 0, k = 1, ...,K.

For the choice of the reference observation (the base) different options
are available. One could use the average of the observations. The
drawback of this option is that it may lead to an unrealistic artificial
technology, or, in other words, to a not feasible input/output combina-
tion. Another possibility could be the minimum quality composition
required by the law or by industry standards, the one that all firms
should provide as a minimum requirement. Or one could choose other
bases. However, the point to bear in mind is that any of these choices
is arbitrary and should be made according to the problem at hand.

The Linear Program problem to solve to calculate the Malmquist
quality index is the following:

[
Do(s0, x1, y1)

]−1
= max θ :

K∑

k=1

zkyk ≥ yk′ ,

K∑

k=1

zkskm ≥ θsk′m, m = 1, ...,M,

K∑

k=1

zkxkn ≤ xk′n, n = 1, ..., n,

zk ≥ 0, k = 1, ..., K,

where for the choice of the reference observation (the base) we use the
same as above.

13Another direction we consider is given by the ideal composition of the intermediate
good.
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4 The data

To implement empirically the methodology presented in the previous
section we use data provided by the “Istituto Agrario di San Michele
all’Adige”, located in Trento, near the Alps in the northern part of
Italy. In this experimental station different trials were undertaken
in the last few years to investigate the best agronomic practices and
varieties to match the potential of different production regions. The
data we employ were collected during 1994, 1995 e 1996 for a white
grape variety, i.e., Chardonnay, and a red grape variety, Merlot.

These are experimental agricultural data, in the sense that the
purpose of the experiments was to estimate the effect of different pro-
duction areas on grape production subject to the same agronomic
practices regarding labor, fertilizer, pesticides, and other variable fac-
tors. Given the homogeneity of agronomic practices, the inputs con-
sidered are altimetry, number of vines per hectare, number of buds per
branch, roots depth, water reservoir, total calcium.14 We also consider
data on weather conditions: mean humidity, mean temperature, total
rainfall, total radiation, total sun hours, temperature excursion, all
relative to the last 40 days before the harvest time. The weather data
is coming from a unique location, and so we have only variation over
time and across the two cultivars, since the harvest time is different.

For the grapes obtained in the different experimental fields, we
have information on sugar content (degree Brix), tartaric acid, malic
acid, potassium, pH, total acidity and total production per hectare.
Tables 1-A and 1-B report descriptive statistics for the variables used
in the estimation. Overall, Merlot is more productive in terms of
grapes production and sugar content: It is grown at a lower altimetry,
with relatively fewer vines per hectare. Chardonnay has higher total
acidity. For both cultivars, in 1996 the production of grapes was the
highest.

5 Results

We report the summary results of the different computations per-
formed for each observation using different methodologies. For all
quality indicators or indexes, as a reference or base observation we
use the average of the variables, i.e., we compare the single observa-

14These last three are categorical variables.
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tions to the “average firm” (Balk, 1999: 183):

s0 =
K∑

k=1

skm

K
, m = 1, ...,M,

x0 =
K∑

k=1

xkn

K
, n = 1, ..., N,

y0 =
K∑

k=1

yk

K
.

Note that for the radial distance function Do(s1, x1, y1), using a Banker’s
test (Banker, 1996) we could not reject the constant returns to scale
specification of the technology. Hence we compute all distance func-
tions, both radial and directional, using a CRS specification of the
technology.

As a benchmark, we report first the results of the Malmquist qual-
ity index for both Chardonnay and Merlot for different years. Table 2
reports some descriptive statistics for the quality index.15 Note that
in almost all cases the index is above the unity, meaning that on av-
erage the quality of the firms under consideration is higher than the
average firm taken as a reference. The only exception is the year 1994
for the cultivar Merlot. Merlot in 1996 is the situation in which the
average is highest.

In the first Luenberger indicator computed, the direction we con-
sider is that equal to the average attributes of the group of firms (table
3). For this measure on average the sample of firms under consider-
ation have more quality that the average firm, i.e., the indicator is
positive. Only for Merlot in 1994 and 1995 on average the obser-
vations have lower quality than the average firm, or in other words
the input-output bundle of the observations is consistent with higher
quality.

According to industry practitioners, for some raw commodities it
is important to have a well balanced composition. For this reason,
we compute a Luenberger indicator in which the direction vector is
represented by the ideal composition of the grapes. For the case at
hand, sugar is always preferred in greater quantity, i.e., since it could
be a limiting factor for quality, the more the better. Thus as the

15The Malmquist quality index is obtained as the geometric mean of the different radial
distance functions.
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ideal composition, we consider the maximum amount of sugar in the
sample. In addition, we set the values for pH, total acidity, potassium,
malic and tartaric acidity equal to the ideal values indicated in the
literature and by the industry (Bertamini, 2001).

Considering the ideal composition, the Luenberger indicator seems
to show lower quality than the previous Luenberger indicator, suggest-
ing that on average the group of firms is doing worse when evaluated
with reference to the ideal composition. In fact, we can see (table
4) that only in half of the cases the sample is on average performing
better than the average firm, i.e., for Chardonnay 1994 and 1995 and
for Merlot 1996. In addition, while for Chardonnay in 1996 on av-
erage the firms in the sample were performing better (average 0.004)
than the reference firm when evaluated with the average composition
direction vector, it is doing worse (-0.003) when evaluated with the
ideal composition as the direction vector. Besides the mean value, also
the dispersion of the ideal indicator, as measured by the coefficient of
variation, seems higher than that of the average indicator for all years
considered (see table 3 and 4).

