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Abstract

The estimation of allocative and technical inefficiency has grown to an enormous body
of literature, both theoretical and empirical. Ideally, one would estimate time-varying firm
and input-specific parameters describing allocative inefficiency in order to minimize ag-
gregation bias. However, this has never been previously accomplished. Typically, only
industry-wide allocative efficiency parameters have been empirically identified. Our pro-
posed solution is to employ Gibbs sampling to approximate posterior distributions from a
Bayesian limited information model, embedding GMM moment conditions imposed via an
instrumental variables step to obtain plant-specific parameters estimates that vary flexi-
bly over time. For a panel of Chilean hydroelectric power plants, posterior distributions
of these estimates display substantial differences in location and precision. By contrast,
the standard GMM approach which produces industry-wide, time-varying allocative in-
efficiency parameters, not only fails to reveal the inter-plant differences by construction,
but does not even produce posterior medians that approximate a weighted average of the
plant-specific posterior medians.

JEL Categories: C13, C33

Key Words: Allocative Inefficiency, Bayesian Econometrics, Gibbs Sampling, Technical
Inefficiency, Productivity Change, Technical Change.



1. Introduction

The literature on efficiency measurement has been concerned with measuring economic

efficiency in terms of technical and allocative efficiency. Technical efficiency measures the

actual input usage relative to the minimum input usage for a given set of outputs or the

actual outputs relative to the maximum potential outputs for a given set of inputs. The

technical efficiency of a firm is measured relative to the most efficient firm, which defines

the production, distance, or cost frontier. Allocative efficiency measures how well firms

manage the ratios of inputs in order to minimize the cost of producing a given output

level. From the first-order conditions for cost minimization, firms must equate the ratio of

marginal products to the ratio of input prices.

Allocative and technical efficiency have been measured using either an error compo-

nents approach or a so-called parametric approach. With this approach, one estimates

parameters that measure allocative efficiency by scaling either input quantities or input

prices, yielding shadow input quantities and shadow input prices, respectively. With the

error components approach, maximum likelihood techniques are typically used to estimate

the parameters that define the distribution of a two-component error term. Firm-specific

measures of allocative and technical inefficiency are then obtained from these estimated

components. For a survey of this approach see Greene (1997). A major drawback to

this technique is that one must assume the correct functional form of the composed error

and that the error terms must be uncorrelated with the regressors. However, results may

be very sensitive to the assumed functional form and correcting for endogeneity, if it is

present, is highly problematic. If the distribution of the composed error is misspecified or

if endogeneity is present and not dealt with successfully, the estimated parameters will be

inconsistent.
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The parametric approach avoids the need to specify the distribution of the errors and

the assumption of exogeneity of the regressors. This approach easily allows testing for

endogeneity and correcting for its presence using instruments. The simplest parametric

approach would be to estimate time-invariant, input-specific allocative efficiency parame-

ters. One can still estimate the effect on input over or under-utilization at the firm level by

computing ratios of fitted input quantities. However, the assumption that all firms share

common time-invariant allocative efficiency parameters for each input is a priori implau-

sible. Estimation of time-varying, firm-specific (or plant-specific if data is available at this

level) allocative efficiency parameters is generally preferred in order to reduce aggregation

bias.

However, estimation of a full set of firm-specific, time-varying parameters has never

been previously accomplished. Rarely, in fact, have researchers been able to estimate a full

set of firm-specific, time-invariant allocative efficiency parameters. Even with panel data

and models that are highly non-linear in the parameters, which should assist identification,

the data do not typically contain enough independent variation to identify the full set

of parameters measuring allocative efficiency along with the structural parameters that

define stochastic cost, revenue, profit, distance, or production frontiers (the standard dual

frontier paradigms). Estimating a shadow cost function with its associated share equations

for a cross-section of data, Atkinson and Halvorsen (1998, 1984, and 1980) were able

to empirically identify only industry-wide, time-invariant allocative efficiency parameters.

The use of panel data allowed identification of additional efficiency parameters for Atkinson

and Halab́ı (2005) and Atkinson and Primont (2002), who estimated a shadow distance

system plus associated price equations. In both cases, time-invariant and time-varying
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allocative efficiency parameters were empirically identifiable, but only at the industry-

wide level. Fitting a system comprised of a shadow cost frontier and associated share

equations using panel data, Atkinson and Cornwell (1994) were able to estimate time-

invariant, firm-specific parameters measuring allocative inefficiency. However, this required

eliminating all time-varying allocative efficiency parameters. Successful identification of

firm-specific allocative efficiency parameters in this case was most likely due to the use

of a panel data set with T large relative to N. Estimating a shadow distance frontier

and a set of associated price equations using panel data, Atkinson, Färe, and Primont

(2003) were able to compute an even more general specification. They obtained estimates

of firm-specific, time-invariant allocative efficiency parameters plus industry-wide, time-

varying allocative efficiency parameters. Thus, using non-Bayesian methods, no parametric

study has empirically identified a full set of firm-specific, time-constant and time-varying

efficiency parameters.

