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Abstract 
The paper analyzes the extent to which ignorance of heteroskedasticity or its  inadequate modeling  
would result in misleading statistical inferences about crop yield distribution. We follow the “detrending 
mean yield approach” in which we model the conditional mean yield using a panel data model. We 
assume alternative structures of variance-covariance matrix for the random component. 
Heteroskedasticity robust and non-robust estimation methods are used before performing a joint 
normality test on the random component of crop yield data. Our findings provide evidence against the 
claim that virtually all previous findings of non-normality in crop yields are infected because of the 
ignorance of heteroskedasticity or its inappropriate modeling. Accounting for heteroskedasticity in crop 
yield data would matter for validity of evidence against normality only to the extent that its proportion 
of departure in the data from normal distribution is relatively sizable. 
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1. Introduction 
Over the last decades there has been a considerable empirical work by agricultural economists to 

determine the appropriate probability distribution model that best characterizes crop yield.  The central 

focus since the early 1970s has been the issue of whether crop yields are normally distributed or not. 

Modeling crop yield distributions is relevant for many purposes such as (i) estimating crop yield risk, 

designing and rating crop insurance contracts; (ii) decision-making in agricultural production and risk 

management under uncertainty; (iii) framing sectoral farm policies.   

 

Modeling crop yield distributions, however, has been quite difficult as substantiated by the number  

distribution models postulated and investigated in the literature, as well as the resulting empirical work  

to determine which one best fits the data. Conventional approaches in early studies aimed at estimating 

yield risk and rating crop insurance contracts used the normal distribution. Following an influential 

study by Day (1965) that found evidence against normality on crop yield distributions, a view has 

emerged that crop yields are skewed and do not follow normal distributions. The theoretical basis for 

this view is built on two related elements: (i) the biological constraints that limit the maximum yield that 

can be observed and (ii) the environmental factors (e.g.; weather, pest damages) that often affect output. 

Such elements would make low yields more likely observed (Goodwin and Ker, 1998). 

 

 Day’s work suggested that distributions of crop yields in the Mississippi cotton, corn and oats have 

negative skewness (the distribution has a long left tail). Gallagher (1987) reported that soybean yields 

are negatively skewed; Nelson and Preckel found corn distributions to be negatively skewed given 

average fertilizer use. Swinton and King (1991), Ramirez (1999), Taylor (1990), Moss and Shonkwiler 

(1993) also report evidence of negative skewness. In light of these findings, it became clear that failure 

to recognize this skewed yield distribution leads to underestimating of risk yields with severe 
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consequences, especially in rating yield risk for crop insurance design purposes. This has led researchers 

to propose and investigate alternative distribution models. 

 

A relatively recent article by Just and Weninger (1999) suggested that previous findings of skewed yield 

distributions may be the result of inappropriate detrending and failure to properly model 

heteroskedasticity. They identify three methodological problems common in yield distributions analysis: 

(i) misspecification of the nonrandom components of the yield distribution, specifically, the assumption 

of the linearity in time trend for the mean of the distribution, and the ad hoc modeling of the 

heteroskedasticity; (ii) misreporting of statistical significance, and (iii) use of aggregate time-series  data 

to represent farm-level yield distributions. They conclude that, one or more of these problems infect 

virtually all evidence against normality to date.  

 

The modeling of heteroskedasticity in investigating crop yield distributions is the focus of this paper. 

Heteroskedasticity has long been recognized in statistical analysis of crop yields (Gallagher, 1987); 

nevertheless it has received less attention and frequently has been handled inadequately in empirical 

analyses (Yang, Koo and Wilson, 1992). Early studies used the coefficient of variation around the trend 

to measure the variability in crop production (Hazell, 1984; Weber and Sievers, 1985; Singh and 

Byerlee, 1990). The underlying assumption was that detrended yields are homoskedastic within the 

sample period.  Following Gallagher (1987), recent studies have tried to account for heteroskedasticity 

in the nonrandom component of the crop yield; however, different approaches have been adopted on a 

had hoc basis.  There is no common ground on how to model heteroskedasticity nor a consensus on its 

implications for statistical inference on crop yields distribution.  
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To which extent would the ignorance of heteroskedasticity or its inadequate modeling result in 

misleading inferences about the crop yield distribution? This question is the main focus of this paper. 

Our objective is to evaluate how sensitive is the test for normal distribution to alternative methods for 

modeling heteroskedasticity in crop yield data. Following Just and Weninger (1999), we test the 

hypothesis that failure to account for heteroskedasticity or adequately model its structure in crop yield 

data lead to falsely rejecting normality while it is the appropriate distribution.  

