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Abstract 

We use Bayesian econometric methods to estimate dynamic bioeconomic models of marine 
reserve formation using simulated data and real data from the Gulf of Mexico reef fish fishery. 
We test the effects of reserves on fish growth and catchability.

                                                        
* Smith is an assistant professor of environmental economics and Zhang is a PhD student in the Nicholas School of 
the Environment and Earth Sciences at Duke University. Coleman is an associate scholar scientist in the Department 
of Biological Science at Florida State University. The authors thank the National Oceanic and Atmospheric 
Administration Saltonstall-Kennedy program (NOAA #NAO3NMF4270086) for financial support of this research. 
The authors thank John Poffenberger (NMFS) for providing reef fish logbook data for the Gulf of Mexico.  

 
Copyright 2005 by Martin D. Smith, Junjie Zhang, and Felicia C. Coleman. All rights reserved. Readers may make verbatim 

copies of this document for non-commercial purposes by any means provided that this copyright notice appears on all such 

copies. 



Introduction 

There are precious few retrospective analyses of the fishery benefits of marine reserves.  

This fact has raised concerns amongst fisheries scientists (Hilborn et al. 2004; Sale et al. 2005).  

The policy reality is that reserves continue to be established in spite of gaps in our scientific 

knowledge, and they are supported by conceptual models in fisheries science that predict harvest 

gains (or only modest harvest losses) when large areas are closed to fishing (Polacheck 1990; 

Bohnsack 1993; Walters 2000; Gerber et al. 2003). However, economic models articulate a 

limited set of bioeconomic conditions under which reserves would enhance fisheries (Holland 

and Brazee 1996; Sanchirico and Wilen 2001; Smith 2004), conditions that appear even more 

limited in models that incorporate the harvest sector’s behavior (Smith and Wilen 2003,2004; 

Dalton and Ralston 2004). In this paper, we take steps toward filling the knowledge gap by 

adapting new methods from Bayesian econometrics to estimate dynamic bioeconomic models of 

marine reserve fishery benefits. We use both simulated data and real data from the Gulf of 

Mexico reef fish fishery, and we explicitly test hypotheses about the effects of marine reserves 

on fisheries productivity. 

To evaluate the effectiveness of existing marine reserves, there are two bio-econometric 

approaches available: descriptive and structural. The descriptive approach uncovers structural 

breaks and trend changes in the bioeconomic system by examining the signs of particular 

parameters. In previous work, we estimate descriptive panel models of marine reserves in the 

Gulf of Mexico that approach the problem from the perspective of program evaluation (Smith, 

Zhang, and Coleman 2005a). In other work, using simulated data, we find that the descriptive 
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model can sign policy treatment effects correctly but cannot estimate the magnitudes consistently 

due to the latency of the state variable, i.e., the fish stock (Smith, Zhang, and Coleman 2005b). In 

contrast, a structural bio-econometric model accounts for the latent state variable and can 

estimate unknown biological and economic parameters consistently—as well as the direct 

structural impact of a policy—with non-experimental data.  

The advantages of a structural bio-econometric model come at a cost. In a dynamic 

bioeconomic system, elements are generally related nonlinearly, imposing a heavy burden on the 

estimation process. Because the fish stock is not directly observed, backwards recursion is 

necessary to generate an estimation equation in terms of observable quantities and parameters, a 

process that amplifies the nonlinearity in the bioeconomic model. Such complexity may account 

for the relatively small number of empirical bioeconomic papers in the fisheries literature that are 

dynamic and for the modeling simplifications that are typically made, e.g., a Schaefer production 

function (Wilen 1976; Bjorndal and Conrad 1987; Homans and Wilen 1997).  