In this paper, we present a solution to this problem by substituting a Bayesian Markov

Chain Monte Carlo (MCMC) parametric approach for the standard one. Our MCMC ap-

proach follows and extends Atkinson and Dorfman (2005) by employing a limited informa-

tion likelihood function that minimizes the assumptions required for estimation, making

it essentially equivalent to Bayesian Generalized Method of Moments (GMM) with in-

struments. For a panel of twelve Chilean hydroelectric power plants, we jointly estimate

an input distance function and the first-order conditions from the dual shadow-cost min-

imization model. We obtain the posterior densities for plant-specific, time-constant and

time-varying estimates of allocative efficiency, while correcting for any endogeneity of the

regressors. We are able to identify and precisely estimate this rich parameterization, when

the classical approach has failed to do so, because we iteratively draw from a series of

3



conditional posterior densities for the parameters using MCMC. Time-varying and plant-

specific measures of technical inefficiency are computed residually, which provide estimates

of productivity change (PC), which can be decomposed into technical change (TC) and

efficiency change (EC).

Our empirical findings are that energy is under-utilized in one half of the plants (due

to limited water availability) and over-utilized by the rest. Labor is over-utilized for most

plants. Little movement toward allocative efficiency is observed over time for any plant.

Technical efficiency is low for many plants and productivity change and efficiency change

vary widely across plants. For example, PC ranges from 3% to 16% across plants for

the final two years of the sample. Finally, we reestimated our model using industry-wide

allocative inefficiency parameters in place of plant-specific ones. The aggregate allocative

inefficiency parameters mask important differences among the plant-specific parametric

estimates with regard to central tendency as well as precision.

2. Firm-Specific Allocative and Technical Inefficiency

To model firm-specific allocative inefficiency we follow Atkinson and Primont (2002)

and employ an input distance function in a cost-minimizing framework to derive a set of

estimating equations. We generalize their set-up slightly to add the firm-specific inefficiency

measures. To begin, an input distance function is defined as

D(yt,xt) = sup
λ
{λ : (xt/λ) ∈ L(yt)}, (2.1)

where yt is an M × 1 vector of outputs, xt is an N × 1 vector of inputs, L(yt) is the input

requirement set, and λ ≥ 1. Its inverse is the measure of technical inefficiency. Then, we

assume the typical firm solves the following cost minimization problem:

C(yt,pt) =min
xt

{

ptxt : D(yt,xt) ≥ 1

}

, (2.2)
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where pt is a 1×N vector of input prices. Due to constraints on the optimization process,

in most cases, the observed value of xt will fail to solve (2.2). Denote the “shadow” input

quantities that do solve (2.2) by x∗
t = [k1tx1t, . . . , kNtxNt], where the knt are measures of

input-specific departures of shadow input quantities from actual input quantities and are

parameters to be estimated. Subject to a normalization for one input, these measures of

allocative inefficiency will be estimated for each plant, but plant-identifying subscripts are

suppressed here for simplicity.

The first-order conditions corresponding to (2.2) are

pnt = µ
∂D(yt,x

∗
t )

∂xnt
, n = 1, . . . , N, (2.3)

where µ is the Lagrangian multiplier and the derivative is evaluated at the shadow values

of the inputs.

Two properties of distance functions can be used to transform equation (2.3) into an

estimable equation. First, the distance function is linearly homogeneous in the inputs which

implies that
∑N

n=1
∂D(yt,x

∗

t
)

∂xnt

x∗
n = D(yt,x

∗
t ) by Euler’s theorem. Second, D(yt,x

∗
t ) = 1 by

definition. Thus, if we multiply both sides of (2.3) by optimal input levels x∗
t , sum over

all N inputs, and apply these two properties, we obtain

pn = (ptx
∗
t )

∂D(yt,x
∗
t )

∂xnt
, n = 1, . . . , N. (2.4)

The above set of equations along with the distance function comprise the set of equations

we employ to estimate firm-specific technical and allocative efficiency.

2.1. Model Specification

To make our econometric model specific to panel data, the shadow input distance

function for firm or plant f and time t can be written as
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1 = D(yft,x
∗
ft, t)g(ǫft), (2.5)

where ǫft is a random error. We adopt the translog functional form for (2.5):

0 = lnD(yft,x
∗
ft) + ln g(ǫft)

= γo +
∑

m

γm ln ymft + .5
∑

m

∑

w

γmw ln(ymft) ln(ywft)

+
∑

m

∑

n

γmn ln ymft lnx∗
nft +

∑

n

γn lnx∗
nft

+ .5
∑

n

∑

l

γnl lnx∗
nft lnx∗

lft +
∑

m

γmt ln ymftt

+
∑

n

γnt lnx∗
nftt + γt1t + .5 γt2t

2 + ln g(ǫft), (2.6)

where

g(ǫft) = exp(vft − uft), (2.7)

vft is a two-sided disturbance, and uft ≥ 0 captures technical inefficiency.

As proposed by Cornwell, Schmidt, and Sickles (1990), we specify the uft in terms of

firm-specific linear and quadratic trends:

uft = β0 + βf0Df + βf1 Df t + βf2 Df t2, (2.8)

where the Df are firm dummies and the βfq, q = 0, 1, 2, are parameters to be estimated.

In this paper, since we utilize panel data on a group of plants, we introduce plant-

specific allocative efficiency parameters which are both time-invariant and time-varying

as

knft = exp(κnf + κnf1t + κnf2t
2), (2.9)
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which allows for allocative efficiency to change non-monotonically over time. Previous

researchers have employed more restrictive specifications for allocative efficiency. Atkinson

and Halvorsen (1984) use a cross-section of firms and restrict knft to

kn = exp(κn), (2.10)

which allows estimation of only input-specific, time-invariant allocative efficiency parame-

ters. Atkinson and Cornwell (1994) use panel data on firms and restrict knft to

knf = exp(κnf ), (2.11)

which allows for firm-specific allocative efficiency parameters which are time invariant.

