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Managing Livestock Feed Cost Risks Using Futures and Options

Abstract

The costs of corn- and soybean-based feeds compose a substantial proportion of the variable
costs faced by both mainstream and emergent confined livestock producers. This research
develops a method to provide a joint distribution of prices of corn and soybean meal at a fu-
ture time. Black’s 1976 option model and stochastic volatility jump diffusion (SVJD) model
are compared in volatility forecasting performance. In general, SVJD is superior to Black’s
model, though their performance is both commodity-specific and forecasting horizon spe-
cific. The price forecast can assist livestock producers to assess different feed procurement
strategies in terms of the distribution of costs projected for each strategy.

Keywords: feed cost risks, option pricing models, price forecast, risk management, volatility
forecast



Introduction

Livestock producers face many uncertainties: the cost of feed, the efficiency of animal growth,

the price of livestock and livestock products, weather shocks, and so on. These sources of

volatility create substantial financial risk for an individual producer. During recent years the

structure of many livestock sectors (e.g. cattle, poultry, hogs, and dairy) has experienced

profound changes with rapid emergence of larger operations and the thinning of traditional

output markets, while the structure of other livestock sectors (aquaculture, meat goats, and

other ‘novelty’ animals) is still in its formative stages and features highly specialized or re-

gional output markets. Both trends make mitigating output price risk problematic in many

livestock sectors.

The costs of corn- and soybean-based feeds compose substantial proportions of the vari-

able costs faced by both mainstream (e.g. hogs, beef, dairy and poultry) and emergent (e.g

meat goats and aquaculture) confined animal producers (see Table 1 for an overview). For

instance, the feed costs consist of 40-50%, 55-65%, and 20-30% of the variable costs in hog

finishing, broiler production, and milk production, respectively. Moreover, feed costs are

among the most volatile of all input costs. Because individual farm operators have exploited

economies of scale to reduce unit costs and remain competitive at the cost of enterprise diver-

sification, downside risk from feed costs can be fatal to an otherwise efficient farm operator.

Hence, the ability to forecast the distribution of the prices of corn and soybean meal at a

future time and to be aware of the possible price risk is more crucial than ever.

Because of the prominence of feed costs in determining the variable costs of operation

and because of the prominence of corn- and soybean-based products in livestock feeds, the

objective of this research is to develop a method to provide a joint distribution of prices of

corn and soybean meal at a future time so that the price forecast can assist livestock producers
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to assess different feed procurement strategies in terms of the distribution of costs projected

for each strategy.

In the remaining of this paper, a bivariate distribution is first constructed for corn and

soybean meal prices. To forecast the price distribution, a key issue is to forecast volatility. The

performance of Black’s 1976 option model and a stochastic volatility jump diffusion (SVJD)

model is compared in forecasting volatility. The results show that the SVJD model generally

is superior to Black’s model, though relative performance is both commodity-specific and

forecasting horizon specific. Finally, Monte Carlo simulations are performed to create price

forecasts.

Distribution of Feed Price

The prices of corn and soybean meal are assumed to follow a bivariate lognormal distribu-

tion. This random walk with drift model is a widely accepted setting for commodity price

movement.

(1) ln(Pt,i) = ln(Pt−1,i)+µi + εt,i

whereln denotes natural logarithm;Pt,i is the cash price of commodityi at timet; i denotes

the commodity type (i.e., corn or soybean meal);µi is a drift term; andεt,i is an innovation

term at timet. The drift term captures intrinsic forces driving price movements; the innova-

tion term represents random shocks due to price uncertainty. Equation (1) can be compactly

expressed in vector form:

(2) ln(Pt) = ln(Pt−1)+µ+ εt
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wherePt is a price vector of the two commodities at timet; µ is a vector of drifts; andεt is

an innovation vector at timet with cov(εt+m, εt+n) = 0 for m 6= n:

(3) Pt =




Pt,c

Pt,s


 ,µ =




µt,c

µt,s


 , εt =




εt,c

εt,s


∼N(0,Ωt), andΩt =




σ2
t,c σt,c,s

σt,c,s σ2
t,s


 .

where the subscriptsc ands denote corn and soybean meal, respectively.Ωt is the covariance

matrix.

To forecast thePt+h at timet, equation(2) is added up from timet to t+h.

(4) ln(Pt+h) = ln(Pt)+hµ+
h

∑
j=1

εt+j ,

whereh is the forecasting horizon. From equation (4),

(5) Pt+h = eln(Pt)+hµ+∑h
j=1εt+j .