 

Our empirical analysis uses data on Soybeans and Corn grains for 99 counties in Iowa from 19972-2003. 

The data set is drawn from the National Agricultural Statistics Service (NASS) data base available on 

the website. The results from the joint test for normal skewness and kurtosis suggest that normal 

distribution cannot be supported for Corn and Soybeans crop yields even after using alternative 

estimation methods that are robust in the presence of particular structures of heteroskedasticity. We use 

the information Matrix (IM) test to investigate this puzzle and found that the proportion of crop yields 

departure from normal distribution that can be attributable to heteroskedasticity is relatively small, 

which suggest why correcting for it does not lead to new statistical inferences about the non-normality 

finding.  

 

The rest of the paper is organized as follows. Section 2 provides a background on the empirical work for 

testing normality in crop yield distributions and reviews some previous findings. Section 3 presents the 

models and estimation methods that can used to account for the presence of particular form of 

heteroskedasticity in the panel data setting. Procedures for testing normality are also presented. In 

section 4 we describe the data set used, the empirical results and their analysis. We close with a 

concluding summary in section 5.  
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2. Background 

Estimation of crop yield distribution has been carried out by agricultural economists using two main  

approaches depending on whether they rely on known parametric distribution or, alternatively, on 

nonparametric methods. Parametric methods require specifying a functional form and distributional 

assumptions about the random component (error term). Nonparametric methods are flexible and make 

no a priori assumption about the error distribution; in this sense, they essentially nest parametric 

distributions (Goodwin and Ker, 1998).  

 

Under the parametric approach, the typical procedure has been to estimate the conditional mean yield, 

remove it from data, and study the distribution of the random component; this procedure is referred to as 

“detrending mean yield approach”. The most challenging task in using this approach has been to come 

up with a well specified functional form for the conditional mean yield. The complexity of economic, 

behavioral, biophysical and sociological processes makes it difficult to correctly specify the model that 

represents the crop yield. The typical approach in papers that explored the distributions of crop yield has 

been to use the deterministic component of yields, which can be adequately represented by a polynomial 

trend function. The main justification for using deterministic component, as pointed out by Just and 

Weninger (1999), is that if economic variables move slowly through time (as widely acknowledged in 

frequency domain literature), then approximation of deterministic component of yields may be sufficient 

for testing normality regardless of the complexity of underlying process. The assumption here is that the 

composite of environmental effects on crop yields are captured in the disturbance term of a statistical 

model. 
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The review of literature suggests that various algebraic forms of the yield response regression have been 

used to detrend the data. Likewise, different corrections methods have been applied to account for 

heteroskedasticity on a had hoc basis. Gallagher (1987) used a frontier model in which the maximum 

attainable yield, YM, is regressed on an annual time trend t; recognizing heteroskedasticity, he used OLS 

residuals to estimate error variance as a function of a time trend. He then used the standard deviation to 

create a time-specific index for yield variance, denoted by VSt, and uses it to weight the observations. He 

substitutes these standardized deviations from this yield frontier as the random variable in the gamma 

probability density function, from which he estimates the model parameters by maximum likelihood. 

 

Nelson and Preckel (1989) utilized the concept of maximum attainable yield. They represent the 

deterministic component of yields with an economic variable (fertilizer). Deviations of yield from its 

maximum were then modeled as a beta distribution conditioned on agricultural inputs. They estimated 

the two beta parameters by maximum likelihood procedure and claimed that yields in each county are 

negatively skewed. However, Nelson and Preckel’s analysis did not consider heteroskedasticity and 

correlation of yields among farms. 

 

 Moss and Shonkwiler (1993) modeled mean yield of corn as a linear time trend, but allowed the 

parameters of this trend to be random according to a Kalman Filter. This is referred to as stochastic trend 

model. They tested the residuals for normality using the Kolmogorov-Smirnov (a nonparametric test) 

and a parametric test described by Bera and Jarque. They imposed homoskedasticity to maintain the 

tractability in the Kalman filter. Their findings provided support for negative skewness in U.S. corn 

yield data for 1930-90. Ramirez (1997) also used an inverse hyperbolic sine transformation in a 

multivariate non-normal parametric model of yield distributions for U.S. corn Belt corn, soybean, and 
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wheat from 1950-89. After removing a linear trend, he tested the random component and found 

heteroscedasticity and nonnormal kurtosis for corn and soybeans.  