Atkinson, Färe, and Primont (2003) utilize panel data on firms and restrict knft to

knft = exp(κnf + κn1t + κn2t
2), (2.12)

which allows for firm-specific, time-invariant parameters but only industry-wide time-

varying parameters (κn1 and κn2) that are shared across firms.

Identification requires a restriction on both the βfq and the κnft. First, for one firm

we set βfq = 0 ∀q. Second, due to linear homogeneity of the distance function in input

quantities, we must normalize κnft for some input n for each firm f . This implies that

we can only measure the over or under-utilization of one input relative to another; thus,

we set κnft = 1 for a numeraire input ∀ t, f . The specific choice of the numeraire does

not affect any model parameters other than the absolute values of the κnft; however, their

relative values remain unchanged, regardless of the choice of the numeraire.

Our parameterization of the allocative efficiency measures as coefficients which scale

input quantities avoids what Bauer (1990) called the Greene problem. Greene utilized

maximum likelihood to estimate an error components model and assumed that allocative
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and technical efficiency measures were independent, which is highly implausible. Bauer

(1990) summarizes considerable research devoted to solving the Greene problem using

the error components models estimated using maximum likelihood. We avoid both the

misspecification problems inherent with the maximum likelihood approach and solve the

Greene problem by measuring allocative efficiency using parameters which scale input

quantities. This approach does not impose independence between the parameters of the

distance function (which include parameters measuring allocative efficiency) and the one-

sided residual, ûft, from which we derive our measure of technical efficiency.

We substitute the restrictions in (2.7), (2.8), and (2.12), along with those that impose

symmetry and linear homogeneity (see Atkinson and Primont (2002) for details) into the

stochastic translog shadow distance system (2.6). Taking derivatives of (2.6), we can

specify (2.4) in terms of the distance function parameters as

pn = (ptx
∗
t )

{

[

γn +
∑

m

γmn ln ymft +
∑

l

γnl lnx∗
lft + γntt

]

×

exp

[

γo +
∑

m

γm ln ymft + .5
∑

m

∑

w

γmw ln(ymft) ln(ywft)

+
∑

m

∑

n

γmn ln ymft lnx∗
nft +

∑

n

γn lnx∗
nft

+ .5
∑

n

∑

l

γnl lnx∗
nft lnx∗

lft +
∑

m

γmt ln ymftt

+
∑

n

γnt lnx∗
nftt + γt1t + .5 γt2t

2

]

×

[

γo +
∑

m

γm ln ymft + .5
∑

m

∑

w

γmw ln(ymft) ln(ywft)

+
∑

m

∑

n

γmn ln ymft lnx∗
nft +

∑

n

γn lnx∗
nft

+ .5
∑

n

∑

l

γnl lnx∗
nft lnx∗

lft +
∑

m

γmt ln ymftt

+
∑

n

γnt lnx∗
nftt + γt1t + .5 γt2t

2

]−1

×

[

1

x∗
nft

]

}

, n = 1, . . . , N. (2.13)
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We then append a random error term to the shadow distance function and n derived

price equations in (2.13) to obtain a system of (n + 1) nonlinear equations with multiple

cross-equation restrictions which we refer to as the shadow distance system. Note that

the high degree of non-linearity in the unknown parameters in equations (2.13) should aid

identification of the allocative efficiency parameters.

2.2. Measurement of Allocative Inefficiency

By taking ratios of equations in (2.4), we obtain the conditions for cost minimization in

terms of shadow quantities and actual prices. For firm f at time t, we can directly estimate

relative over- and under-utilization of any pair of inputs, xnft and xlft, in comparison to

the cost-minimizing ratio, (knftxnft)/(klftxlft), by computing k̂nft/k̂lft. We argue that

frequently researchers and policy makers are more interested in shadow quantities than

shadow prices, which give a fundamental advantage to the shadow distance system over

the shadow cost system. Examples include the effects of quotas or restrictive work rules

on input usage, inefficient input usage due to rate of return regulation, and the impact of

government subsidies or tariffs in agriculture on the input usage.

2.3. Measurement of Technical Efficiency

Following the estimation of (2.6), we compute levels of TE, EC, TC, and PC. Non-

negativity of the uft is not imposed in estimation. Instead by adding and subtracting

ût = minf (ûft) from the fitted model, we define the frontier intercept. Let ln D̂(yt,xt, t)

represent the estimated translog portion of (2.6) (i.e., all terms except h(ǫft)). Then,

adding and subtracting ût yields

0 = ln D̂(yt,xt, t) + v̂ft − ûft + ût − ût = ln D̂∗(yt,xt, t) + v̂ft − û∗
ft, (2.14)
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where ln D̂∗(yt,xt, t) = ln D̂(yt,xt, t) − ût is the estimated frontier distance function in

period t and û∗
ft = ûft − ût ≥ 0.