According to the efficient market hypothesis (Fama, 1970 and 1991), the observed futures

price of a commodity is the unbiased point estimate for the commodity cash price at the

futures expiration date. Therefore, the price of a futures contract, whose price is observed at

time t and whose delivery is at timet+h, can be used as the expectation for cash price at time

t+h. If a futures contract with expiration date oft+h is not available, an artificial futures

price will be constructed by linear interpolation of two nearby futures. Thus,

(6) Ft,t+h = E(Pt+h) = E(eln(Pt)+hµ+∑h
j=1εt+j ).

whereE(·) denotes the expectation at timet. Becauseln(Pt) in equation (2) is normally

distributed,ln(Pt+h) is also normal by the property that sum of normal distributions is still a

3



normal distribution. Then, it follows:

Ft,t+h = E(Pt+h) = E(eln(Pt)+hµ+∑h
j=1εt+j )(7)

= eE[ln(Pt)+hµ+∑h
j=1εt+j ]+ 1

2var[ln(Pt)+hµ+∑h
j=1εt+j ]

= eln(Pt)+hµ+ 1
2diag(Ωt,t+h).

Where the2×2 matrix Ωt,t+h is var(∑h
j=1εt+j). Therefore, the drift termµ can be derived

by:

(8) µ =
ln(Ft,t+h)− ln(Pt)− 1

2diag(Ωt,t+h)
h

Except for the covariance matrixΩt,t+h, all other items on the right hand side of equation

(8) are known at timet. If Ωt,t+h is obtained, the drift termµ can be calculated. Further, the

bivariate lognormal normal price distribution at timet+h will be generated via Monte Carlo

simulation of equation (5), and the mean and variance of the price distribution are explicitly

expressed as:

E(Pt+h) = Ft,t+h,

var(Pt+h) = e2[ln(Pt)+hµ]+diag(Ωt,t+h)(ediag(Ωt,t+h)−1).

= (Ft,t+h)2[ediag(Ωt,t+h)−1].

Therefore, the key issue of forecasting the price distribution is to derive the matrixΩt,t+h.

The off-diagonal term (i.e., the covariance term) will be derived from historical covariance:

(9) σt,t+h,c,s = ρc,s

√√√√var(
h

∑
j=1

εt+j,c)

√√√√var(
h

∑
j=1

εt+j,s)

whereσt,t+h,c,s is the forecasted covariance for corn and soybean meal andρc,s is the histori-
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cal correlation of the return series of corn and soybean meal. The return series are defined as

the continuously compounded rates of return:

(10) Rt,i = ln(Pt,i)− ln(Pt−1,i).

Now, the forecasting issue boils down to forecasting volatility terms in the covariance

matrix Ωt,t+h.

Volatility Forecasting

Numerous studies have been put forth on forecasting volatility. There are two mainstreams:

time series methods and implied volatility. Time series methods include historical methods,

ARMA class models and ARCH class models. GARCH models among others are the most

popular time series methods in forecasting volatility. Because time series methods use the

realized volatility data to forecast volatility, they are sometimes called back-looking or retro-

spective methods. Because volatility is a key factor when pricing options and it is unobserv-

able, many turn to options data and assume a particular option pricing model to estimate an

implied volatility. Options, if rationally priced, contain all the market information about the

future probability distribution. Therefore, the implied volatility method is forward-looking

or perspective. Intrinsically, an appropriate option pricing model is the key to the implied

volatility method.

Poon and Granger (2003) review 93 published papers written in the past two decades that

forecasted volatility in financial markets and compare volatility forecasting results across dif-

ferent asset classes and markets in different regions. 39 of the 93 papers made comparisons

of the historical methods and GARCH class models. 22 found the historical methods better

than GARCH models, while 17 found GARCH superior to the historical methods. For pa-

pers comparing the historical methods and implied volatility method, 8 out of 34 found the
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historical methods better than implied volatility, while the other 26 found the reverse. In 18

papers that compared GARCH and implied volatility, 17 found implied volatility is superior

to GARCH.1 Hence, they conclude implied volatility provides the best forecasting with the

historical method and GARCH roughly equal.

Shao and Roe (2001, 2003) conducted research on forecasting the distribution of net rev-

enue in hog finishing, where the series studied included hog, corn and soybean meal prices. In

their study, implied volatility derived using Black’s (1976) option pricing model was found to

be superior to historical volatility and GARCH-based volatility in predicting futures volatil-

ity.