 

Goodwin and Ker (1998) modeled the mean yields as an ARIMA process in which they represent the 

percent deviations of yield from its mean with a nonparametric kernel smother. To account for 

heteroskedasticity, they considered Goldfel-Quandt parametric and nonparametric heteroskedasticity 

tests for the ARIMA residuals. In light of their results, they used proportional errors (calculated by 

dividing each error by its associated error forecast) to model the distributions about the forecasted 

yields.  

 

Weninger (1999) pointed out, however, that the order in which tests are done invalidates the 

nonnormality findings. Skewness and kurtosis are tested first under the null hypothesis of 

homoskedasticity whereas homoskedasticity is subsequently rejected. Their work suggested that 

previous findings of skewness and nonnormality may be the result of inappropriate detrending and 

failure to properly model heteroskedasticity.  

 

This literature review suggests that many of the findings on the nonnormal skewness and kurtosis 

reported in previous studies of crop yield distributions may not be robust to alternative assumptions for 

modeling heteroskedasticity and estimation methods used to account for it.  The next section explores 

the strategies for modeling and estimating models with particular forms of heteroskedasticity in the 

context of panel data analysis. A test procedure for testing normality is presented. 
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3. Empirical Framework 

3.1. Modeling Conditional Mean for Crop Yield Data 

In testing normality of crop yield distribution in the “detrending” framework it is assumed that yield data 

can be decomposed into two parts: a deterministic and a random component. The test requires isolating 

the random component of the yield data. A comprehensive economic model of the deterministic trend 

could be used for this purpose. However, as indicated above, such model of the conditional mean crop 

yield is rarely available [see Just and Weninger (1999) for more discussion]. Instead most analyses 

proceed by assuming that the deterministic trend can be approximated by a low-order trend function. We 

follow this approach widely used in the literature to keep the results comparable with previous findings. 

 

Estimating conditional mean yield for crop using data from different units of observation over different 

periods of time can be appropriately handled using methods developed in the context of panel data 

models. For Soybean and Corn yields observed in 99 counties in Iowa from 1973-2003, the basic 

unobserved effect model (UEF) can be written as: 

                                            Yit = Xitβ + αi + uit                                                                             (1) 

Where Yit is crop yield observed in county i (i =  1, 2,…, N) at period t (t = 1, 2,…,T);  αi are called, 

unobserved individual effects or unobserved heterogeneity; the αi are invariant over time, but they are 

assumed to be different across counties;  the uit are called the idiosyncratic errors or idiosyncratic 

disturbances and they change across time. The Xit represent polynomial trend variables. There are 

different methods for estimating equation (1). We present thereafter the most frequently used of them 

with particular focus on how heteroskedasticity is modeled and/or corrected.  
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3.1.1. The Pooled OLS Estimator (POLS) 

Under certain assumptions, the pooled OLS estimator can be used to obtain a consistent estimator of β in 

the model (1). Write the model as 

                                 Yit = Xitβ + vit                                                                                                                                      (2) 

Where vit = αi + uit  , t = 1,…,T are the composite errors. For each t, vit is the sum of the unobserved 

effect and an idiosyncratic error. Assuming that vit ~ iid(0, σ2), that is, for a given Xit, there is no serial 

autocorrelation between observations and, furthermore, errors are not heteroskedastic, a consistent and 

efficient estimator of β can be obtained by Pooled OLS. However, ignoring the panel structure of the 

data by assuming that the error terms are iid leads to results that are not appropriate in many cases; due 

to the presence of αi in each time period, the composite error will be serially correlated. Even though 

serial correlation is absent, contemporaneous correlation across panels may still exist. Neverthless, and 

despite its potential problems, pooled OLS is often used as starting point in applied analyses. Typically, 

its results are compared to results from models that are better suited for the analysis of panel data.  

 

3.1. 2. Extensions to the Pooled OLS Estimator 

Let consider the basic unobserved effects model in (1).   As specified above, uit corresponds to                                    

 the common stochastic error term, and αi is the individual-specific effect, which is assumed to vary 

across individuals but is constant over time. The two explicit assumptions about uit are that (i) uit is 

uncorrelated with Xit; and (ii) it varies unsystematicaly across individuals and time. In particular: 

• E(uit | X) = 0                                                                                                                              (3) 

• E(uit, ujs) | X) = 0  for all t ≠ s or i ≠ j.                                                                                       (4) 
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In modern econometric parlance (Wooldridge, 2001), we distinguish two basic panel data model 

depending on whether or not we assume zero correlation between the observed explanatory variables 

and the unobserved effects.  