Using (2.14), we estimate firm f ’s level of technical efficiency in period t, TEft, as

TEft = exp(−û∗
ft), (2.15)

where our normalization of û∗
ft guarantees that 0 ≤ TEft ≤ 1. Given the estimates of TEft

obtained from (2.15), we then calculate ECft, the rate at which a firm is approaching the

isoquant, as the change in technical efficiency:

ECft = ∆TEft = TEft − TEf,t−1. (2.16)

We measure TC, the movement inward of isoquants, as a discrete approximation

which involves computing the difference between the estimated frontier distance function

in periods t and t − 1 holding output and input quantities constant:

TCft = ln D̂∗(yt,x
∗
t , t) − ln D̂∗(yt,x

∗
t , t − 1)

=
∑

m

γ̂mt ln ymft(dt − dt−1) +
∑

n

γ̂nt lnxnft(dt − dt−1)

+ γ̂t − γ̂t−1 + (ût−1 − ût). (2.17)

Thus, the change in the frontier intercept, ût, affects TC as well as EC. Finally, given EC

and TC, we construct estimates of PC as

PCft = TCft + ECft. (2.18)
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3. Estimation

3.1. An Error Components Approach

One possible estimation procedure would be to completely specify the full likelihood

and estimate an error components model in a Bayesian framework. Zellner, Bauwens, and

van Dijk (1988) point out the difficulties in accurate specification of the full likelihood. In

addition, one must assume that the composed error term is uncorrelated with the explana-

tory variables. In terms of our distance system, a typical composed error specification is

that

0 = lnD(yft, kftxft, t) + ln g(ǫft) = lnD(yft, kftxft, t) + vft − uft, (3.1)

and

pn = (ptx
∗
t )

∂D(yt,x
∗
t )

∂xnt
+ ηft, n = 1, . . . , N. (3.2)

Various assumptions about the independence of the error terms and their joint distribution

in these two equations have been made and each may be incorrect, resulting in model

misspecification. See Greene (1997). In addition, one must assume that the error terms are

uncorrelated with the regressors. Estimated parameters will be inconsistent if regressors

are endogenous. Dealing with endogeneity within this context is problematic.

3.2. An Alternative Allowing Endogeneity

To derive estimators for the shadow input distance function system, we use a limited

information Bayesian system estimator to avoid the difficulties in accurately specifying

the full likelihood. In our estimation approach, we follow and generalize Kim (2002) and
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Zellner and Tobias (2001).1 Kim proves that maximizing entropy subject to a restric-

tion on a Generalized Method of Moments (GMM) criterion function yields an optimal

limited-information likelihood function (LILF). We advance Kim’s approach by treating

the covariance of the errors as well as unknown parameters of our distance system as

random variables and constructing a joint LILF. Interested readers can see Atkinson and

Dorfman (2005) for more details.

The form of the LILF and the resulting posterior distribution depends on the moment

conditions that serve as the basis for the criterion function. Following the development in

Kim (2002), we start with a standard first moment condition for the parameter vector γ,

E[h(γ|Ω, D)] = 0, (3.3)

where γ is a vector of regression model parameters, Ω is the covariance matrix of the

regression model’s stochastic error terms, and D represents the data, including instruments.

Our specification of h(γ) is such that this restriction sets the conditional expectation of

the error terms equal to zero. A second moment condition on gamma is

E[h(γ)h(γ)′] = S. (3.4)

This second restriction sets the conditional error variance to the consistent estimator as in

standard GMM estimation.

We now extend Kim (2002) to include the random covariance matrix parameters in

our LILF by adding two moment conditions on Ω,

E[tr(ΞΩ−1)] = ξ, and E[ln |Ω|] = τ, (3.5)

1 Zellner and Highfield (1988) and Zellner (1998) develop early Bayesian Method of Moments (BMOM)
estimators that clearly presage Kim’s approach. Other applications of BMOM can be found in Green and
Strawderman (1996) and LaFrance (1999).
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where Ξ is the sum of squared residuals matrix, while ξ and τ are scalar constants. These

moment conditions impose enough regularity on the otherwise unrestricted distribution of

Ω to result in a conditional limited information posterior (LIP) distribution for Ω in the

form of the standard inverted Wishart familiar to Bayesian statisticians; see Zellner and

Tobias (2001) for details of the univariate case which they pioneered.

Any selection from the set of admissible LILFs is obviously somewhat ad hoc, but we

defend our selection process as being in the spirit of GMM estimators. Thus, we choose

the least informative (most diffuse) LILF from the admissible set in order to impose the

minimum amount of assumptions on the estimation procedure.

From the set of admissible functions F that satisfies the above moment conditions,

the least informative LILF, f , is found by solving the optimization problem

argmaxf∈F −

∫

f(γ,Ω|D)lnf(γ,Ω, D)dγdΩ. (3.6)

The solution is

f̂(γ,Ω|D) = co|Ω|−c1 exp

[

−c2h(γ)′S−1h(γ) − c3tr(ΞΩ−1)

]

. (3.7)

Inspection of the above LILF shows f̂ to be the product of a distribution from the expo-

nential family for γ and an inverted Wishart with respect to Ω, where co, c1, c2, and c3

are constants, S = E[h(γ)h(γ)′] and Ξ is the sum of squared errors matrix. If one used

the LILF in (3.7) as a likelihood function and found the values of γ and Ω which maximize

it, the result is the standard GMM estimator. The proof of this follows easily from that

in Kim (2002, eq. 3.8) for the case with a known Ω.