The geometric Brownian motion (GBM) assumption girding Black’s model, however, has

been regarded as unsatisfactory by many researchers. Empirical evidence clearly indicates

that many underlying return series display negative skewness and excess kurtosis features

(see a review in Bates, 1996b) that are not captured by GBM. In addition, while volatility of

the underlying process is assumed to be constant in Black’s model, implied volatilities from

Black’s model often vary with the strike price and maturity of the options (e.g. Rubinstein,

1985 and 1994). A great deal of research in the option pricing literature has extended the

GBM setting to better explain option prices. Alternative approaches include jump models

(Merton, 1976; Bates, 1991), stochastic volatility models ( Wiggins, 1987; Hull and White,

1987; Stein and Stein, 1991; Heston, 1993) and stochastic volatility jump diffusion models

(Bates, 1996a and 2000; Bakshi, Cao and Chen, 1997; Scott, 1997), among others.

In this research, we compare the performance of Black’s model and a stochastic volatility

jump diffusion model in volatility forecasting. A stochastic volatility jump-diffusion (SVJD)

model is selected because it possesses substantial qualitative improvements over GBM pro-

1Note that Black-Scholes (1973) and Black’s (1976) models are the most often used option pricing models
for deriving implied volatility.
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cess. First, the SVJD model allows for discrete jumps due to impacts of new information.

Second, it allows the volatility of the price process to change over time. In addition, there

have been several articles testing the SVJD model and other option pricing models and the re-

sults uniformly favor SVJD. But to our knowledge, there is little research that tests the SVJD

model by using agricultural commodity futures and options data or using a SVJD model to

forecast volatility.

The forecast of the diagonal terms in the covariance matrixΩt,t+h is defined as:

(11)

√√√√var(
h

∑
j=1

εt+j,i)≡ σ̂t,t+h,i = IVt,i

√
h

52

whereIVt,i is the implied volatility at timet for commodityi; h is the forecasting horizon

expressed as weeks, since implied volatility is an annualized estimate. Note that the implied

volatility from options on futures is the volatility of futures. It is used as a proxy for the

volatility of the cash price series in the absence of exchange traded options on commodity

cash prices.

Geometric Brownian Motion Process

In Black’s model, the price movement of commodity futures follows a geometric Brownian

motion:

(12)
dF

F
= µdt+σdZ

whereF is futures price;Z is a standard Brownian motion withdZ ∼ N(0,dt); µ is the

expected rate of return on futures; andσ is the annualized volatility of the futures price.
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From Ito’s lemma, the equation of motion of the logarithm of futures price is:

(13) d lnF = (µ− σ2

2
)dt+σdZ.

The discrete-time version of (13) is:

(14) lnFt+τ − lnFt ∼N((µ− σ2

2
)τ,σ2τ).

The implied volatility is theσ that can best match the option model determined price with

the observed market price. The closed-form option pricing formula can be found in Black

(1976).

Stochastic Volatility Jump Diffusion Process

A stochastic volatility jump diffusion process increases flexibility as compared to the geo-

metric Brownian motion by incorporating jumps and movement of volatilities:

dF

F
= (µ−λk̄)dt+

√
V dZ +kdq(15)

dV = (α−βV )dt+σv

√
V dZv

cov(dZ,dZv) = ρdt

prob(dq = 1) = λdt, ln(1+k)∼N(ln(1+ k̄)− 1
2
δ2, δ2)

where:

µ is the rate of return of the futures price;

λ is the annual frequency of jumps;

k is the random percentage of price change conditional on a jump occurring that is lognor-

mally, identically, and independently distributed over time, with unconditional mean

k̄;

q is a Poisson counter with intensity ofλ;
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V is the variance term conditional on no jump occurring;

σv is the volatility of volatility;

Z andZv are each a standard Brownian motion;

ρ is correlation of the two standard Brownian motions, i.e.cov(dZ,dZv) = ρdt;

q andk are uncorrelated with each other or withZ andZv.

In a representative agent production economy, risk neutral processes of futures price are

given by

dF

F
= −λ∗k̄∗dt+

√
V dZ∗+k∗dq∗(16)

dV = (α−β∗V )dt+σv

√
V dZ∗

v

cov(dZ∗,dZ∗
v) = ρdt

prob(dq∗ = 1) = λ∗dt, ln(1+k∗)∼N(ln(1+ k̄∗)− 1
2
δ2, δ2)

whereβ∗ andα/β∗ are the speed of adjustment and long-run mean of the variance. The

parametersα, σv, δ, andρ in the risk-neutral process are the same as in the actual processes.