But the differences among the three distributions are in fact non
significant. We perform a non parametric test (Kolmogorov-Smirnoff)
and we found no differences statistically significant16 among the three
distributions 17. A graphical representation of the three distributions
with a kernel estimate confirms the fact that there is no difference
(figure 2). The lack of differences is most likely due to the fact that
we are using experimental data for which all agronomic practices, i.e.,
choices, are homogeneous, and the only differences in the dataset come
from exogenous variables. No choices and thus behavior is present in
the data, since the purpose of the experiment that generated the data
was to assess the potential for quality of different but close regions
within an appellation area.

To test whether quantity is a substitute with aggregate quality, i.e.,
whether there is a trade-off between quality and quality, we perform
a linear regression of the “average” indicator using OLS. The results
reported in table 5 suggests that in general this is true although it
may not be significant all the years. Indeed, the relationship between

16For example, for Chardonnay in 1994 the probability of error in rejecting the null that
the distributions are the same is .966 for directional average vs. directional ideal and of 1
for directional average vs. radial.

17For the radial measure we compare to 1
Do(x,y) −1 even though the direction is not the

unitary vector gs = (1, .., 1) but the average composition.
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aggregate quality and quantity is negative, i.e., aggregate quality and
quantity are substitutes, and is significantly different from zero for
Chardonnay over the entire period, for 1994 and 1996. In 1995 the
trade-off is negative but not statistically significant. For Merlot, over-
all the relationship is not significantly different from zero, but for 1994
and 1995 it is negative and statistically significant. The evidence thus
suggest that there is indeed a trade-off, but that its impact and sig-
nificance may vary across years and cultivars.18

Among the inputs considered, altimetry is positively correlated
to aggregate quality at a significant level for Chardonnay (table 5).
This seems to confirm the general belief that, at least in European
countries, Italy in particular, the grapes in hilly areas are of higher
quality. For Merlot the effect is only overall but not for the single
years. Other factors that are positively related to the aggregate quality
are the depth of the soil (proxied by the roots depth), the water holding
capacity and the content in calcium in the soil. Among the quality
attributes, all seem positively related to aggregate quality, although
malic acid is statistically significant only for Chardonnay overall and
for 1994. Sugar content is not significant in 1995 for both cultivars.
Potassium content in some years is negatively related to aggregate
quality (indeed the industry prefers less of it).

6 Concluding remarks

In the paper we present a methodology to evaluate the relative per-
formance of firms in producing the quality attributes of an intermedi-
ate product, grapes for wine production. We compare three different
quality measures. One is based on radial distance functions to form a
Malmquist-type quality index. The other two are based on directional
output distance functions and are used to compute Luenberger quality
indicators. The directional distance functions, which are a generaliza-
tion of the radial distance function, have the advantage of allowing
the researcher to compare firms in a pre-assigned direction. We thus

18We performed a Chow test to check the equality of the regression coefficients. We
rejected the null that the coefficients are the same for the two cultivars (the calculated
F resulting from the Chow test is equal to 58, against a tabulated F(14,911)=2.10); we
rejected the null of the same coefficients across years for Chardonnay (calculated F = 19.67
against F(14, 572)=2.11); and finally we rejected also the null of the same coefficients
across years for Merlot (calculated F = 111.4 against F(14, 283)=2.14).
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compute an indicator setting the direction vector equal to the average
of the group, resembling the idea of yardstick competition within the
group of firms under consideration. The other measure we consider
is relative to the ideal composition of the intermediate good, i.e., the
direction vector is set equal to the ideal composition of the grapes.

While the two measures seem to give different results in terms of
average efficiency for the group and of dispersion of firms around the
mean, in fact there is no difference in the distribution of results as
we may have expected. As discussed in the text, we are using exper-
imental data in which no economic choices were in fact involved. We
would expect to find stronger results, with the indicator directing the
comparison to the ideal composition likely giving lower average values
and greater dispersion. On the other hand, one would expect that
comparing to the group “smooths” the differences among producers.
The difference may impinge on different incentive power of the two
indicators. A mor powerful incentive may increase efficiency but may
also cause greater inequality, which is often not valuable in some co-
operatives or other producer groups, for example, where equality of
treatment may be preferred, even if this may imply lower rewards for
quality (see,.e.g., Hendrikse and Bijman, 2001).

With the methodology proposed in the paper we are also able to
test whether higher production per unit of acreage may be detrimental
to aggregate quality. The paper shows that indeed there is trade-off
between quantity and aggregate quality, which is more significant for
Chardonnay compared to Merlot and for some years more than oth-
ers. According to the evidence presented, it seems not possible to
always condemn the use of quantity limits to improve quality that
many self-regulating groups in Europe are implementing for agricul-
tural commodities.
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Chambers, R.G., Färe, R., and Grosskopf, S., 1996. ”Productivity
Growth in APEC Countries”, Pacific Economic Review 1(3): 181-90.
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