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Introduction 
 

This paper develops a method for reconstructing flexible form production 
functions using minimal disaggregated data sets. We use the term reconstruction 
rather than estimation because many disaggregate data sets have insufficient 
observations to claim statistical properties for the resulting parameter estimates. Since 
we are interested in models that can address policy questions, the emphasis in this 
paper is on the ability of the model to reproduce the existing production system and 
predict the disaggregated outcomes of policy changes.    

In many developed and developing agricultural economies there is considerable 
emphasis on the effect of agricultural policies and production on the environment, and 
conversely, the effect of environmental policies on the agricultural sector. This 
emphasis is likely to lead to the rehabilitation of production function models for many 
policy problems, in the literature. There are several reasons why production functions 
are suited to the analysis of agricultural- environmental policy. First, environmental 
values are measured in terms of the physical outcomes of agricultural activity.  
Second, primal data on crop yields, areas and input use is usually more readily 
available and often more accurate than cost data. Third, constraints and subsidies on 
some inputs require that shadow prices be added to nominal prices. Moreover some 
environmental policies are formulated as constraints on input use. Fourth, economic 
models of agricultural and environmental policy impacts often have to formally 
interact with process models of the physical systems. Such models require the 
economic output in terms of primal values. 

Several authors have emphasized the need to spatially disaggregate models for 
environmental policy analysis (Antle & Capalbo, 2001; Just & Antle, 1990). 
However, such disaggregation is often made difficult either by the limited availability 
of disaggregate data or, if such data is present, the lack of enough degrees of freedom 
to identify disaggregate parameters within a classical estimation framework. 
Generalized Maximum Entropy (GME) estimation techniques (Golan et al., 1996a) 
have come into increasing use by researchers who seek to achieve higher levels of 
disaggregation in the face of these data problems (Lence & Miller, 1998b); Lansink et 
al., 2001; Golan et al., 1994, 1996b). Given the inherent heterogeneity of soils and 
other agricultural resources, the researcher who wishes to disaggregate cross-sectional 
data must consider the trade-off between two possible sources of model error: that 
caused by aggregation bias versus that due to small sample bias. Aggregating across 
heterogeneous regions leads to aggregation bias, whereas ill-conditioned or ill-posed 
GME estimates may be biased due to the small sample on which they are based. An 
additional advantage that speaks in favor of maximum entropy-based alternatives is 
the ability to formally incorporate additional data or informative priors into the 
estimation process, in a Bayesian fashion.   

Substitution activity at the intensive and extensive margins is a key focus of 
agricultural-environmental policy analysis. A basic policy tool is to provide incentives 
or penalties that lead to input substitution under the given agricultural technology. 
Such substitutions at the intensive margin can reduce the environmental cost of 
producing traditional agricultural products or that of jointly producing agricultural and 
environmental benefits. These policies cannot be evaluated without explicit 
representation of the agricultural production process. It follows, therefore, that the 
potential for substitution should be explicitly modeled within a multi-input multi-
output production framework.  
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The reconstructed production function (RPF) modeling approach proposed in this 

paper can be implemented with smaller data sets than those required by conventional 
econometric approaches. However, RPF models still result in production functions 
that have all the properties enjoyed by flexible functional forms, such as multi-input, 
multi-output quadratic, square root, generalized Leontieff and trans-log specifications. 
This is achieved by using a combination of GME estimation and positive 
mathematical programming (PMP) calibration techniques (Howitt, 1995), so as to 
reconstruct a well-behaved production function that is entirely consistent with the data 
and which calibrates to the base conditions. This combination of methodologies 
distinguishes our approach with other GME production analyses in the literature 
(Zhang & Fan, 2001; Lence & Miller, 1998a). The GME estimates given in this paper 
do, however, converge to consistent estimates when the sample size is increased and 
have been shown to have the same asymptotic properties as conventional likelihood 
estimators (Mittlehammer et al., 2000). We have the assurance of consistency, in our 
approach, by the inclusion of moment constraints in the estimation procedure, which 
are absent from the formulations presented in other applications of GME in the 
literature – such as the aforementioned studies. 

The ability to simulate policy alternatives reliably with constrained profit 
maximization requires calibration using the marginal and total product conditions and 
stability in the second-order profit-maximizing conditions. It is our belief that those 
who make use of policy models are more interested in both reproducing observed 
behavior and then simulating outcomes beyond the base scenario – than in testing for 
the curvature properties of the underlying production function. Therefore, the RPF 
models presented here are reconstructed subject to parameter restrictions that result in 
locally concave production functions. Within our programming-based reconstruction 
and simulation framework, we can also impose policy restrictions in the form of 
constraints on the reconstructed model. 

Section II of the paper briefly reviews modeling methods used to estimate the 
effect on land use of agricultural and environmental policies. Section III develops the 
reconstruction procedure for the production model, within the GME framework. 
Section IV contains an empirical application that measures the production response of 
California’s irrigated crop sector to environmentally-driven policy changes in 
irrigation water supplies. This is followed by Section V, in conclusion to the paper.  

 
II. Methods for Modeling Disaggregated Agricultural Production and Land 

Use. 
 

The approach that we use in this paper addresses the shortcomings of 
representative farmer models enumerated by Antle & Capalbo (2001), when they cite 
the limited range of response in the typical representative production model. The 
embedded PMP parameters capture the individual heterogeneity of the local 
production environment, be it in terms of land quality or other site-specific effects, 
and allow the estimated production function to replicate the input usage and outputs 
produced in the base year.  