Bayesian techniques provide a promising new direction for estimating nonlinear dynamic 

structural bioeconomic models for several reasons. First, the Markov Chain Monte Carlo 

(MCMC) simulation simulates but does not maximize the likelihood function (Hong 2004), an 

advantage over traditional methods when the objective function is not well behaved. Second, 

Bayesian methods have a natural way of incorporating prior information on the parameters 

(Gelman et al. 1995). This is particularly important for incorporating fishery-independent 

biological information (Hilborn and Mangel 1997), and can be useful for general bounds on the 
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parameter space such as non-negativity constraints. Third, there may be computational gains 

from generalizing a Bayesian model to account for economic or biological heterogeneity through 

random parameters in comparison to introducing simulation-based estimation to an already 

highly nonlinear maximum likelihood problem.1  

We estimate two Bayesian bioeconomic models with logistic growth. The first model uses 

simulated data for which we know all of the true biological and economic parameters as well as 

the true policy impact of establishing a marine reserve. The data assume that there is a single 

representative fishing vessel. We find that the Bayesian model using MCMC converges near the 

true parameter values in the simulated data exercise. In the second model, we estimate biological 

and economic parameters with real data from the Gulf of Mexico reef fish fishery for which we 

have more than ten years of logbook records. Two marine reserves were established in-sample, 

so we can examine the structural impact on the bioeconomic system. We find that the MCMC 

approach estimates plausible parameter values. More specifically, we find in one case that the 

marine reserve did not reduce fishing area enough to have a net negative effect on catchability. 

There is some indication that the reserve stimulated fishery production, but the result is not 

statistically significant. These results are preliminary, and we are continuing to explore the 

robustness of these findings. In the next section, we describe the Gulf of Mexico reef fish fishery 

and the biology of the gag. We then develop a discrete-time bioeconomic model of marine 

reserve formation that embeds a reserve within a larger and observable harvest area. The 

                                                        
1 This point is somewhat speculative, but there are results that suggest MCMC estimation estimates faster for some 
classes of discrete choice models with heterogeneity. See Train (2003). 
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following section summarizes our preliminary empirical results with both simulated data and real 

data. We then conclude with a discussion of next steps for this research. 

 

The Gulf of Mexico Reef Fish Fishery and Gag 

The Gulf of Mexico reef fish complex is extremely diverse (with 62 species 

commercially harvested reef species), and involves a wide variety of gears, thus presenting 

managers with substantial challenges. The most common gears are hook and line (including 

handlines, electric bandit reels, buoy gear, and conventional rod and reel) bottom long line, and 

traps (although traps are being phased out completely in the next couple of years). Existing 

management includes limited entry (there are currently approximately 1200 federal commercial 

Gulf of Mexico reef fish permit holders), size limits, trip limits, season closures, quota 

management, and more recently marine reserves. Only a fraction of permitted vessels regularly 

engage in commercial reef fish fishing. For example, 25% of vessels account for 75% of fishing 

trips over the 1993-2002 period. 

 Economically-important species such as gag (Mycteroperca microlepis), scamp (M. 

phenax), and red grouper (Epinephenlus morio) could gain some long run biological benefits 

from marine reserves. These species are long-lived, slow-growing protogynous hermaphrodites 

(Coleman et al. 2000). Protogynous hermaphrodites mature first as females and then transform to 

males later in life. Because fishing tends to select for larger individuals, it tends to select for 

males. This selection reduces male-to-female sex ratios (Coleman, Koenig, and Collins 1996; 

 4



McGovern et al. 1998), and some traditional fisheries management tools, particularly size limits, 

may exacerbate this effect. For Gulf of Mexico gag, the percentage of males from the 1970s to 

the 1990s has declined from 17% to 2% (Coleman et al. 2000). The same decline does not appear 

in red groupers, which do not aggregate to spawn (Coleman, Koenig, and Collins 1996). Thus, 

we focus on gag in this paper. An empirical examination of reserves for the gag fishery is 

particularly timely, since recent life history modeling of gag population dynamics suggests that, 

among available management alternatives, closing spawning sites to fishing ranks highest for sex 

ratio recovery and close to the top for overall growth rate of the population (Heppel et al. 2005).  