• Random effects model: αi is uncorrelated with Xit or Cov(Xit, αi) = 0; 

• Fixed effects model: αi is correlated with Xit or Cov(Xit, αi) ≠ 0 

3.1.2.1. Random Effect Model (RE) 

Under  the random effects assumptions, 

                          Corr(vit,vis) = σα2/( σα2 + σu
2), t ≠ s,                                                                         (5) 

Where σα2 = Var(αi) and σu
2 = Var(uit). Because the usual pooled OLS standard errors ignore this 

correlation, they will be incorrect, as will the usual test statistics. We can use generalized least squares 

(GLS) to estimate model with serial autocorrelation.  

Let define λ = 1 – [σu
2/( σu

2 + Tσα2)]1/2, with 0 < λ < 0.                                                                    (6) 

Then the transformed equation 

Yit - λ Y*
t = λ(Xit – X*

t)’β + (vit – λv*
t),                                                                                               (7) 

where the Y* denotes the time average, 1/T∑Yit, similarly for  X*
i and v* . This equation involves a 

quasi-demeaned data. The GLS estimator is simply the pooled OLS estimator of equation (7). The errors 

in (7) are serially uncorrelated. When λ = 0, the random effects estimator is equivalent to pooled OLS.  

3.1.2.2. Fixed Effects Model (FE) 

The crucial assumption in the fixed effects model is that cov(Xit, αi) ≠0.  The fixed effects procedure 

estimates equation (1) by removing the unobserved effect, αi. To see this, consider the basic unobserved 

effects in equation (1). Now, for each i, average this equation over time. We get  

Y*
i = X*

iβ + αi + u*i                                                                                                                                                                                           (9) 

Where y*i = T-1∑i=1Yt, and so on. 
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If we substract (9) from (1) for each t, we wind up with 

Yit – Y*
i = (Xit – X*

i)’β + uit – u*i, t = 1,2,…,T                                                                                  (10) 

A pooled OLS estimator that is based on equation (10) is called the fixed effects estimator or the within 

estimator. A point to notice is that when λ= 1, the random effect estimator is identical to the fixed effect 

estimator. 

 

3.1.3. Testing and Correcting for Heteroskedasticity 

The presence of heteroskedasticity is of primary interest in this study. Pooled OLS assumes 

homoskedastic errors for the usual inferences accompanying it to be valid. The FE estimator is based on 

the assumption that the idiosyncratic errors are homoskedastic within and across panels, and not serially 

and/or cross-sectional autocorrelated. Likewise, the RE model only assumes serially correlation because 

of the presence of αi in the composite error term; it does not account for cross-panels correlation. When 

these assumptions are violated the FE and the RE estimators and the accompanying inferences 

procedures are not valid. 

 

In practice, after regression by POLS, there are usual procedures to detect heteroskedasticity, including 

LM test, Breusch-Pagan’s test, White’s test, Godfeld and Quandt’s test, Bartletts’s test, Glejser’s test 

and the like). Once heteroskedasticity is detected, estimation procedures are used to correct for it. 

However, robustness of estimation is contingent upon the structure of the heteroskedasticity present in 

the data. This structure is often unknown and assumptions are often made, opening possibilities of 

misleading inferences. In the context of panel data, while one may allow for heteroskedasticity within 

panels, we can think of heteroskedasticity across panels, which require a different estimation procedure 

for making the errors homoskedastic. Further, one may allow cross-sectional correlation to exist, and 
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within panels, correlation coefficient may be unique for each panel. This can be done by allowing more 

flexible structure of Ω, the variance-covariance matrix of vit, the composite error term. Possible 

alternative procedures have been suggested to transform data towards homoskedasticity; some are robust 

to the structure of heteroskedasticity while others require specifying its form. In this analysis we will use 

procedures based on Weighted Least Squares (WLS), Feasible Generalized Least Squares (FGLS), and 

Heteroskedasticity-Robust Standard Errors. 

 

The variance matrix of the disturbance terms can be written as 

         E[uu’] = Ω = 
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In order for the Ωij matrices to be parametrized to model cross section correlation, they must be square 

(balanced panels). 

For the classic POLS regression model, we have 

                   E[vit] = 0 

                  Var[vit] = σ2                                                                                                                                                                         (11) 

                  Cov[vit, vjs] = 0 if t ≠ s or i ≠ j. 