 Love (1999) made the point that the level of disaggregation matters, in terms 
of the degree of firm-level heterogeneity and other localized idiosyncrasies that get 
averaged out of the sample. This affects the likelihood of observing positive results 
for tests of neo-classical behavior, such as cost minimization or profit maximization. 
In our approach, we impose curvature conditions on the reconstructed production 
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function, since we are aiming for models that reproduce behavior rather than test for 
its theoretical properties. The relative stability we observe within cropping systems, 
despite the presence of substantial yield and price fluctuations is strong empirical 
evidence that farmers act as if their profit functions are convex in crop allocation. The 
gradual adjustment of agricultural systems to changes in relative crop profitability 
suggests that farmers adjust by progressive changes over time, along all the margins 
of substitution, rather than going from one extreme corner solution to the next.  

Zhang & Fan (2001) conclude that the behavioral assumptions of profit 
maximization are too strong for the example to which they applied a GME production 
function estimation. While their level of aggregation was severe, they made the case 
for using GME on the basis of its ability to incorporate non-sample information and to 
deal with imperfectly observed activity-specific inputs. Within our framework, we are 
able to implement more flexible functional forms for production than that used by 
Zhang & Fan, as well as to avoid imposing constant returns to scale, as a result of our 
higher level of disaggregation.  
 
Just et al (1983), stated in their classic production paper that their:  

“Methodology is based on the following assumptions that seem to characterize 
most agricultural production:   

(a)Allocated inputs. Most agricultural inputs are allocated by farmers to 
specific production activities..  
(b)Physical constraints. Physical constraints limit the total quantity of some 
inputs that a farmer can use in a given period of time … 
(c) Output determination. Output combinations are determined uniquely by the 
allocation of inputs to various production activities aside from random, 
uncontrollable forces.” 
 
Just et al’s specification admits jointness in multioutput production only 

through the common restrictions on allocatable inputs. The specification in this paper 
has constraints on the available land, but also allows for jointness between crops in a 
given region, as reflected by the deviations of crop value marginal products from the 
opportunity cost of restricted land inputs. 

The current range of approaches to agricultural production modeling and the 
associated analysis of environmental impacts, seems to fall into three groups; namely, 
disaggregated calibrated or constrained programming models (McCarl, 2000; Alig et 
al., 1998; CVPM1, 1997;  CAPRI2, 2000) disaggregated logistic land use models (Wu 
& Babcock, 1999), and aggregate econometric land use models (Mendelsohn et al., 
1994). 

 
 In this paper we hope to straddle the current divide between programming and 

econometric approaches to production analysis, not only by using constraints and 
output determination in our formulation, but also by using flexible functional forms 
and data in which the principle explanatory variables of yields, prices and crop land 
allocation are based on small stochastic samples. 

 

                                                
1 Central Valley Production Model , used in the 1997  Programmatic Environmental Impact Statement 
of the Central Valley Project Improvement Act  (see references).  
 
2 Common Agricultural Policy Regional Impact (http://www.agp.uni-bonn.de/agpo/rsrch/capri/) 
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III    Using Generalized Maximum Entropy to Reconstruct Production                  
Functions 
 

The term ‘reconstruction’ was developed in the field of image processing 
where the problem of reconstructing images from incomplete data is, by definition, 
ill-posed. Image reconstruction uses structural information about the image to 
generate a complete image from sparse or incomplete data observations. A simple 
example is to use curvature criteria to reconstruct an image of the rings around Saturn 
based on relatively few pixels sent from outer space. The analogy in production 
models is to reconstruct the production surface for a specific crop at a specific 
location by using a small set of observations of the average product and marginal 
input allocations. 
    Reconstruction methods are now used in several scientific fields, among which are 
tomography, astronomy, and the earth sciences. We view the problem facing 
agricultural policy modelers as one of trying to reconstruct the behavioral and 
technical relationships that drive agricultural production decisions, at a scale that has 
policy relevance for those environmental resources affected by agricultural activity. 
Often the scale of disaggregation that is required for meaningful environmental policy 
analysis, differs widely from that of the economic data set available. It follows, 
therefore, that a flexible form production function model on the same level of 
disaggregation as that desired for environmental policy will suffer from low degrees 
of freedom or be ill-posed. Hence the need for a reconstruction approach. 
Consequently, maximum entropy estimation is a commonly used basis for 
reconstruction algorithms in the physical sciences (Desmedt 1991), and is coming into 
increasing use in agricultural economics.  

 The nature of the data set defines the precise reconstruction method to be used. 
For disaggregated policy models, the available data usually takes the form of short 
time-series at the desired level of disaggregation, or a cross-sectional survey sample 
taken over each disaggregated region. A reassuring characteristic of generalized 
maximum entropy (GME) estimators is that, while they effectively estimate ill-
conditioned or ill-posed problems, they are consistent in large sample, and enjoy the 
usual classical properties of estimators (Mittlehammer et al, 2000). The GME 
reconstruction approach advanced in this paper is completely in accord with classical 
econometric procedures for large sample problems. The novelty of the paper lies in 
the idea that the modeler does not have to accept the stricture of non-negative degrees 
of freedom, but may specify a complex model at the level of disaggregation that is 
thought to minimize the effect of estimation and aggregation bias on the model 
outcome. The modeler can specify flexible multi-input production functions for any 
number of observations and calibrate closely to the base conditions. Essentially we 
show that a minimal level of data, that would have restricted the modeler to a simple 
linear programming model, in the past, can now be used to calibrate and reconstruct a 
set of multi-input quadratic production functions.  Other functional forms that have 
continuity and concavity can also used, namely the trans log and generalized Leontieff 
form. In the discussion below we use a quadratic production function, and model the 
multi-outputs from a disaggregated unit using the specification in Just et al. (1983). 