The two marine reserves in the Gulf of Mexico that we study—Madison-Swanson Marine 

Reserve and Steamboat Lumps Marine Reserve— went into effect in June 2000 to address 

concerns about this skewed sex ratio. They were announced to the fishing community one year 

before being established. They were authorized as experimental reserves with a sunset of four 

years, and were recently reauthorized for an additional six years, based exclusively on biological 

data within and outside of each reserve and anecdotal information about the fishery outside each 

reserve. To date, there have been no systematic evaluations of these reserves as management 

tools other than our previous empirical work (Smith, Zhang, and Coleman 2005a), and 

understanding their performance will be critical for future reauthorizations.  

The reserves are located in two of the thirteen distinct National Marine Fisheries Service 

(NMFS) fisheries statistical zones in the Gulf of Mexico  (Figure 1).  These two zones 

represent the heart of the gag fishery in the Gulf of Mexico. Madison Swanson is located in zone 

8, comprising 115 square nautical miles (NM2) of this 9,570 NM2 zone, whereas Steamboat 
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Lumps is located in zone 6, comprising 104 NM2 of this 8,100 NM2 zone. Each reserve captures 

1.2 and 1.3% respectively of the total area in the NMFS statistical zone within which they occur. 

There is, thus, substantial fishable area left open within each of the statistical zones as well as 

elsewhere on the West Florida Shelf. However, percentage area is misleading in a fisheries 

context, because not all ocean bottom is alike. The reserves in question are located in deep water 

along the continental shelf edge and contain distinct patch reef formations where reef fish 

aggregate in general and many grouper species aggregate to spawn (Koenig et al. 2000).   

There is not a one-to-one relationship between NMFS fishing zones and what we might 

reasonably deem a patch from a bioeconomic perspective. The spatial resolution of the logbook 

data is extremely coarse, which is typical, and the NMFS fishing zones are spatial aggregates of 

the underlying biological and economic processes. The empirical challenge is to use this coarse 

information to infer how policy changes affect fishery outcomes. 

Complete fishing logbook data exist for all reef species in the Gulf of Mexico from 1993 

through 2004. Thus, there are substantial data before and after the policy change to assess reserve 

performance. We cut the data after October 2004 because some logbook records for 2004 may 

not have been submitted or processed in the most recent database that we received in February 

2005. This leaves us with 142 months of data. 

 

A Discrete-Time Model of Marine Reserve Formation 

In this section, we develop a stylized spatially-explicit bioeconomic  model to 
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understand how a reserve might appear in a fishery that extends over a large contiguous region. 

While some might argue that this exercise attempts to re-invent the wheel, the existing literature 

does not match the spatial scale of available data for doing ex post assessment of marine reserves. 

We begin with a discrete-time (t) lumped-parameter model of the fish stock (X) and harvest (H) 

in each fishing zone (j).: 

,
, 1 , 1 , ,1jtZ j t

j t j t j j t j t
j

X
X X r X H

K
γ+

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟

⎝ ⎠
.           (1) 

The parameters r and K are the conventional intrinsic growth and carrying-capacity 

parameters. Z is an indicator variable that denotes when a reserve is in effect such that: 

⎩
⎨
⎧

−
=

reservepreorreservenoif
tatjinreserveaisthereif

Z tj 0
1

, .           (2) 

Thus, γ1 scales intrinsic growth when a reserve is established somewhere within the zone. As we 

can see from Figure 1, the Madison-Swanson and Steamboat lumps reserves are located within 

larger fishing areas. The idea is that equation (1) forms a lumped-parameter description of how 

biological returns would operate on the surrounding area of a reserve. That is, if a reserve 

generates spillovers, it would appear to stimulate growth in the zone that contains the reserve. 

However, the reserve also closes off part of the fishing area, which might affect the production 

function for fishermen. As such, harvest is given by the following function of stock and effort 

(E): 

 .               (3) ( ) ,
, , 2

j tZ
j t j t j tH q E X

α
γ= ,

In this form, q is a catchability coefficient, α is a Cobb-Douglas production parameter (the 

corresponding parameter on X is assumed to be one), and γ2 scales the production function to 
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account for reduced fishing area when a reserve is in place.2  

In essence, this model allows the reserve to influence biomass in the larger zone within 

which the reserve is embedded, but scaling the harvest function only permits harvesting in the 

open portion of the zone. This setup is consistent with many logbook data sets for which reserves 

do not correspond to an entire fishing zone.  