The prior distribution used in our application is a product of independent priors on

the structural parameters of the distance function, the prior on the covariance matrix of

the vector of errors, and a set of indicator functions that restrict prior support to the
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region where the theoretical restrictions from economic theory are satisfied. This prior

distribution can be written as

p(γ,Ω) ∝ MVN(go,Ho)|Ω|−(m+1)/2I(γ,R), (3.8)

where MVN is the multivariate normal distribution, go is the vector of prior means on

the parameters in γ,Ho is the prior variance-covariance matrix on the same parameters,

I(γ,R) represents the indicator function that equals one when the restrictions are satisfied

and zero otherwise, and m is the number of equations in our system.

The vector go is set to zero. The matrix Ho is a diagonal matrix with diagonal

elements set to 1000 for the basic structural parameters of the distance function, 0.25 for

the plant-specific allocative parameters, and 0.01 for the plant-specific parameters that

interact with time.

The indicator function part of the prior restricts positive prior (and posterior) support

to the region, R, that satisfies monotonicity for all inputs and for the output. Ideally,

monotonicity would be satisfied at 100% of our data points. However, we allow for potential

measurement errors by requiring that monotonicity for inputs and the output be satisfied

for close to, but still less than, 100% of our observations.

Having derived the limited information likelihood function and defined the prior den-

sity p(γ,Ω), we apply Bayes Theorem using the LILF in place of a standard likelihood

function, and derive a limited-information posterior distribution

f(γ,Ω|D) = p(γ,Ω)f̂(γ,Ω|D)c−1, (3.9)

where c is the normalizing constant. Only values or expressions for the two constants,

ξ and τ , in the moment conditions for Ω from equation (3.5) are needed to derive the
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precise limited-information posterior. Careful choice of these two constants leads to a

limited-information posterior with “standard” parameters,

p(γ,Ω|D) = co|Ω|−(n−k+m+1)/2 exp

[

−
1

2
(γ−γp)

′Ψ−1
p (γ−γp)−

1

2
tr(ΞΩ−1)

]

I(γ,R), (3.10)

where

γp = Ψp(H
−1
o go + Ψ−1

m γm), (3.11)

Ψp = (H−1
o + Ψ−1

m )−1, (3.12)

and Ψm is the standard GMM covariance matrix of γm, which is the standard GMM es-

timator of γ given the set of identifying restrictions specified.2 The limited-information

posterior distribution in (3.10) is a truncated version of the standard multivariate normal-

inverted Wishart distribution common in Bayesian econometrics, although with a nonstan-

dard mode (due to the replacement of the usual ML estimator with a GMM estimator in

((3.11)) and ((3.12))).

The posterior distribution defined above in (3.10) does not allow for analytical calcula-

tion of posterior means and medians of the parameters in γ or functions of those parameters

(such as the knft that we are most interested in). Therefore, numerical methods must be

employed to approximate the posterior distribution and estimate the posterior means and

medians that are of interest. For this purpose, we used an MCMC approach, specifically

Gibbs sampling with an accept-reject step for the imposition of the monotonicity condi-

tion. For more details on Gibbs sampling and MCMC methods, see Chib (1995) or Tierney

(1994).

2 The constants ξ and τ could be estimated but that would greatly complicate the estimation algorithm
by adding a numerical optimization step requiring a quasi-Newton or equivalent search algorithm for each
loop through the Gibbs sampler that will be employed to approximate the posterior. In return, one would
get a more accurate marginal posterior distribution for Ω. We choose to simply set the two constants to
convenient values instead given the interest is on a subset of the parameters in γ.
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The Gibbs sampler essentially consists of repeated draws from conditional distribu-

tions of subsets of parameters that are easier to generate random draws from than the

full posterior. In this application, the conditional distributions are a truncated MVN for γ

conditional on Ω and an inverted Wishart for Ω conditional on γ. The conditional posterior

for γ is further broken down into subsets with draws for the (κnf , κnf1, κnf2) parameters

accomplished conditional on the covariance matrix and the other elements of γ. The rest

of γ is treated similarly with the truncation only relevant for this subset. Draws from

the truncated MVN were accomplished by drawing from the untruncated distribution and

discarding draws that were not within the region R.

A total of 12,000 Gibbs draws were generated from four separate chains. Each chain

was 3500 draws long with the first 500 discarded to remove dependence on initial starting

values (standard GMM estimates were used for that purpose). Convergence was checked

by confirming the posterior means of the four separate chains were statistically equivalent.

For example, the posterior means and medians of the sample-average TE measures did not

differ by more than 0.5% in any case across the chains. We impose the restriction β0 = 0 in

(2.8), in order to identify the coefficients of the firm-specific dummies, βf0, ,∀f . We must

also restrict the allocative inefficiency parameters to achieve identification; this is done by

setting knft = 1,∀t for one n.

Consistent joint estimation of this system using GMM (which is a part of the formula

for the posterior mode of our Bayesian estimator) requires that the model satisfy the mo-

ment conditions E(vft | zft) = 0, where zft is a vector of instruments. The Hansen (1982)

J test of overidentifying restrictions is used to determine the validity of the instrument

set that is used to estimate our distance system using GMM. A variety of instrument sets
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are examined. We fail to reject the null hypothesis that the moment conditions are sat-

isfied when we employ the following instruments: an intercept, the plant-level dummies,

firm-level dummies, the log of the real node price of electricity, a variable measuring the

relative hydrologic conditions, W , W 2, W 3, W 4, t, t2, t3, the interaction of the run-of-

river dummy with monthly dummies, the interaction of the run-of-river dummy with yearly

dummies, the interaction of the run-of-river dummy with output, the interaction of time

and firm-level dummies, log output times the run-of-river dummy, log output, and log out-

put squared. In constructing the instruments, one plant-level dummy and one firm-level

dummy are eliminated. We allow for heteroskedasticity and autocorrelation of unknown

form by computing the consistent covariance matrix following Newey and West (1987) with

10 monthly lags. Based on the J test, we easily accept the null hypothesis of the validity

of the overidentifying conditions with a p-value typically from .56–.58 with 184 degrees of

freedom.