  The first-order conditions for optimal allocation have to incorporate the 
shadow value of any constraints on input usage. Since the allocatable inputs are 
restricted in quantity, and rotational interdependencies can exist between crops, we 
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use a modified PMP model on each data sample to obtain a numerical value for a 
shadow price that may exist above or below the allocatable input cash price. 
Specifically, we impose upper- and lower-bound calibration constraints on the crop 
allocation in each sample to generate the additional economic values that may be 
observed due to rotational interdependencies or land heterogeneity3. For cases where 
the data actually contains reliable information on rental markets, the reconstruction 
proceeds directly, without the intervening PMP stage – whose only role is to generate 
shadow values for rotations and allocatable inputs that are consistent with the data. 

Assume that we have "n" observations over time on a farm unit that produces "j" 
crops, each of which has "i" inputs. There is a subset of restricted, but allocatable 
inputs, such as land or irrigation water. The data set consists of n observations on crop 
price, input price, crop yield, and input use by crop. This data set and other agronomic 
data can be used to define the implicit Leontieff matrix A and specify the following 
calibrated linear programming problem. 

(1)
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where b is the vector of available input quantities, p and ω are the output and input 
price vectors (respectively) and y is the yield per acre, and x is the decision variable 
for cultivated land area.   

 
 The first set of allocatable resource constraints generates the shadow values for 

those constraints that influence the observed crop and input allocations. The perturbed 
upper- and lower-bound calibration constraints ensure that the crop allocation is 
within ε of the observed data4, and in addition, provide measures of the rotational cost 
interdependence between the crops based on the equi-marginal principle for land 
allocation via their shadow values. 

A generic GME reconstruction problem can be written as 
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3 We are indebted to Wolfgang Britz for the original idea, and other helpful comments. 
4 The ε also prevents a degenerate dual solution (see Howitt, 1995) 
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define the space that can contain non-zero probability mass. ι  is a unit vector which 
defines the usual adding up property of the probability measures. 

 
Before the GME reconstruction program can be solved, however, these support 

values have to be defined for each parameter and error term. To ensure that the set of 
support values spans the feasible solution set, we define the support values for the 
production function parameters ( )βz

* as the product of a set of five weights and 

functions of the average Leontieff yield over the data set, for a particular crop/input 
combination. The support values for the error terms ( )ez

* are defined by positive and 

negative weights that multiply the right-hand side values of the equation defined 
above for the expected vector of sampling errors5.  

 
  If the quadratic production function is defined as: 

(2) 0.5j j j j jy x x Z xα ′ ′= −  

then, the resulting GME reconstruction problem becomes: 
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Curvature is added by solving for the parameters of the Cholesky decomposition 
of the quadratic matrix L where Z= LL′, and constraining the diagonal Cholesky 
parameters to be nonnegative, for details see (Paris & Howitt, 1999). The objective 
function is the usual sum of the entropy measures for the parameter probabilities for 
the Cholesky decomposition of the quadratic matrix and the vector of linear terms. 

                                                
5 while these are usually spaced symmetrically about zero, by practitioners of GME, this is not enough 
to ensure that the model error is zero in expectation. Further comment on this point is made in the 
paper.  
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Following the normal GME procedure, the entropy of the error term probabilities is 
also maximized. The first equations are the first-order conditions that set the cost 
ratio6 equal to the marginal physical product. If some inputs are restricted and the 
PMP calibration stage is used, the input cost in the first order equation will include the 
resulting shadow values as well as the nominal input price.  

The second set of equations fit the production function to the observations on 
average yield. While it is not normal in econometric models to include average 
product equations, we think that the information contained in this constraint is 
particularly important for two reasons. First, information on yields is likely to be the 
most reliable data the farmer can give. While farmers are often doubtful and reluctant 
about stating their costs of production to survey enumerators, they always know their 
yields and hold them as a point of pride in their farming ability. Second, while the 
marginal conditions are essential for behavioral analysis, policy models also have to 
accurately fit the total product in order to be convincing to policy makers and to 
correctly estimate the total impact of policy changes on the environment and the 
regional economy. Fitting the model to the integral as well as the marginal conditions, 
therefore, improves the policy precision of the model. 

The next two equations are not found in the standard GME specification. Since 
they require the sum of the errors on each equation sum to zero over the observations, 
they can be thought of as moment conditions that force the resulting small sample 
estimates to be unbiased. Even though the support values for the error terms are 
centered around zero, this does not ensure that the resulting maximum entropy 
solution is centered around zero, as the relative weight of the error term probabilities 
in the solution depends on the number of parameters and observations in the 
reconstruction7. 

The remaining equations in the reconstruction program are the standard adding up 
constraints on the parameter and error probabilities, as explained previously. Due to 
the separability assumption on the production functions, if the shadow value of the 
constraining allocatable resources is included in the input cost, the reconstruction 
problem can be solved rapidly by looping through individual production functions. 

We recognize the sensitivity of our parameter estimates to the choice of supports 
that we specify for the parameter space.  Many practitioners of GME estimation 
overlook the importance of this issue, and assume a general insensitivity of parameter 
estimates to the researcher’s choice of support specification. Paris & Caputo (2001) 
have demonstrated the importance of support specification, both analytically, as well 
as through Monte Carlo studies. While we have not implemented the techniques 
proposed by others to get around this shortcoming of GME estimation (Paris, 2001; 
Marsh & Mittlehammer, 2001), we have placed a priority on exploring them in future 
work. We do, however, pay close attention to an even more serious source of bias in 
GME estimates, by imposing moment constraints, similar to those used in GMM 
(Hansen, 1982) or Empirical Likelihood estimation (Qin & Lawless, 1994). We find 
that this has not been explicitly addressed in the empirical literature employing GME 
methods, and should be of concern to practitioners. 
 