As a first step, we take fishing effort as given and focus on estimating the biological and 

production parameters. Smith, Zhang, and Coleman (2005b) take the extra step of closing this 

model with a Vernon Smith (1968) effort adjustment equation and derive some basic theoretical 

predictions based on a single-area fishery. Our simplification allows us to derive and estimate a 

single-equation model where the goal is to use data on catch and effort alone to infer the latent 

stock dynamics. Through recursive substitution of (3) into (1), we are able to predict the catch (H) 

in period t+1 without knowing the stock (X): 

( ) 1 1 2 21 1
1 1 2 2 1 2 21 t t t t t t tZ Z Z Z Z Z Zt t

t t t t
t t

E ErH r qE H H
E qK E

α α
αγ γ γ γ γ+ +− −+ +

+

⎛ ⎞ ⎛ ⎞
= + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (4) 

This model is equivalent to the original setup, and we will use this one as our data generating 

process in both the simulated data analysis and the real data analysis. At this stage, two 

comments are worth mentioning. First, even without the complication of a reserve effect, 

estimating intrinsic growth and carrying capacity jointly in a surplus production model is 

problematic because the data often do not span the population range (Hilborn and Mangel 1997). 
                                                        
2 It is also possible that the reserve could appear to increase catchability if reserve establishment provides spatial 
information to the fleet that was not common knowledge previously. This information gain would likely apply to 
only a subset of fishing vessels. Our model is only able to test the net effect of reduced fishing area and increased 
information. 
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Second, introducing marine reserves puts sharp edges in this model. While this is what our 

theoretical model predicts, it may create difficulties as a practical matter for estimation. 

We add an error term ( tε ) to the above model with the assumption that it is iid normally 

distributed with zero mean and known variance ( 2σ ). Variance is assumed to be known in the 

simulated data Monte Carlo experiment just for simplicity and assumed to have a diffuse 

distribution in the real data analysis. The model to be estimated is thus: 

1 1

1

1 1
1 2 1 2 2 1

2 2 1
1 2 12

t t t t t t

t t t

Z Z Z Z Z Zt t
t t t

t t

Z Z Z t
t t

t

E EH H r H q H
E E

Er H
qK E

α α

1
t tE α

α

γ γ γ γ

γ γ ε

+ +

+

− −+ +
+ +

− +
+

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

+

.     (5) 

To simplify notation, we define the following: 
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t t
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E
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1 1 2 2
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E

α
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+

⎛ ⎞
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To reduce some of the nonlinearity in estimation, we re-parameterize the model as follows: 

rk
qK

=                   (10) 

Then the model can be rewritten as, 

t t t t tH A rB qC kD tε= + + + + .                  (11) 

One favorable feature of the above model is that it is linear in the parameters r, q and k.   
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Preliminary Empirical Results 

In the simulated data analysis, we use 500 periods for one fishing zone. A reserve is formed 

after 300 periods, so it is in place for the remaining 200 periods. For prior information we make 

very conservative assumptions. Defining I as the indicator function, we first assume I(q>0) and 

I(k>0). These are the least restrictive assumptions. Given that groupers are slow-growing, we 

restrict the possibilities for intrinsic growth I(0<r<1).  Prior biological knowledge could be used 

in a similar fashion for other species. We assume diminishing returns to fishing effort I(0<α <1). 

Finally, We assume that the impact of the reserve on growth is positive (growth is scaled upward) 

but less than 100% I(1< 1γ <2), and the reduction in fishing area is no more than 50% 

I(0.5< 2γ <1).  In the real data analysis, we also assume the prior distribution of 2σ is diffuse, 

that is, ( )2 1p σ σ∝ . 