For the duality between input prices and quantities to be valid, the input shadow

distance function must be monotonically increasing in inputs and monotonically decreasing

in outputs. Our estimated model satisfies the required monotonicity properties for inputs

and outputs for at least 95% and 99% of the data points, respectively (since that condition

was imposed in estimation by restricting draws to the region R).

4. Data and Results

4.1. Data

Our initial sample is a rotated and unbalanced panel, consisting of 21 Chilean hydro-

electric power generation plants, observed monthly for a maximum of 141 data points per

plant spanning April 1986 to December 1997. The monthly frequency is designed to cap-

ture the considerable variation in the country’s hydrologic conditions throughout the year.
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Table 1 lists the 21 plants for which we initially have observations, their controlling firm,

year of initial service, type of hydro generation, and MW capacity. The six controlling

firms really constitute four—Endesa, Gener, Colbún, and Pilmaiquén—since Endesa owns

Pehuenche and Pangue.

Plants 15, 18, and 19 rotated into our sample near its end and we observed them

for only the last 17, 6, and 14 months, respectively. Since they were still in the break-in

phase of operation, we dropped these three plants, reducing our data set to 18 plants.

We also dropped plants 11 and 14 because they produced large violations of monotonicity

conditions for nearly all observations during preliminary estimation of the distance system.

There are good reasons for this kind of behavior. Plant 14 was publicly-owned until 1995

and not subject to the same market incentives as the retained plants. Plant 11 is located

at Lago Laja and as such is used to store water for the entire system, sometimes for a

number of years, if drought conditions are forecast. This constraint on water release and

generation has caused it to consistently violate the regularity condition for outputs. Thus,

our final sample consists of the remaining 16 plants (owned by 3 firms) with a total of 1935

monthly observations.

The remaining panel was unbalanced for three reasons. The first reason is staggered

initial in-rotation of 6 plants following their construction. Second, there is limited out-

rotation by 5 plants, eliminating just 29 monthly observations in total where out-rotation

is caused by plant-specific mechanical problems. The longest period of out-rotation was

by plant 2 for 18 months beginning the second year of operation. The third (minor) reason

for the unbalanced panel was that two observations were judged to be incorrectly recorded

and were dropped: plant 4 in month 46 and plant 9 in month 45.
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At the plant level, we record the output quantity (Q), the price per GWh of output,

and the price and quantity of three inputs—labor (L), capital (K), and water (E), which

we also refer to as energy. All the quantities and prices have been normalized by their

means before taking their logarithms. Prices are all in real terms. Full details of the data

set can be found in Atkinson and Halab́ı(2004). We arbitrarily normalize kKft to 1 for all

plants and time periods.

To briefly characterize the industry structure and trends, the rank order of firms

which own the plants in our sample, as measured by generation in 1997, is Endesa, Gener,

and Pilmaiquén. Electricity output declines about 60% in each case as one moves to the

next firm in the ordering. Total labor utilization has fallen steadily from 1990 and capital

investment has risen steadily through 1995. However, water utilization has been far more

variable. For example, water usage (and as a result, output) declined dramatically during

the years 1994–96.

4.2. Empirical Results

Although the plant-specific allocative inefficiency measures all vary by year, the em-

pirical estimates are exceedingly stable over time. Even given the flexible specification of

the knft in equation (2.12), the estimates are almost constant over time. Table 2 presents

all twelve posterior medians for annual estimates of plant 9’s kLt, along with the upper

and lower limits of marginal Bayesian 90% posterior density regions. The posterior median

moves from 0.84 to 0.86 over the twelve year period. Since this plant has the largest change

over time of any plant, this table presents clear evidence of the stability of these estimates

over time. Given this, all remaining results are presented for only the final year of the

sample.
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Tables 3 and 4 present the posterior medians for the allocative inefficiency measures

for energy and labor, both measured relative to capital, for all sixteen plants. Starting

with energy (table 3), we see that relative to capital eight plants are under-utilizing energy

and eight are over-utilizing energy. Plants 1 and 5 show such severe under-utilization,

indicating a shortage of water relative to capital. Both are run-of-river plants; plant 5,

in particular, had a drought on its river during large parts of the data period. Since all

five reservoir plants and three run-of-river plants over-utilized energy, while eight run-of-

river plants under-utilized energy, the distinction between over- and under-utilization of

energy is not solely based on the type of plant. We note that these allocative inefficiency

parameters are generally estimated quite accurately; most 90% posterior density regions

are quite small as a percentage of the posterior median.

Moving to labor and the results shown in table 4, we find consistent over-utilization

of labor, with kLt < 1 for thirteen plants. Only three plants under-utilize labor and none

of these have estimated posterior medians far above one. Again, all the estimates are quite

precise statistically. The estimated magnitude of over-utilization of labor is in keeping

with the conventional wisdom that these plants all had utilized considerably too much

labor in the period before 1990 and that many plants still employ excess labor today. The

variety of point estimates in tables 3 and 4 and the narrowness of the posterior density

regions relative to the magnitude of the posterior medians demonstrates that our estimation

method is capable of accurately estimating plant-specific allocative inefficiencies.