                                                
6  Defined as the ratio of input cost over output price 
7 See additional development of this point in Howitt & Msangi (2002)  
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Calculating Comparative Static Parameters for the Model  

The quadratic production function model has convenient properties for calculating 
policy parameters. Note that the Hessian resulting from the constrained profit 

maximization problem (1), is simply: Z
xij

−=Π
2

2

δ
δ

, which will be useful in the 

following derivations. 
 

Calculating the Derived Demands for Inputs 

For simplicity, we will use the unconstrained profit term for a single crop. 
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From the above equations, it is clear that if we can invert the Hessian of the 
maximized profit expression ( - Z-1 ) we can calculate the derived demand for each 
input for each crop as a linear function of input and output price. 

The elasticity of the input demand follows directly from : 

*
(5) i

i i
i

The elasticity is g
x

ωη =
 

This elasticity is based on a single crop. For the usual multi-output case we weight 
the individual crop contribution by their relative resource use to arrive at a weighted 
elasticity for the resource. 

 
 

Calculating Supply Functions and Elasticities 
 
Since production is a function of optimal input allocation and we now have the 

input demands as a function of input and output price, we can derive the output supply 
function by substituting the optimized input derived demands into the production 
function and simplify in terms of the output price. Going back to the derived demand 
and production function formulae: 



AAEA Selected Paper  Howitt & Msangi 

 10 
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Calculating  Elasticities of Input Substitution 
There are many elasticities of substitution with different advantages and 
disadvantages. To demonstrate that we can obtain crop and input specific elasticities 
of substitution we use the classic Hicks elasticity of substitution defined by Chambers 
(1988, p. 31) as: 
 

*
1

1 2 1 1 2 2
1,2 2 2

1 2 11 2 12 1 2 22 1
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σ
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The above derivations show that if the production function is quadratic and the 

Hessian is invertible, then it is possible to calculate all the standard econometric 
comparative static qualitative production measures that apply to the calibrating data 
set and reflect the average shadow values for restricted or incompletely priced inputs. 
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We note that the supply functions, derived input demands, their associated elasticities, 
and the elasticities of substitution are obtainable from a data set of any size from one 
observation upwards. Clearly the reliance on the support space values and the micro 
theory structural assumptions is much greater for minimal data sets. However the 
approach does enable a formal approach to disaggregation of production estimates, 
since the specification of the problem is identical for all sizes of data sets. 

   So far, this analysis has used the quadratic production function. Two other 
functional forms that are widely used are the Generalized Leontieff and Translog 
production functions. As would be expected, the ME empirical reconstruction 
methods outlined in this chapter apply equally well to these production functions, 
provided the input data for the trans-log function is bounded for a local optima. 

 
 

 IV.  The Empirical Reconstruction of Regional Crop Production in California. 

The empirical setting in which we will present our reconstruction approach is 
that of the California Statewide Water and Agricultural Production (SWAP) model 
(Howitt et al., 2001). In this paper, however, we will go beyond the deterministic 
Maximum Entropy reconstruction in SWAP (based on a single year of statewide 
data), and employ GME over several years of data from a subset of the original 
SWAP regions.  

 
 SWAP is a multi-input, multi-output economic optimization model that is 

disaggregated into 24 regions that span the main agricultural regions of California. 
This level of disaggregation is based on the way that agricultural data is collected in 
California, and how water allocation institutions and agencies vary by regions. 
  The SWAP model specifies agricultural water demands on a monthly basis 
and extrapolates the model to consider agricultural water demands for the year 2020.  
Irrigated acreage, by crop and region, for the base year 1995 and forecasts for the year 
2020 are based on California water agency data.  This specification allows for a robust 
representation of alternative water management policies that can be interpreted on a 
statewide basis. 

 Regional crop prices, yields and areas grown were based on annual county 
agricultural commissioner reports.  The data used in our reconstructed GME-based 
model includes the years 1993 to 1998, with prices normalized to 1992 levels.  
 
Data Restrictions   

Ideally, production models are reconstructed from a consistent time series of 
regional data, which includes all the crop inputs and outputs and their associated 
prices. Unfortunately, such rich, consistent data sets are rarely available. In some 
cases, comprehensive cross-section survey data is available, but it is rarely collected 
for more than one year. Given these restrictions, we have to use data collected 
annually by regional public agencies. 

The data available is similar to many disaggregated production data sets 
collected consistently by public agencies. Typically, such data sets contain data that is 
available on a regional basis for crop yields, prices, and acres harvested, but rarely is 
available for other input use on a crop and regional basis. In this example that focuses 
on irrigation water use and its derived demand we have to generate estimates of the 
crop water allocation and associated capital inputs. These are derived by combining 
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the crop acreage data and total surface water allocated to regions with crop water 
requirements based on the regional climate, and the efficiency of water application in 
the region. Other authors (Lence & Miller, 1998b) have found the Entropy principle to 
be useful in recovering activity-specific input usage from aggregate data.  

The production functions in this paper are reconstructed from four years of 
data (1995 – 1998). However, we are faced with data inconsistencies that are 
commonly encountered when using empirical farm data for estimation. Specifically, 
the problem is that the observed crop allocations, based on the raw data, sometimes 
violate the assumption of efficiency and optimal decision-making. Since SWAP, like 
the majority of economic models, is predicated on the assumption of efficient 
decisions and bounded rationality, the empirical data has to be reconciled with 
economic efficiency before we can proceed with reconstruction of the parameters. 
The empirical task is to calibrate our model to account for all the crops that are 
observed to be grown, even those that, based on the raw data, appear to lose money. 
In short, we have to adjust the raw data to make it consistent with informed and 
rational allocations. 