Given our parametric assumption on the error term, the joint posterior distribution for the 

parameters is: 

 

( )

( )( )

( ) ( ) ( ) ( ) ( ) (

2
1 2

2

1
2

1 2

, , , , , , ,

1exp
2

0 1 0 0 0 1 1 2 0.5

T

t t t t t
t

p r q k H E

H A rB qC kD

I r I q I k I I I

α γ γ σ

σ σ

α γ γ

=

∝

⎧ ⎫
− + + +⎪ ⎪⎪ ⎪− ×⎨ ⎬

⎪ ⎪
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× < < > > < < < < < <

∑

)1

  (12) 

The exact posterior distributions of r, q and k are given by: 
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where TN is a truncated normal distribution and IG is an inverted gamma distribution. In MCMC 

estimation, these three parameters are estimated through Gibbs sampling.  Because it is difficult 

to find the exact posterior distribution of α , 1γ  and 2γ , these parameters are estimated 

through Metropolis-Hastings sampling. Appendix A contains a brief overview of the estimation 

procedure, and further details on Gibbs sampling and Metropolis-Hastings can be found in a 

textbook on Bayesian statistics such as Gelman et al. (1995). 

 The results of the simulated data exercise with 2,000,000 MCMC simulations (discarding 

the first 1,000,000 as burn in) are summarized in Table 1. Since the data are simulated, we know 

the true value of each parameter. True values are reported in the second column. The estimates 

are in the third column along with standard errors in the fourth column. Qualitatively, none of the 

estimates are far from their true values, and none of them are statistically different. This suggests 

that the MCMC methods work well on this difficult estimation problem, at least when the data 
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set is ideal. Figure 2 shows the empirical distributions for each parameter.  

 Turning to the real data, we restrict the analysis to gag fishing. As discussed above, gag is 

the species that the two marine reserves are most likely to enhance through recovery of the sex 

ratio. There are 142 months of data, and we define effort as total crew days at sea. Though not a 

perfect measure, this allows us to aggregate across gear types for the gag fishery. Compared to 

the simulated data exercise, we make even more conservative assumptions about priors. In 

particular, we now assume diffuse priors for all parameters, and, with the exception of q—which 

we force to be strictly positive—we do not force the other parameters to be within specified 

ranges. At a later time, we could incorporate more prior information from stock assessments. 

 As a first step, we estimate the MCMC model on NMFS Zone 6 data. This is the zone in 

which the Steamboat Lumps marine reserve is located. Table 2 reports estimates and standard 

errors, while Figure 3 shows the empirical distributions for each parameter. All of the parameters 

are statistically significant, i.e. statistically different from zero. The magnitudes of γ1 and γ2 are 

of greatest interest. Under the null hypothesis that the marine reserve has no effect on growth of 

gag, γ1=1. Though the mean of the distribution of γ1>1, this result is not statistically significant (t 

= 0.70). Thus, we fail to reject the hypothesis that the reserve has no effect on gag growth. 

Similarly, under the null hypothesis that the reserve does not have a net effect on catchability, 

γ2=1. Here again we fail to reject this hypothesis (t = 0.21). Table 2 also reports implied carrying 

capacity and maximum sustainable yields (MSY) without and with the marine reserve. Here we 

take the point estimates as given, and thus the MSY with the reserve is 35% higher. 
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Discussion 

Many authors have used modeling to predict that marine reserves enhance growth of fish 

species, but demonstrating actual growth empirically in a functioning marine reserve is the real 

currency of a reserve effect. Only a handful of papers have conducted retrospective analyses of 

the empirical effects of marine reserves on fisheries (McClanahan and Kaunda-Arara 1995; 

Murawski et al. 2000; Roberts et al. 2001; Russ and Alcala 1996, 2004; Smith, Zhang, and 

Coleman 2005). To our knowledge, no previous paper has done so with a structural model. Our 

structural approach uses a simple surplus production model and adds two features to account for 

the effects of marine reserves. Although our model cannot measure the mechanisms through 

which reserves could contribute to fish growth, it serves as an important step towards assessing 

the net effect of a policy change in a bioeconomic system. In contrast, non-structural approaches 

may be subject to bias due to the presence of nonlinearities, dynamics, and latent state variables. 