A closed-form option formula can be found in Bates (1996a) and Bakshi, Cao and Chen

(1997).

To derive the of logarithm of futures price, note that there are two independent uncertainty

sources in this model: one is the Brownian motion, and the other is the jump component with

a Poisson process. In order to derive the differential, we need to derive the differential of

Brownian motion and Poisson motion respectively. The Brownian motion is continuous and

Ito’s lemma can be used. The jump process, however, is not continuous and hence Ito’s

lemma is not applicable. So Ito’s lemma for semi-martingales is used here.

(17) d(lnF ) = (−λ∗k̄∗− 1
2
V )dt+

√
V dZ∗+ ln(1+k∗)dq∗.
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The discrete-time version of the risk-neutral SVJD processes is:

(18) lnFt+τ − lnFt ∼
[
(−λ∗k̄∗− 1

2
Vt +(ln(1+k∗)− 1

2
δ2)λ∗)τ,(Vt + δ2λ∗)τ

]
.

Equation (18) shows that in the stochastic volatility jump diffusion process, in addition

to variance term (Vt), the variation of mean jump size and jump frequency (i.e.δ andλ)

also monotonically affect the variation of the continuously compounded rate of return. In

fact, δ2λ∗ is the instantaneous conditional return variance per year attributable to jumps in

the risk-neutral processes. Therefore, the implied volatility,IVt, is
√

Vt + δ2λ∗ rather than
√

Vt alone.

Data

Three years of intradaily transactions data for call options2 on corn and soybean meal futures

and for the underlying futures traded on the Chicago Board of Trade (CBOT) were used.

The data consist of the time and price of every transaction for the period of January 2001

to December 2003. The CBOT corn futures contracts are available for March, May, July,

September, and December expiration dates. The CBOT soybean meal futures contracts are

available for January, March, May, July, August, September, October, and December expira-

tion dates. American-style options are traded on all the contracts. The total sample consists

of 18 corn futures contracts and 28 soybean meal futures contracts.

Several filters are applied to construct the synchronous futures and futures options prices.

First, weekly data rather than daily data are used in order to reduce computational burden

and to avoid the microstructure issues such as the day-of-the-week effect and limits of daily

price change. Wednesday (or Tuesday if Wednesday is not available) is selected as having the

2Call options are selected because they are more liquid than put options and therefore can represent the very
liquid contracts.
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fewest trading holidays. Second, options transactions are matched with the nearest underly-

ing futures within 4 seconds for corn and 60 seconds for soybean meal, since transactions on

soybean meal futures and options are much less liquid than those on corn futures and options.

If no matching futures price is obtained within the lapsed time, this option observation is

discarded. Third, the options with time-to-maturity of less than 10 trading days are deleted to

avoid maturity effects. Fourth, corn options with price less than 2.5 cents and soybean meal

options with price less than one dollar are deleted. Fifth, options with price lower than their

intrinsic value (i.e., Call<[Futures-Strike]) are deleted to eliminate the observations with ar-

bitrage opportunity. The resulting data set includes 8,995 and 4,300 Wednesday observations

for corn and soybean meal, respectively. The average daily numbers of options matched are

59.2 and 28.1 for corn and soybean meal, respectively.

The cash price data are Wednesday Toledo No.2 yellow corn price ($/lb) and Tuesday cen-

tral Illinois truck delivered 48 percent soybean meal ($/bu).3 Wednesday 3-month Eurodollar

deposits rates are used for the risk-free discount rate.

Estimation Method

Besides the exogenous variables obtained from the data set, the two option pricing models

require different parameters as inputs. For Black’s option pricing model, the only unobserv-

able input is the volatility term,σ; for the SVJD option pricing model, besides the volatility,

inputs also include seven unobservable structural parametersΦ=(λ∗, k̄∗, δ, α, β∗, σv, andρ).

In principle, econometric methods can be applied to estimate the parameters since the

stochastic processes are known. However, the requirement of a very long time series of

futures prices makes this approach inconvenient. Alternatively, a very practical approach

3The central Illinois truck delivered 48 percent soybean meal prices were only reported on Tuesdays and
used as a proxy for transacted prices of the following Wednesdays.
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is to calculate the implied parameters using the market option prices and observable inputs

in the option pricing formulae. Specifically, the implied parameters in the option pricing

formulae are obtained by minimizing the sum of squared pricing errors of all options for each

day in the sample data set.