 The most logical explanation for growing crops that appear to lose money is 
that there is some added benefit from the crop to the producers that is not reflected in 
the observed data. This increased profitability can take the form of either reduced 
costs for that crop or increased returns in other crops. The marginal opportunity cost 
of production for apparently “inefficient” crops that require labor and machinery at a 
different time than the main "cash" crops will be below the input opportunity costs for 
the main "cash" crops. Crops with this characteristic are colloquially termed a "filler" 
crops by some farmers. A more common reason for growing apparently “inefficient” 
crops is the rotational benefits on crop yields that many low value "rotational" crops 
confer on cash crops in subsequent years. Technically this effect is an agronomic 
complementarity that adds to long-term revenue, but is not reflected in the annual 
crop costs and returns. In both econometric and programming models, these inter-
temporal effects are usually addressed by arbitrary data adjustments to the cost or 
returns of the relevant crops. An alternative, and equally unsatisfactory method, is to 
impose fixed rotational proportions as constraints among the crops. These ad hoc 
adjustments do not use a consistent definition of inefficiency, or use a specified 
measure of adjustment across all crops and inputs.  

 
The capital costs used to calibrate SWAP are restricted to those used in 

irrigation since this is the particular focus of the model. The annual variable cost of 
capital in production therefore represents the annual irrigation system cost per acre, 
and is a combination of labor, management, capital costs and an associated irrigation 
technology that yields a given irrigation efficiency. The variable capital cost defines a 
functional relationship between the cost of irrigation technology and improvements in 
water use efficiency.  Thus, investments in “better” irrigation technology result in an 
increase in irrigation efficiency that uses less applied water to achieve the same yield. 
In the SWAP model, prior estimates of CES isoquant functions (USBR & Hatchett, 
1997)  are used to calculate the variable capital cost that is implied by a given 
physical efficiency of water use for a specific region and crop. The base year 
irrigation efficiency is calculated from the ratio of the regional ET divided by the 
observed applied water. This efficiency value is used in the CES function to solve for 
the appropriate capital cost using parameter estimates presented in CVPM.   
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   The cost per acre-foot of water for each region uses a weighted average cost of the 
aggregate supply of water for all districts within the region. Solving the production 
optimization problem generates the annual amount of applied water that is allocated 
by crop and region.  The annual quantity is apportioned by month, based on monthly 
crop water requirements, which have been identified for each crop and region using 
the Department of Water Resources Consumptive Use Model (1997). 
 
 
Production Function Specification 
In the original SWAP specification, each region has a different production function 
for each of the crops produced. Within a region the production of different crops is 
connected by the restrictions on the total land and water inputs available and the land 
cost function. The wide range of agricultural production inputs has been aggregated 
and simplified to just land, water, and capital. 
The production function is written, in general, as:    

   
The specific quadratic form used in the SWAP model has the form: 

   
where  y is the total regional output of a given crop and xi is the quantity of land, 
water or capital allocated to regional crop production. The quadratic matrix zeta ( Z ) 
captures decreasing marginal productivity of inputs, as well as interaction effects 
between inputs.  Second-order conditions for the production problem require that the 
zeta matrix is positive-definite, and are implemented by imposing necessary 
conditions on the Cholesky decomposition of the zeta matrix. 

The land allocated to different crops is subject to substitution and 
complementary relationships between crops. These effects are due to the inter-
dependence of crop production rotations, the heterogeneity of land and its restricted 
quantity for many farm enterprises 

  
The full problem defined over G regions and i crops in each region for a single year is 
: 

 
 
 

1 2 3( 10 ) ( , , )y f x x x=

[ ] [ ]
1 11 12 13 1

1 2 3 2 1 2 3 21 22 23 2

3 31 32 33 3

( 11 ) , ,

x z z z x

y x x x x z z z x

x z z z x

α α α
     
     = −     
          

G i i Gi 1 2 3 1 1 2 2 3 3

Gi 1Gi 1

Gi 2Gi 2

Max � � S I � [ � [ � [ � [ & [ & [

( 12 )

subject to � [ ; � /DQG �

� [ ; � :DWHU �

ω− − −

≤
≤



AAEA Selected Paper  Howitt & Msangi 

 14 

where the total annual quantities of irrigated land and water ( X1 and X2) are limited 
in each region and must be optimally allocated across crops grown in that region. By 
changing the RHS quantity of water available on the constraint, we generated a 
derived demand function for each region8, which were then used to define agricultural 
demand nodes for water within the economic –engineering model (CALVIN9). Since 
CALVIN requires that water is valued on a monthly basis, the model specification 
was modified to give monthly valuations of water, by specifying monthly crop water 
requirements, as a proportion of the total annual consumptive use applied in each 
month. For the purposes of this paper, we have kept the optimization on the basis 
annual resource requirements and allocations. 
 