This amount to assuming that Ω has the structure given by  

                                   Ω =  
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In many cross-sectional datasets, the variance for each of the panels will differ. The heteroskedasticity 

model is specified by including the panels heteroskedasticity structure, which assumes that 

                               Ω = 
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We may wish to assume that the error terms of panels are correlated, in addition to having different scale 

variances (heteroskedasticity across panels). This is achieved by specifying more general structure of the 

variance-covariance matrix as 

                             Ω = 



















.

.
....

.

.

2211

222221221

1112121111

nnnnnnnn

n

nn

III

III
III

σσσ

σσσ
σσσ

                                             (14) 

 

We may further consider more general structure of Ω in order to allow for autocorrelation within panels. 

To do this the individual identity matrices along the diagonal of Ω may be replaced. Among the possible 

specifications, we may assume a structure with (i) no autocorrelation; (ii) serial autocorrelation where 

the correlation parameter is common for all panels; (iii) serial correlation where the correlation 

parameter is unique for each panel [ see Stata Cross-Sectional Time Series Reference manual Release 8]. 

Estimation procedures such as the Feasible Generalized Least Squares (using either the estimated cross-

section residual variances or the cross-section residual covariance matrix as weights), White 

Heteroskedasticity covariance can be used by specifying the appropriate structure of the variance matrix 

assumed. 
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3.2. Testing for Crop Yield Normality 

In conducting normality tests we use the omnibus or joint moment test strongly recommended by Just and 

Weninger (1999), such the Skewness and kurtosis tests. There are several ways of measuring skewness 

and kurtosis but the most well known are Pearson's (1905) skewness and kurtosis. Many tests have been 

defined using Pearson's skewness and kurtosis statatistics. In this paper, we use the omnibus test (K2 test) 

recommended by D’Agostino, Belanger, and D’Agostino, Jr (DBD). We refer to DBD’s skewness and 

Kurtosis statistics as Z(b1)1/2 and Z(b2) respectively. Under the null hypothesis of normal residuals, both 

Z(b1)1/2 and Z(b2) are distributed as approximately normal (0,1). DBD’s omnibus K2 statistic is 

constructed as 

                K2 = [Z(b1)1/2]2 + [Z(b2)]2                                                                                                    (15) 

and is approximately distributed as chi-squared (χ2) with two degrees of freedom.  The sketest command 

in STATA implements the test described by DBD (1990) with the empirical correction developed by 

Royston (1991).  

 

White (1980)’s Information Matrix (IM) procedure developed by Cameron and Trevedi (1990) offers 

another appealing way to perform this kind of omnibus test. The IM procedure exploits the well-known 

property that, at the model, the sum of the Hessian of the log-likelihood and the outer product of the 

score has zero expectation. It tests the hypothesis that the information matrix equality holds, that is the 

hypothesis that: 

      H0: E{D2 log f(X, θ0)} = E{ D log f(X,θo).D’log f(X,θ0).                                                            (15) 

Where log f(X,θ0) is the log-likelihood for the random variable X, θo is the probability limit of the 

associated (quasi) maximum likelihood estimator, and the (D)log f and (D2)log f are the gradient(score) 

vector and the Hessian matrix of the log likelihood. In the normal model, the IM test using the MLE is 
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the Jarque-Bera (1980) test for skewness and nonnormal kurtosis. If the H0 is rejected, the IM test 

provides an orthogonal decomposition of the source of the deviation from the IM of a normal 

distribution into part due to heteroskedasticity, skewness and kurtosis.  

 

4. Empirical Estimation and Results 

4.1. Data Description 

Empirical estimation and test for normality are carried out using county-level data on corn grain and 

soybeans yield using cross-sectional time-series from 99 counties in Iowa, which is the main region for 

the production of these two crops in the United States. To avoid selection bias problem we have 

included in our sample all the counties from the 9 crop reporting districts. The data used for this 

empirical estimation cover the period from 1972-2003. The choice of starting point was based on the 

fact that it was only at the beginning of the seventies that the hybrid corn was widely adopted in the 

cropping system in Iowa. This, we think, could help control for variability due to different patterns in 

varieties adoption across counties in the State.  