(19) SSE(t) = min
v(t),Φ

Nt

∑
j=1

[Cj− Ĉj(v(t),Φ)]2

whereNt is the number of options used for datet; Cj is the j-th observed market option

price on datet; Ĉj is the model determined option price with observed exogenous inputs;

v(t) is σt in Black’s model and
√

Vt in SVJD model for datet; Φ is the vector of struc-

tural parameters for the SVJD model. For Black’s model there are no structural parameters.

Then, the volatility term and structural parameters can be obtained by non-linear least square

estimation.

This procedure can result in an estimate of implied volatility and the structural parameters

for each day. As discussed in Bates (1991), it is potentially inconsistent with the assumption

of constant parameters when deriving the option pricing models, because the implied param-

eters are not constrained to be constant over time; but a chronology of parameter estimates

and some stylized facts for future specification of more complicated dynamic models could

thereby be generated through this estimation procedure. The objective function in equation

(19) for implied parameter estimation has been used by several others including Bates(1991),

Bakshi, Cao and Chen (1997), Hilliard and Reis (1999), and Koekebakker and Lien (2004).

Model Performance Evaluation

Performance of the two option pricing models, Black’s model and the SVJD model, is eval-

uated by three criteria: in-sample pricing fitness, out-of-sample prediction, and volatility

forecasting accuracy. The root mean square errors (RMSEs) are compared for the two mod-
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els.

In-Sample Pricing Fitness

Table 2 reports the summary statistics for the in-sample pricing fitness of Black’s model and

the SVJD model for corn futures options. First, the in-sample root mean square errors are con-

siderably lower under the SVJD model (Mean=0.71) than under Black’s model (Mean=1.09).

Second, the parameter estimates for the SVJD model indicate that the jumps and mean-

reverting stochastic volatility are both important. Though the mean level of jump size (k̄∗)

is quite low, the jump frequency (λ∗) is significant. This may be due to the relative brevity

of the sample period, which makes it hard to detect a salient jump pattern. The long run

mean (median) of mean-reverting volatility process, which is measured by
√

α/β∗, is 0.2423

(0.2285).

Third, the implied volatilities from Black’s model and the SVJD model are very close.

This finding is consistent with Bakshi, Cao and Chen (1997). They explained that option

prices are sensitive to the volatility input and thus even small differences in volatility can

result in significantly different pricing results. Note that the maximum implied volatility

from Black’s model is very high (1.00, the upper bound set for performing estimation), which

occurs for July 31st, 2002. The implied volatility from the SVJD model is 0.2966 and the

structural parameter estimates areλ∗=0.5479,k̄∗=0.0389,δ=0.0589,α=0.7325,β∗=1.9058,

σv=0.4575, andρ=-0.5173. The jump size is positive, and the long-run mean and volatility

of variance are both significantly higher than their mean levels. The unrealistically high

implied volatility from Black’s model is because the volatility term is the only parameter

that determines the option prices and mere volatility can barely capture a sudden change of

the expectation of the exogenous variables, while the SVJD model exhibits an advantage by

adjusting its structural parameters timely.
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Summary statistics for the in-sample pricing fitness of the Black’s model and the SVJD

model for soybean meal futures options are shown in Table 3. The SVJD model for soybean

meal data still gives smaller RMSEs, but the improvement over Black’s model is less impres-

sive than for corn. One reason may be that soybean meal price is less volatile than corn, so

that SVJD model does not have the ideal circumstances for exhibiting its advantages. Overall,

the in-sample fit of the SVJD model is better than that of Black’s model.

Out-of-Sample Pricing performance

One may argue that there might be an overfit problem because the SVJD model has more

parameters than Black’s model. Therefore, out-of-sample testing is performed. Specifically,

the previous day’s (Tuesday’s) data are used to estimate the volatility and parameters, and

then Tuesday’s estimates and Wednesday’s data are used to predict Wednesday’s option prices

based on the two models, separately. Then we subtract the model-determined price from its

observed counterpart to compute the pricing error. This procedure is repeated for every call

and each day in the data sample, to obtain the average root mean squared pricing errors and

their associated standard deviations.