 
 
Reconstruction of the Economic Model 
 
Calibration of the full set of parameters for the production function with three inputs 
requires that each regional crop be parameterized in terms of nine parameters, three 
for the linear terms, and six for the quadratic matrix. After imposing the required 
symmetry restrictions for the off-diagonal terms, in a single set of base year data the 
number of equations are limited to three first-order conditions, which represent the 
underlying behavioral assumption of optimizing behavior with respect to the three 
production inputs. Given the small sample of four years, we have twelve observations 
on input allocations, and three observations on output, for a total of 16 observations. 
The resulting disaggregated production function has 7 degrees of freedom. 
 In addition, given the methods used to generate the water application and irrigation 
capital input levels, there is likely to be considerable collinearity between the inputs 
for a given crop and region. Fortunately, the GME approach that we use for the 
reconstruction is robust under collinearity and low degrees of freedom.  
  The SWAP model is reconstructed in three stages. In the first stage, a linear 
programming ( LP ) model is constructed for each region that incorporates all the 
available data on cropping acreages, annual water use, yields, output prices and input 
costs and quantities. The LP model is maximized subject to land and water constraints 
and also a set of constraints that calibrate the model to the observed land use and 
production quantities in each region. This initial stage is the same as that used in the 
positive programming approach (Howitt 1995). Stage two consists of reconstructing 
the production function by Maximum Entropy, using the calibration constraint 
shadow values to define its curvature; which is followed by the solution of the non-
linear constrained maximization problem (12) in the third stage.  

Where land is limiting and an adequate measure of the rental rate for land is 
not available, the opportunity cost of land must be inferred from the shadow value of 
the crops grown. However, for multicrop systems where rotational interdependencies 
among crops change their marginal contribution to rental returns, the crops need to be 
divided into those that are net users of attributes (weed and disease control, or 
fertility) from other crops and those that are net contributors to the farm productivity. 
The third group is assumed to neither contribute to, nor reduce farm productivity. We 
can term these three groups of crops as cash crops, rotational crops, and filler crops. 

                                                
8 note that these can be obtained directly from the inverted Hessian, as explained previously 
9 California Value Integrated Network ( http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/) 
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Taking the example of Imperial Valley, from our SWAP data set, we can make 

a comparison between the ranking of each crop category according to the net income 
earned per acre, as well as to the shadow values derived from the 1st stage LP problem 
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where x  is the vector of observed crop acreages, p′ and c′ are the revenues and costs 
per acre for each crop, A is the usual Leontief input-output matrix, b is the vector of 
available inputs and ε  is a small perturbation. The vector of shadow values Uλ  and 

Lλ  
are associated with the upper and lower bound constraints on observed acreage,  
respectively, and are shown below, alongside the cash net income generated per acre 
by each crop.  

Figure 1. 
The rankings are, of course, similar, given that the shadow values are defined in 

terms of the objective function value. Pasture gives a negative shadow value on its 
calibration constraint, while Fodder has none (it, instead determines the opportunity 
cost of land).   

A similar ranking, however, can also be derived from applying non-parametric 
data envelopment analysis (DEA) to our data. The non-parametric mathematical 
programming approach to measuring efficiency in production was pioneered by 
Farrell (1957), and has been the basis of a vast literature on productive efficiency of 
firms, and other productive decision-making units ( reaF ��  et al., 1985, 1994; Charnes 
et al., 1978). Farrell’s concept of allocative efficiency of productive inputs among 
firms within an industry ties in very well with the Pareto-Koopmans concept of 
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efficiency under decentralized allocation (Sengupta, 1989), and we can represent the 
DEA approach with the following LP problem, following the formulation in 
Sengupta: 
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where (i,j) are respective indices for the set of inputs and output activities, and k is a 
particular output (crop). The ‘reference’ activity, k,  serves to define the numeraire 
condition for a Walrasian equilibrium, which assigns prices to the outputs and inputs 
of productive firms within an industry. In our formulation of this problem, we treat 
the crop enterprises that we observe in our data set as decision-making firms, and 
repeatedly solve the LP problem above, using each crop, in turn, as the reference 
output j’, so as to obtain a set of imputed Walrasian “efficiency” prices for each crop 

and input ( )''
ˆ,ˆ

ijj βα . From these imputed prices, we can then calculate the imputed 

per-acre net return for each crop activity as: ∑ ⋅−⋅=
i

ijijjjimp ayldnr βα ˆˆ , where jyld  

is the crop yield and ija  is the Leontieff coefficient corresponding to input i  and 

output j . This can then be compared to the true per-acre net return of each crop 
activity, as calculated previously for the PMP 1st stage LP program as: 

∑ ⋅−⋅=
i

ijijjjtrue acyldpnr , where jp and ijc are, respectively, the true output prices 

and input costs observed in the data.  
 By taking the absolute value of the difference between these calculated net 
per-acre returns10, we’re able to obtain the ranking shown below:   

Figure 2. 

Deviation of Imputed per-acre Net Returns 
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10 and scaling down the actual net-returns calculated in the data by an appropriate scale, so that they’re 
comparable in magnitude 
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Which corresponds quite closely with the ranking given previously by the upper and 
lower bound PMP shadow values, although cotton is somewhat higher in prominence. 
This shows that the PMP-derived measure of ‘revealed’ efficiency in the allocation of 
land between cropping activities, corresponds closely with measures derived from 
traditional non-parametric measures of allocative efficiency in production and their 
deviation with net returns to land we observe in the data. This suggests to us that PMP 
constitutes a valid basis for characterizing land allocation behavior in production, and 
can be further augmented by the GME reconstruction framework presented here.   
 