In order to visually summarize our plant-specific estimates of kLft and kEft, we present

their estimated marginal posterior distributions in Figures 1-8. The pdfs for the kEft are

presented in Figures 1-4 and those for the kLft are shown in Figures 5-8. The 16 plants

are grouped into four separate figures for capital and four for labor to minimize overlap of
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the distribution and reveal more detail. Thus, more posterior distributions overlap than

it appears by examining the figures individually; however, inspection of the figures does

reveal that we can statistically distinguish the values of the kLft and kEft between plants

in the majority of comparisons.

These figures show clearly the value of the Bayesian approach in allowing the full

posterior distribution of the parameters to be estimated. From Figure 1, we can clearly

see the enormous inefficiency of plant 5 in terms of energy usage. From Figures 2-4 we

see that the kEft parameters tend to be more precisely estimated in cases of relative over-

utilization of energy (kEft < 1) compared to plants with under-utilization. In general,

Figures 5-8 convey the same message with respect to labor over- and under-utilization.

Average technical efficiency scores, reported in table 5, show an enormous range of

efficiencies. Plant 20, a small run-of-river plant, is the most efficient, defining the frontier

in all twelve years (only year 12 is displayed in table 5). Eleven of the plants have median

TE scores below 0.50, with the lowest being 0.18 (shared by plants 7 and 12). Interestingly,

the larger plants (see table 1 for the MW capacity of each plant) seem to be less efficient

than the smaller ones. Again, we find the estimates to be very precise, with 90% posterior

density regions small enough to statistically differentiate the technical efficiency of most

of the plants from each other. For example, plants 20 and 21 rank as the top two plants

in terms of TE, plants 2 and 3 are tied for third place, while plant 4 is clearly by itself

in fifth place. Overall, a very unambiguous ranking of all plants could be developed from

these estimates. Figures 9-12 show the posterior distributions of the TE scores for all

the plants except plant 20 (which is just a point mass at 1.00). Again, one can see that

the estimates are generally quite precise so that plants can be differentiated in terms

of technical efficiency. Unlike in the cases of the allocative inefficiency measures, these
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estimates are more uniform in their dispersion regardless of the magnitude of the median

point estimate.

Table 6 displays the most recent period estimates of the posterior means for PC, TC,

and EC for each plant. TC must, by definition, be the same for all plants since they are all

on or under the same frontier and we measure TC in relation to x∗
t which places all plants

on the same ray from the origin. That is, TC is measured as the percent movement in the

frontier at the point of allocative efficiency. TC is estimated to be 3% per year in this final

period (the change from year 11 to year 12). EC varies across plants from -6% to 13%, an

enormous range. Seven of the sixteen plants are gaining ground on the efficiency leader

(positive EC) and five are just keeping pace (EC equal to 0), leaving four plants falling

behind. There appears to be no correlation between EC and TE scores. The two plants

with the highest estimated EC measures (plants 2 and 3) have high TE scores. However,

plant 21, which has the second highest TE score, has a negative EC measure. PC is the

sum of EC and TC, so it reflects the same findings as EC. While not shown, posterior

density regions are small relative to the posterior means.

By contrast, estimation of the distance system with only industry-wide allocative

efficiency parameters yields posterior mean estimates of .071 and 3.273 for labor and energy,

respectively, for the last year of the sample. Their standard deviations are .0027 and .0869,

respectively. These industry-wide estimates appear to suffer from aggregation bias (i.e.,

they are not near the weighted average of the plant-specific values) and clearly mask

important inter-plant differences that are only observable when plant-specifc allocative

efficiency parameters are estimated. Figures 13 and 14 present the posterior distributions

of the industry-wide allocative efficiency measures for energy and labor, which can be

compared to the plant-specific posterior distributions reported previously.
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5. Conclusions

Random effects and non-Bayesian parametric approaches have dominated the litera-

ture on the estimation of allocative and technical efficiency. While the choice of functional

form and the treatment of endogeneity are problematic with the random effects approach,

we avoid specifying the distribution of the errors and can easily treat endogeneity with

our parametric approach. Our Bayesian MCMC parametric method allows us to compute

time-varying, plant-specific allocative inefficiency measures utilizing a limited information

instrumental variable approach, which is analogous to Bayesian GMM with instruments.

The allocative efficiency parameters are jointly estimated with the structural parameters of

a translog distance function and its associated price equations. Our approach should allow

for much richer investigation of the magnitude, precision, and distribution of allocative

inefficiencies of plants or firms within an industry than could be achieved previously.

In our application, a panel of Chilean hydroelectric power plants do not appear to

become more allocatively efficient over time by learning as they go. However, technical

efficiency does stay constant or improve over time, as evidenced by zero or positive ef-

ficiency change for twelve of the sixteen plants in our sample. The production frontier

is being pushed outward at an estimated annual rate of 3% at the end of our sample.

Most importantly, we found considerable differences in the location and precision of es-

timated allocative inefficiency measures across the plants in our sample, and found that

industry-wide measures mask economically significant plant-specific heterogeneity.