Note that this procedure does not constitute a true out-of-sample test in the usual sense,

since Wednesday’s volatility and structural parameters are assumed to be unchanged from

Tuesday’s. However, the out-of-sample testing here is pricing out-of-sample options rather

than forecasting options prices. The latter involves not only an estimate for the volatility

and structural parameters but a forecast for the exogenous variables such as price of the

underlying asset and instantaneous interest rate. Therefore, our the testing is equivalent to

testing the stability of parameters. This procedure is consistent with previous approaches in

the literature (e.g. Bakshi, Cao and Chen, 1997; Hilliard and Reis, 1999).

For corn options, in 121 Wednesdays out of 150 Wednesdays in our sample, the SVJD
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model gives smaller root mean squared pricing errors than Black’s model. For soybean meal,

in 120 Wednesdays out of 151 Wednesdays, the SVJD model gives smaller root mean squared

pricing errors. The means and standard deviations of the RMSEs are shown in Table 4.

Tuesday parameter estimates are not reported because they are similar to their Wednesday’s

counterparts. As in in-sample testing, the improvement of the SVJD model over Black’s

model is more impressive for corn options than for soybean meal options.

Volatility Forecast Performance

The third and most important performance test compares the forecasted volatilities from the

two models with the realized volatilities.

The realized (ex post) volatility is defined as:

(20) σt,t+h,i =

√√√√ h

∑
j=1

R2
t+j,i

whereRt+j,i is the rate of return at timet+ j for commodityi, as defined in equation (10);h

is forecasting horizon. Therefore,σt,t+h,i, the realized volatility at timet over the forecasting

horizonh for commodityi, can be derived using observed cash price series of commodityi

from t to t+h.

One criterion for testing performance is the root mean square error of the forecasted

volatilities. In addition, a regression of the realized volatility on an intercept and the implied

volatility is performed:

(21) σt,t+h,i = α+βσ̂t,t+h,i + εt.

The coefficients of determination (R-square) are used to evaluate forecast performance.

Another testable implication of the unbiasedness hypothesis is that{α,β} = {0, 1} in equation
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(21). If α = 0 andβ > 1, orα > 0 andβ ≥ 1, implied volatility is downwardly biased; ifα > 0

andβ < 1, implied volatility under-forecasts low volatility and over-forecasts high volatility.

Table 5 gives the volatility forecast performance of Black’s and the SVJD models for

corn data. Seven forecasting horizons are chosen:h=1, 2, 4, 8, 12 , 26, and 52 weeks. SVJD

provides smaller root mean squared volatility forecasting errors than Black’s model across all

7 forecasting horizons. As an illustration, Figure 1 shows the comparison of implied volatility

with realized volatility for h=12 weeks. The spike in implied volatilities from Black’s model

is on July 31st, 2002, on which date the Black’s annualized implied volatility is 1.

The regression analysis results for corn are reported in Table 6. The coefficients of deter-

mination from the SVJD model are consistently higher than those from Black’s model, and

the highest two are for h=12 and h=8. For implied volatilities from the SVJD model, the

estimates of intercept (α) are not significantly different from zero and the estimates of slope

(β) are not significantly different from one for h=1, 2, 4, 8, and 12 weeks. For h=1 and h=2,

SVJD yields upwardly biased volatility estimates; for h=4 and h=8, implied volatility over-

forecasts low volatility and under-forecasts high volatility; and for h=12, implied volatility

under-forecasts low volatility and over-forecasts high volatility. For h=12, h=8 and h=14, the

F-test cannot reject that{α,β} = {0, 1} and therefore the implied volatilities are unbiased

forecasts of the realized volatilities. Overall, the SVJD model performs best for h=12, h=8,

and h=4.

For soybean meal, the root mean squared errors of volatility forecast are shown in Table

7 and results of the regression analysis are shown in Table 8. The SVJD model does not

perform significantly better than Black’s model for soybean meal data.
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Feed Price Forecast

Basis risk needs to be taken into account before simulating the future price distribution, be-

cause the volatilities recovered from options data are of futures prices. Basis is the difference

between the local cash price and the closing futures price, so it is region-specific.

(22) BT,i = PT,i−FT,i,

whereBT,i is the local basis at timeT of commodityi; PT,i is local cash price at timeT ; and

FT,i is the closing futures price at timeT .