 

The data set is drawn from the National Agricultural Statistics Service (NASS) website, which provides 

valuable time series data for different crops by state, district, and county. These are aggregate time-

series data and, unfortunately, they cannot be used to reflect farm-level randomness which is the most 

relevant in Multiple Peril Crop Insurance Programs. Nevertheless, the growing interest in Area-yield 

crop insurance in the recent years is increasing the need for county-level analysis of crop yield 

distribution  
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4.2. Analysis of Results 

Following the detreding approach to analyzing crop yield distributions, the deterministic component of 

yield was estimated by fitting a polynomial trend to each county’s yield series, where the polynomial 

degree is determined by the data. Based on F-tests with 5 % significance, a polynomial degree of order 

greater than 2 was found inappropriate for the data. The results we present here are obtained from a 

polynomial degree of order 1 and 2 for both Corn for grains and Soybeans. 

The basic unobserved effects model (UEM) in equation (1) was estimated using alternative regression 

methods presented in section 3.1.  Pooled OLS estimation was used as starting point, and its results are 

compared to results from regressions that are better suited for the analysis of panel data when 

heteroskedasticity, and eventually autocorrelation are modeled.  Results are presented in tables 1-4. 

 

4.2.1. Results for heteroskedasticity 

Results for heteroskedasticity are obtained by performing the appropriate tests after POLS. Tests were 

used for both multiplicative and unrestricted heteroskedasticity. 

Table1.  Breush_Pagan / Cook-Weisberg (BP/CW) Test for Heteroskedasticity  

                                      Iowa (1972-2003): Corn and Soybeans County-level yields 

   Crop              regression              polynomial degree          Chi2(1)          Prob. > Chi2(1) 
Corn                  Pooled OLS                        1                             1.66                  0.197                     
Corn                  Pooled OLS                        2                           22.56                  0.00 
Corn                  Fixed Effects                       1                             1.66                 0.197   
Corn                  Fixed Effects                       2                           22.56                  0.00      
Soybeans           Pooled OLS                        1                          194.04                  0.00 
Soybeans           Pooled OLS                        2                          164.26                  0.00   
Soybeans           Fixed Effects                       1                          194.04                  0.00 
Soybeans           Fixed Effects                       2                           157.86                 0.00 
 

 Heteroskedasticity is investigated using Breusch-Pagan / Cook-Weisberg (BP/CW) test for assumption 

of linear regression model that the residuals are homoskedastic, ie., have constant variance against 
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multiplicative heteroskedasticity. In all cases, except for corn yield first-order polynomial trend, the test  

provides strong evidence that error components of crop yield are heteroskedastic. The BP/CW test is  

powerful as it is restrictive in regard to the structure of the heteroskedasticity. The results based on the 

White test for unrestricted heteroskedasticity [see table 4] reject the null of constant variance in all 

cases. 

4.2.2. Tests for Normality 

After detecting heteroskedasticity, we use alternative estimation procedures to account for it. By  

detrending approach we isolate the random component on which we perform the normality tests. The  

results are summarized as follows for different yields and polynomial order fitted. Table 2 presents the  

test results for skewness, normal kurtosis, and the joint test for normality on Corn yield distribution. The  

p-value are computed for the Chi2-statistics. The results suggest that, regardless of polynomial trend  

fitted and the estimation techniques used, the null hypothesis of zero skewness and normal kurtosis is  

           rejected with p-value of almost zero. The Chi2 for the joint test of normality rejects normality 

distribution for Corn Yield. For the linear trend the Chi2 only change marginally from 540.32 in the 

pooled OLS residuals to 535.78 in the model accounting for heteroskedasticity and correlation across 

panels. This change is of 470.0 to 393.09 in the quadratic trend specification. In any case, the normality 

distribution is rejected with the same p-value. 
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Table2. Normality Tests: County-level Corn Yields (Iowa: 1972-2003)                                                               

    Polynomial Order Fitted: 1                                          
Regression                                                    Pr(Skewness)   Pr(Kurtosis)    Chi2(2)      Prob>Chi2(2) 
1. Pooled OLS                                                         0.00                 0.00            540.32            0.00 
2. Variance-weighted Pooled OLS                          0.00                 0.00            510.70            0.00 
3. Robust standard errors                        0.00                 0.00            540.32            0.00 
4. Cochrance-Orcutt AR(1),semi- robust stand.      0.00                 0.00            528.09            0.00 
5. Generalized Least Squares                                   0.00                 0.00            540.32            0.00 
6. Fixed Effect                                                          0.00                0.00            540.32             0.00 
7. Random Effect                                                      0.00                0.00            540.32             0.00 
8. Homoskedastic with panel-specific AR(1)          0.00                 0.00             539.94            0.00 
9. Heteroskedastic with panel-specific AR(1)         0.00                 0.00              538.72           0.00 
10. Heteroskedasticity & correl. across panels        0.00                 0.00             535.78            0.00       
------------------------------------------------------------------------------------------------------------------------------                   
                                                                  