Future work estimating plant or firm-specific allocative inefficiency might focus on

examination of how a plant’s or firm’s attempt to solve optimization problems different

from (2.2) would impact the various estimated efficiency measures and the importance of

dynamic adjustment on measured allocative inefficiency.
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Table 1: Hydroelectric Power Plants, Dec. 1997

Plant ID Plant Utility Year Type MW

1 Alfalfal Gener 1991 run-of-river 160
2 Maitenes Gener 1923 run-of-river 31
3 Queltehues Gener 1928 run-of-river 41
4 Volcan Gener 1944 run-of-river 13
5 Los Molles Endesa 1952 run-of-river 16
6 Sauzal & Sauzalito Endesa 1948 run-of-river 86
7 Rapel Endesa 1968 reservoir 350
8 Canutillar Endesa 1990 reservoir 145
9 Cipreses Endesa 1955 reservoir 101
10 Isla Endesa 1963 run-of-river 68
11 El Toro Endesa 1973 reservoir 400
12 Abanico Endesa 1948 run-of-river 136
13 Antuco Endesa 1981 reservoir 300
14 Colbún Colbún 1985 reservoir 490
15 San Ignacio Colbún 1996 run-of-river 37
16 Pehuenche Pehuenche 1991 reservoir 500
17 Curillinque Pehuenche 1993 run-of-river 85
18 Loma Alta Pehuenche 1997 run-of-river 38
19 Pangue Pangue 1996 reservoir 450
20 Pilmaiquén Pilmaiquén 1944 run-of-river 39
21 Pullinque Pilmaiquén 1962 run-of-river 49

Note : provided by the ELDC
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Table 2: Plant 9 Allocative Inefficiency for Labor Over Time

Year lower limit median upper limit

1 0.77 0.84 0.92
2 0.77 0.84 0.92
3 0.78 0.84 0.92
4 0.78 0.84 0.92
5 0.78 0.84 0.93
6 0.78 0.85 0.93
7 0.78 0.85 0.93
8 0.79 0.85 0.94
9 0.79 0.85 0.94
10 0.79 0.86 0.94
10 0.79 0.86 0.95
12 0.80 0.86 0.95

Note: Measured relative to capital.
Lower and upper limits are to symmetric
90% posterior density regions.
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Table 3: Year 12 Plant-Specific Allocative Inefficiency for Energy

Plant lower limit median upper limit

1 4.51 5.09 5.81
2 0.95 1.07 1.22
3 1.56 1.78 2.07
4 1.49 1.78 2.13
5 20.21 23.91 28.13
6 1.44 1.64 1.87
7 0.23 0.25 0.27
8 0.39 0.43 0.48
9 0.83 0.90 0.97
10 0.98 1.09 1.22
12 0.76 0.86 0.95
13 0.31 0.33 0.36
16 0.28 0.31 0.34
17 2.62 3.42 4.38
20 0.23 0.28 0.35
21 0.17 0.21 0.27

Note: Measured relative to capital.
Lower and upper limits are to symmetric
90% posterior density regions.
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Table 4: Year 12 Plant-Specific Allocative Inefficiency for Labor

Plant lower limit median upper limit

1 0.11 0.12 0.13
2 0.09 0.10 0.11
3 0.17 0.18 0.20
4 1.12 1.24 1.35
5 0.35 0.37 0.40
6 0.12 0.13 0.15
7 0.18 0.22 0.27
8 0.84 0.94 1.08
9 0.80 0.86 0.95
10 0.60 0.65 0.70
12 1.06 1.17 1.29
13 0.43 0.47 0.52
16 0.31 0.34 0.38
17 1.01 1.16 1.38
20 0.06 0.07 0.07
21 0.10 0.12 0.13

Note: Measured relative to capital.
Lower and upper limits are to symmetric
90% posterior density regions.
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Table 5: Year 12 Plant-Specific Technical Efficiencies

Plant lower limit median TE upper limit

1 0.28 0.29 0.31
2 0.69 0.73 0.77
3 0.64 0.68 0.72
4 0.49 0.53 0.56
5 0.28 0.30 0.32
6 0.24 0.26 0.27
7 0.17 0.18 0.19
8 0.25 0.26 0.28
9 0.37 0.40 0.42
10 0.38 0.40 0.43
12 0.17 0.18 0.19
13 0.21 0.22 0.24
16 0.20 0.22 0.23
17 0.26 0.28 0.31
20 1.00 1.00 1.00
21 0.82 0.86 0.89

Note: Lower and upper limits are
to symmetric 90% posterior density re-
gions.
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Table 6: Year 12 Plant-Specific Posterior Means for PC, TC, and EC

Plant PC TC EC

1 0.04 0.03 0.01
2 0.14 0.03 0.11
3 0.16 0.03 0.13
4 0.06 0.03 0.03
5 0.05 0.03 0.02
6 0.03 0.03 0.00
7 0.03 0.03 0.00
8 0.02 0.03 -0.01
9 0.03 0.03 0.00
10 0.05 0.03 0.02
12 0.03 0.03 0.00
13 0.05 0.03 0.01
16 0.01 0.03 -0.02
17 -0.03 0.03 -0.06
20 0.03 0.03 0.00
21 0.01 0.03 -0.02
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Figure 3. Plant−Specific Allocative Inefficiency for Energy
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Figure 5. Plant−Specific Allocative Inefficiency for Labor
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Figure 11. Plant−Specific Technical Efficiency
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