Reconstructing a Five-Region Production Model 
 Data from five regions in California’s central San Joaquin valley are used to 
illustrate disaggregated reconstruction process.  The reconstruction sequence proceeds 
by first solving the constrained calibration in equation (1) and using the resulting 
shadow values to define the LHS of the first-order conditions for input allocation in 
equation (3), and solving the generalized maximum entropy problem. The resulting 
probabilities from the GME solution are used to generate the expected values of the 
production function parameters αi and zij . The regional production problem defined 
in equation (12) is solved using the production function specified in equation (11). 
 The five contiguous regions shown in figure( 3) range from 1,022 to 51 
thousand irrigated acres and have different institutions, water prices , and drainage 
conditions. The reconstruction problem was defined as a series of linked nonlinear 
optimization problems and solved by GAMS (Brooke et al., 1988), taking  90 seconds 
on a 0.75 megahertz PC.  The problem requires the reconstruction of 33 three-input 
quadratic production functions, one for each regional crop grown. 
 

Figure 3 
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Despite being contiguous regions in the same valley, there are considerable 
differences in cropping patterns. Figures 4 (a) – (d) show the regional differences for 
four of the principle crops. 
 
 
 
 

Figures 4a and 4b 
Alfalfa                                                  Cotton 
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Figures 4c and 4d 
Tomato                                                  Field Crops 
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 The five regions despite their proximity, show a wide variation in crop selection due 
to differences in soil-type, microclimate, water quality, and water constraints. 
 

The goodness-of-fit of the simulated GME regional models can be measured 
by a measure equivalent to the familiar R2 parameter11 applied to the results from 

                                                
11 Defining yandyy ii ,,ˆ  respectively as the simulated production, actual production, and mean 
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simulations based on the reconstructed crop production functions. Two key measures 
are the levels of regional crop production and the associated regional cropland 
allocations.  The results show that the model simulations explain a large proportion of 
the deviation from the mean level of crop production, and a lower, but acceptable 
proportion of the land allocation. While the production R2s are comparable in many 
crops with large sample econometric results, it should be borne in mind that we are 
applying large sample criteria to reconstructions (estimates) based on very small 
collinear data sets. 

When the R2 parameters are weighted by the regional crop proportion to the 
total cropped area they show the overall fit of the simulated model. The weighted 
production R2 parameter for the disaggregated model has a value of 0.53, while the 
simulated land area by crop and region has a weighted value of  0.21. These aggregate 
parameters indicate the amount of additional information in the simulation model over 
the disaggregated sample mean.  

In absolute terms the disaggregated simulation model captures the regional 
input allocation well, with a weighted percentage error of 11.95% for land, 17.24% 
for water, and 17.36 % for capital. The average absolute percentage error of crop yield 
prediction is 8.86% 

Table 1. 
Disaggregate Model R2 Values for Regional Production 

 
 Cotton Alfalfa Field Grain Tomato S-Beets Truck 

Regions        
V14 0.892 -2.291 0.181 -0.537 -0.287 1.000 0.808 
V15 0.878 -2.157 0.997 0.331 0.864 0.993 0.527 
V16 0.869 -9.147 -1.686 0.756   0.710 
V17 0.921 0.559 0.989 -3.595 0.157 0.998 0.429 
V18 0.919 0.794 0.996 0.355 0.946 1.000 0.937 

 
 The simulation R2 measures show that, for most regions and crops, the 
simulated production has good explanatory power and fit. What is surprising, and 
currently inexplicable, is how the regional disaggregated model can fit a crop well for 
four regions and be completely wrong for the fifth region. See, for example, the case 
of field crops in table 1. The explanation for this may be that the shared simple price 
and yield expectation scheme are inappropriate for that region. This problem needs 
further investigation. The R2 for simulated land allocation shown below in table 2 
indicates less precision in fit than that of the production results. This is to be expected, 
as the simulated allocation of land input is an additional stage removed from the 
estimation than the production levels, with the consequent increase in potential error.  

 
Table 2. 

Disaggregate Model R2 Values for Regional Land Allocation 
 

 Cotton Alfalfa Field Grain Tomato S-Beets Truck 
Regions        

V14 0.797 0.193 -1.380 -0.126 -0.532 -0.135 -0.628 
V15 0.834 -1.933 -0.476 -0.537 0.467 -1.120 -2.145 
V16 0.814 0.363 0.752 0.172   -0.710 
V17 0.350 -0.750 0.246 0.268 -1.622 -0.351 -0.937 
V18 0.509 -1.183 -0.355 -0.989 0.200 -0.374 0.393 
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Being that the primary use of this regional model is to estimate the response of 
farmers to changes in water price or availability, it follows that the elasticity of 
demand for water is the most important policy parameter derived from this study. If 
the elasticity differs over regions there will be gains in policy precision for the 
disaggregated regional model.  
 

Table 3. 
Regional Input Demand Elasticities. 

 
 LAND WATER CAPITAL 
    

V14 1.502 0.841 0.583 
V15 1.614 0.628 0.392 
V16 1.318 0.537 0.364 
V17 1.296 0.429 0.377 
V18 1.405 0.501 0.425 

 
Table 3 shows that all the water derived demands are all within the expected inelastic 
range, but the regional difference in elasticity between the highest and lowest is 
almost two-fold. An average elasticity over the regions would distort the response to 
water policy, given the substantial differences in the size of the regions and their 
elasticities.  The two other inputs show a smaller, but significant range of elasticities, 
further justifying the use of the disaggregated model. 
 

Table 4. 
Regional Output Supply Elasticities 

 Cotton Alfalfa Field Grain Tomato S-Beets Truck 
Regions        

V14 1.079 0.683 0.107 0.308 2.013 0.083 0.317 
V15 1.293 0.141 0.148 0.363 2.514 0.082 0.411 
V16 1.109 0.723 0.117 0.299   0.114 
V17 1.258 0.643 0.120 0.352 1.688 0.127 0.282 
V18 1.346 0.545 0.113 0.398 1.577 0.068 0.880 

 
 The supply elasticities shown in table 4 are within the expected range, with the 
key crops of cotton and tomatoes being moderately elastic. The very inelastic supply 
response of sugar beets may be due to the current restriction on sugar beet processing 
capacity in the region. Some crops, such as cotton have a fairly uniform elasticity 
across regions indicating there’s little qualitative advantage to having a disaggregated 
model. However, other crops such as alfalfa and truck crops show upwards of a five-
fold difference in elasticity values, indicating that a significant benefit could be gained 
from a disaggregated analysis.  