    Polynomial Order Fitted: 2                        
Regression                                                    Pr(Skewness)   Pr(Kurtosis)    Chi2(2)      Prob>Chi2(2) 
1. Pooled OLS                                                         0.00                 0.00            470.00             0.00 
2. Variance-weighted Pooled OLS                          0.00                 0.00           499.62              0.00 
3. Robust standard errors                                         0.00                 0.00           465.80              0.00 
4. Cochrance-Orcutt AR(1), semi- robust stand.     0.00                 0.00           466.88              0.00 
5. Generalized Least Squares                                   0.00                 0.00           470.11             0.00 
6. Fixed Effect                                                          0.00                0.00            470.11             0.00 
7. Random Effect                                                      0.00                0.00            470.11             0.00 
8. Homoskedastic with panel-specific AR(1).          0.00                0.00            471.50             0.00 
9. Heteroskedastic with panel-specific AR(1).         0.00                0.00            475.21             0.00 
10. Heteroskedastic & correlation. across panels     0.00                0.00             393.09            0.00        
------------------------------------------------------------------------------------------------------------------------------                   

 

The results in table 3 summarize the test statistics for normality test on county-level Soybeans. As for 

Corn, the random component of soybeans yield is found to have skewness, nonnormal kurtosis, and is 

not normally distributed. No substantial change in the Chi2-statistics is noticeable from one regression 

to the other. 
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 Table 3. Normality Tests : Country-level Soybeans Yields (Iowa:1972-2003)                                                             

    Polynomial Order Specification:1                 Skewness and Kurtosis Test of Normality 
Regression                                                    Pr(Skewness)   Pr(Kurtosis)    Chi2(2)      Prob>Chi2(2) 
1. Pooled OLS                                                         0.00                 0.00            267.89             0.00 
2. Variance-weighted Pooled OLS                          0.00                 0.00           272.18              0.00 
3. Robust standard errors                                         0.00                 0.00           267.89              0.00 
4. Cochrance-Orcutt AR(1), semi- robust stand.     0.00                 0.00           271.22              0.00 
5. Generalized Least Squares                                   0.00                 0.00           267.89             0.00 
6. Fixed Effect                                                          0.00                0.00            267.89             0.00 
7. Random Effect                                                      0.00                0.00            267.89             0.00 
8. Homoskedastic with panel-specific AR(1).          0.00                0.00            252.68             0.00 
9. Heteroskedastic with panel-specific AR(1).         0.00                0.00            246.68             0.00 
10. Heteroskedastic & correlation. across panels     0.00                0.00             246.12            0.00        
------------------------------------------------------------------------------------------------------------------------------                   
                                                                      

    Polynomial Order Specification:2                 
Regression                                                    Pr(Skewness)   Pr(Kurtosis)    Chi2(2)      Prob>Chi2(2) 
1. Pooled OLS                                                         0.00                 0.00            268.29             0.00 
2. Variance-weighted Pooled OLS                          0.00                 0.00           251.76              0.00 
3. Robust standard errors                                         0.00                 0.00           268.29              0.00 
4. Cochrance-Orcutt AR(1), semi- robust stand.     0.00                 0.00           282.10              0.00 
5. Generalized Least Squares                                   0.00                 0.00           268.29             0.00 
6. Fixed Effect                                                          0.00                0.00            268.29             0.00 
7. Random Effect                                                      0.00                0.00            268.29             0.00 
8. Homoskedastic with panel-specific AR(1).          0.00                0.00            254.78             0.00 
9. Heteroskedastic with panel-specific AR(1).         0.00                0.00            249.61             0.00 
10. Heteroskedastic & correlation. across panels     0.00                0.00             244.04            0.00        
------------------------------------------------------------------------------------------------------------------------------                  

 

The results presented here are puzzling; why is the normality tests performed on crop yield’s error 

component from regression accounting for the presence for heteroskedasticity lead to the same inference 

at same the p-value, with only marginal change in the test statistic?  To investigate this question we 

perform the information matrix test and its orthogonal decomposition into test for heteroskedasticity, 

skewness and kurtosis due to Cameron and Trivedi (1990). Table 4 presents the results of the test 

performed on the pooled OLS residuals. 
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Table 4.  Test for Unrestricted Heteroskedasticity and Information Matrix Test Decomposition  