 We have several directions for future research. First, we plan to estimate the MCMC model 

on multiple zones simultaneously. Here we plan to allow carrying capacities to vary over space 

but restrict intrinsic growth to be the same over space. The effects of a reserve will be allowed to 

vary by treatment zone. This model essentially will allow data from non-treated zones to help 

refine our estimates of intrinsic growth. Second, we plan to estimate the model at the level of 

individual fishing vessels and allow for heterogeneity in fishing skill. This exercise will more 

closely parallel the work that we have done using program evaluation. Third, we plan to add 

depensation to the net growth function. This change will add at least one parameter to the 
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estimation and will allow the net growth function to be asymmetric. Finally, we plan to build a 

behavioral model such as dynamic open access into the structural bioeconomic model. 
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Figure 1 Gulf of Mexico Reef No-take Marine Reserves Established in June 2000 

Marine reserves are contained within National Marine Fisheries Service statistical zones.  
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Figure 2: Empirical Distributions of MCMC Simulations on Simulated Data 
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Figure 3: Empirical Distributions of MCMC Simulations on Gulf of Mexico Gag Fishery 
Data – NMFS Zone 6 Only 
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Table 1: Results of MCMC Estimation on Simulated Data 
 

0.00170.94980.95γ2

0.1078 1.2993 1.2γ1

0.0006 0.3006 0.3α

0.0035 0.0315 0.032k

0.0010 0.0041 0.005q

0.0091 0.0760 0.08r

Standard ErrorEstimated 
Value

True Value

0.00170.94980.95γ2

0.1078 1.2993 1.2γ1

0.0006 0.3006 0.3α

0.0035 0.0315 0.032k

0.0010 0.0041 0.005q

0.0091 0.0760 0.08r

Standard ErrorEstimated 
Value

True Value

 
 
Note: results are based on 2,000,000 simulations in the Markov Chain and discarding the first 
1,000,000. 
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Table 2: MCMC Results for the Gag Fishery in NMFS Zone 6 
 

Parameter Estimate St. Error

r 0.46083 0.15457
q 1.65410 0.54001
k 0.00012 0.00005
α 1.03811 0.10200
γ1 1.35215 0.50517
γ2 1.04560 0.19261

σ2 8579 1059

Implied Carrying Capacity in Zone 6 (pounds)
234,774                  

Implied MSY for Zone 6 (no reserve)
27,048                    

Implied MSY for Zone 6 (with reserve)
36,573                    
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Appendix A – Details on MCMC Estimation 
 
The MCMC estimation algorithm uses the following steps: 
 

1. start at an initial parameter vector ( )0 0 0 0 0 0 0
1 2, , , , ,r q kθ α γ γ= ; 

2. generate 1iθ +  from ( ,i
j j )p xθ θ−  sequentially, which includes two parts in this study: 

2.1 Gibbs sampling (for r, q and k with exact posterior distributions):  

( )1 2
1 2~ , , , , , , ,i i i i i ir p r q k H Eα γ γ σ+ , 

( )1 1
1 2~ , , , , , , ,i i i i i iq p q r k H E 2α γ γ σ+ + , 

( )1 1 1
1 2~ , , , , , , ,i i i i i ik p k r q H E 2α γ γ σ+ + + . 

2.2 Metropolis-Hasting sampling (for α , 1γ  and 2γ ): 

2.2.1 With ri+1, qi+1 and ki+1 generated in the last step, draw newθ (α , 1γ  and 

2γ ) from a proposal density ( )new oldq θ θ  sequentially.  We adopt the 

random walk sampler with a normal kernel: 

( ) ( )2

2exp new old
new old

proposal

q
θ θ

θ θ
σ

⎛ ⎞−
∝ −⎜ ⎟

⎜ ⎟
⎝ ⎠

, 

2.2.2 set 1i
newθ θ+ = with a probability of u, and 1i

oldθ θ+ = with a probability of 

1-u, where 

( ) ( ) ( )
( ) ( )min 1, new old new

new old
old new old

p q
u

p q
θ θ θ

θ θ
θ θ θ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
, 

3. Increase i and repeat step 2. 
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