Table 5 shows the Hicks elasticities of substitution between land water and 
irrigation capital for a specific region (region V15). Except for tomatoes, all the 
substitutions are in the expected (relatively inelastic) range. Since the common 
requirement to calculate elasticities of substitution is the ability to reconstruct the 
Hessian, other more sophisticated substitution measures can also be calculated. 
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Table 5. 
Regional Hicks Elasticities of Substitution 

 WATER CAPITAL 
Cotton.LAND 0.536 0.306 
Cotton.WATER  0.671 
Alfalfa.LAND 0.609 0.533 
Alfalfa.WATER  0.459 
Field.LAND 0.578 0.641 
Field.WATER  0.547 
Grain.LAND 0.303 0.219 
Grain.WATER  0.385 
Tomato.LAND 1.597 1.260 
Tomato.WATER 1.160 
S-Beets.LAND 0.346 0.529 
S-Beets.WATER 0.546 
Truck.LAND 0.808 0.923 
Truck.WATER  0.763 

 
Reconstruction of an Aggregate Production Model 
 
 The performance of an aggregate model over all the five regions and four time 
periods is tested by reconstructing an aggregate GME production function for each 
crop. A regional dummy variable is also included to allow for a linear shift in 
production between the differently-sized regions. The aggregate specification is 
identical to the regional form, but with the added benefit of the linear dummy 
variable. The number of parameters for each crop production function is now 10, and 
the number of observations used for each estimation is 80 giving the resulting 
reconstruction greater degrees-of-freedom. Despite the larger sample size and the 
regional dummy variables, the ability to predict regional crop production or land-use 
allocation is abysmal. Tables 6 and 7 show the equivalent measures of fit ( R2 ) for the 
aggregate model, as tables 1 and 2 did for the disaggregated model. 
 
 
 
 
 

Table 6. 
Aggregate Model R2 Values for Regional Production 

 
 Cotton Alfalfa Field Grain Tomato S-Beets Truck 

Regions        
V14 0.677 -2573.590 -1022.030 -8.222 -377.648 0.466 -69.145 
V15 -0.022 0.096 -2.697 -0.412 -708.790 0.725 -18.261 
V16 -9.907 -1185.980 0.865 -201.554   -17.689 
V17 -1.698 -0.955  -273.980 -1143390.000-7278.790 -37.903 
V18 -2.904 -19.837 -12.723 -0.140 -94245.800 -17.856 -7583.600 
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Table 7. 
Aggregate Model R2 Values for Regional Land Use 

 
 Cotton Alfalfa Field Grain Tomato S-Beets Truck 

Regions        
V14 -0.746 -2055.250 -3618.360 -3.765 -339.791 -0.081 -78.336 
V15 0.154 -4.533 -47.123 -1.552 -692.588 -1.055 -32.596 
V16 -3.909 -106.640 -0.532 -28.513   -99.504 
V17 -0.838 -1.018  -24.178 -41206.000 -4112.380 -112.878 
V18 -0.691 -24.982 -14.699 -28.914 -69459.600 -25.483 -8982.340 

 
In reviewing tables 6 and 7, remember that any value that is less than one indicates 
that using the disaggregate average data value will yield a better disaggregate fit than 
the simulated output of the aggregate model. For the production levels, only 18% of 
the regional values meet this criteria. For land allocation, the results are even worse 
with only one of the regional land allocations beating the average value. 
 
 

V. Conclusions 

This paper shows that, by using a combined PMP and GME approach, it is 
possible to reconstruct flexible form production function models from a data set of 
modest size. A researcher can reconstruct a similar theoretically-consistent flexible 
form production model using a data sets that range from “LP budget data” to full 
econometric data sets with standard degrees of freedom. The convergence of GME 
estimates to conventional estimates as the sample size increases means that as the data 
set is expanded there is a continuum between optimization and econometric models. 

The reconstructed production models yield all the comparative static properties 
and parameters of large sample models, thus enabling the input demands, output  
supplies and elasticities of substitution to be calculated directly instead of by the 
parametric methods traditionally used by programming models. The effect of any 
constraints on production is directly incorporated into the estimates, through the 
addition of the calibration constraint shadow values to the nominal prices of the 
allocatable resources. 

Due to the relative sparseness of the data set used in this paper (only four years), 
the fit of the resulting production model significantly depends on the definition and 
range of prior support values for the parameters, and the expectation structure 
assumed for the farmer’s expected yields and prices. Nonetheless, we feel that this use 
of prior information on the farming system and process of production is a valuable 
source of modeling information that should be formally included. An advantage of 
modeling production functions (over dual cost functions) is that the variables (being 
quantities of input and output) can be readily understood and used  by researchers in 
other disciplines12. 

In this example the aggregation bias in the aggregate model swamped any gains 
in reducing the small sample bias. The disaggregated model yielded greater precision 
and regional response. The gain from disaggregation of production models is an 
                                                
12 Such as the civil engineers with whom we collaborated with on the CALVIN engineering-economic 
modeling project.  
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empirical result that needs substantially more testing before one can conclude that it is 
a common phenomenon, however in this California cropping example the empirical 
results are conclusive.   
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