                                          Corn (1)                         Corn (2)                    Soybeans (1)           Soybeans (2) 
 Source                        Chi2   DF   p-value     Chi2  DF   p-value    Chi2   DF  p-value   Chi2  DF  p-value 
------------------------------------------------------------------------------------------------------------------------------    

Heteroskedasticity       56.9    2      0.00           94.4   2     0.00         151.0   2     0.00        245.1   4      0.00 
Skewness                    237.7   1      0.00       290.2     2     0.00         223.2   1     0.00        195.8   2      0.00 
Kurtosis                      60.57   1      0.00           52.6    1     0.00        26.63    1    0.00          24.5    1     0.00  
------------------------------------------------------------------------------------------------------------------------------    
TOTAL                     355.2    4      0.00         437.2     7   0.00         400.8    4     0.00         465.4   7    0.00 
------------------------------------------------------------------------------------------------------------------------------ 
 

The (.) indicates the degree of polynomial trend fitted for each crop. Based on White Test for H0: 

Homoskedasticity against Ha: unrestricted heteroskedasticity, he results suggest that there is strong 

evidence of heteroskedasticity regardless of the polynomial trend model fitted. The decomposition of the 

information matrix test provides a chi2 statistic to test the hypothesis that the skewness parameter is zero 

against the alternative that it is different from zero. The Chi2 for testing the normal kurtosis hypothesis 

is also computed and the p-values provided. The results support the evidence that Corn for grains and 

Soybeans are skewed and are characterized by non-normal kurtosis. 

 

 The decomposition of the departure from normal distribution provides interesting insights on why 

correcting for heteroskedasticity led to the same inference on normality test as in the model estimated 

with heteroskedasticity error component. The results in table 4 suggest that heteroskedasticity accounts 

only for 16 and 21.6 % of the Corn yields departure from the normal distribution in the model fitted on 

linear trend and quadratic trend respectively. The rest of departure is attributable to the presence of 

skewness and nonnormal kurtosis, with the former accounting for roughly 67 %.  The same can be said 

for Soybean, though heteroskedasticity seems to be relatively severe, accounting for more than a third of 
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the departure from normal distributions in linear trend model (37 %) and quadratic trend estimation (52 

%). The low proportion of heteroskedasticity among the sources of crop yield data’s departure from 

normal distribution explains why the distribution displays nonnormal shape even after correcting for 

heteroskedasticity by appropriate estimation methods. In other words, the relative importance of 

skewness is so high that the distribution remains skewed even after removing heteroskedasticity.   

 

5. Summary and Concluding Remarks 

This paper investigated the conflicting evidence about the distribution of crop yield. We focused on one 

major potential problem that arises from ignoring or inadequately modeling heteroskedasticity in the 

crop yield data when using detrending approach to testing normality.  We adopted unobserved effects 

model for modeling conditional crop yield, assuming that the deterministic component of yields can be 

approximated by a smooth function of time, and proposed methods procedures to account for 

heteroskedasticity. The empirical work was performed using the data on Corn for grains and Soybean 

yields on a sample of 99 counties from the state of Iowa for the period from 1972-2003.  

 

Using both Breusch-Pagan and White test we found evidence of heteroskedasticity in crop yield data. 

Different regressions were then performed using alternative methods to correct for heteroskedasticity 

prior to isolating the random component of crop yield on which the normality test is performed. The 

omnibus test for normality on the pooled OLS residuals as well as the residuals from well-suited 

methods in presence of heteroskedasticity led to the rejection of the hypothesis that the crop yields are 

normally distributed. The Test statistics only display marginal change from pooled OLS to other robust 

estimation methods, suggesting that findings for nonnormal crop yield distribution are robust to the 

presence of particular structure of heteroskedasticity in the data.  
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To investigate these puzzling results, we use the Cameron and Trivedi decomposition of the information 

matrix test. The results suggested that heteroskedasticity, though present in the data, accounts only for a 

relatively small part of the crop yield data’s departure from the normal distribution. Skewness explains 

more than half of the departure making the distribution nonnormal even after correcting for 

heteroskedasticity. 

 

The results of this paper, though preliminary, provide support against the claim that virtually all 

previous findings on non-normality of crop yield distributions may be infected by the ignorance and/or 

the inadequate modeling of heteroskedasticity. When heteroskedasticity is detected, ignoring it or 

inadequately modeling it does not necessarily result in misleading inference about the distribution of 

crop yields. Its relative importance in the data is key in determining the extent to which it matters for the 

validity of inference about the distribution of crop yield. 
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