From equation (22),

(23) E(Pt+h,i) = Ft,t+h,i +E(Bt+h,i)

and

(24) var(Pt+h,i) = var(Ft,t+h,i)+var(Bt+h,i)+2cov(Ft+h,i,Bt+h,i)

where the mean and variance of basis, i.e.E(Bt+h,i) andvar(Bt+h,i), are derived from five

years of historical futures and cash price data. The covariance between closing futures price

and basis is set to zero since historical data show no significant correlation between them.

Basis risk is assumed to have zero correlation between the two commodities.

Therefore, the prices and variances of futures contracts should be adjusted by basis to

provide the realistic expectations and variances of future local cash prices. We choose the

expiration days of futures as the dates to forecast,t+h, and go back forecasting horizonsh

to find the settlement futures prices,Ft,t+h, and then adjust the mean and variance of cash

pricePt+h by incorporating basis risk to equation (5).

As an illustration, the forecast horizons are set as 12 weeks and 26 weeks. For corn, there
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are 14 price forecasts of 12 week horizons. In 10 out of the 14 forecasts, the realized cash

prices fall in the intervals one standard deviation from the point estimate. In 14 out of the 14

forecasts, the realized cash prices fall in the 95 percent prediction interval. For horizons of

26 weeks, in 11 out of 12 cases, the realized cash prices fall within one standard deviation;

and in all 12 cases, the realized cash prices fall in the 95 percent prediction intervals.

For soybean meal, there are 22 price forecasts of 12 week horizons. In 11 cases, the

realized cash prices fall in the intervals one standard deviation from the point estimate; and

in 20 cases, the realized cash prices fall in the 95 percent prediction intervals. For horizons

of 26 weeks, in 12 out of 20 cases, the realized cash prices fall in the one standard devia-

tion intervals; and in 17 of 20 cases, the realized cash prices fall in the 95 percent prediction

intervals. The soybean meal price forecast is not as accurate as the corn forecast, possibly be-

cause the basis between soybean meal cash price and settlement futures price is very volatile.

Sometimes it can be over 30 dollars.

Summary and Discussion

Being aware of the potential risk in feed price movement and the ability to forecast the distri-

bution of feed cost is crucial for running a modern livestock operation. This study provides a

method to forecast the feed price at a future time, where an important issue is to forecast the

volatility of future returns. In the literature, implied volatility method based on Black’s option

model generally performs better than time series models, because forward-looking informa-

tion is used when using options to recover the volatility of the underlying asset. A stochastic

volatility jump diffusion model is selected to compare with Black’s model because it pos-

sesses substantial qualitative improvements over the geometric Brownian motion process.

Our results indicate the performance of Black’s model and the SVJD model varies across

forecasting horizons and commodities. But overall, SVJD is superior to Black’s model. One

18



limitation in this paper is that only one local corn cash price series and one local soybean meal

cash price series are used for empirical analysis. Collecting more cash price series of different

regions will allow us to examine if the performance of the two models are location-specific.
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Table 1: Corn- and Soybean-based Feed Costs as a Percent of Total Variable Costs

Enterprise % Variable Costs*
Feeder Pig Production 40 – 50
Hog Finishing 40 – 50
Beef Finishing 15 – 30
Broiler Production 55 – 65
Layer Production 40 – 50
Meat Goat Production 5 – 15
Milk Production 20 – 30
Ewe and Lamb production 30 – 40
Lamb Finishing 10 – 20
Aquaculture 30 – 60
* Compiled from various Land Grant universities’ enterprise budgets.

Table 2: Summary Statistics of Estimation for Corn Data

Mean Std Median Max Min
RMSEBlack 1.0859 0.4668 1.0687 3.1021 0.2453
RMSESVJD 0.7123 0.3189 0.6353 2.2066 0.1956
IVBlack 0.2419 0.0720 0.2397 1.0000 0.1769√

V SVJD 0.2289 0.0585 0.2172 0.3607 0.1063
IVSVJD 0.2397 0.0550 0.2265 0.3615 0.1063

λ∗ 0.6261 0.0988 0.6056 0.9789 0.3767
k̄∗ -0.0237 0.0623 -0.0380 0.3011 -0.1711
δ 0.0775 0.0293 0.0757 0.1957 0.0010
α 0.1207 0.0727 0.1061 0.7325 0.0124
β∗ 2.0554 0.1015 2.0314 2.7999 1.8896
σv 0.3837 0.0489 0.3800 0.5583 0.2077
ρ -0.5787 0.0624 -0.5798 -0.4299 -0.7344

Note: RMSEBlack andRMSESVJD are root mean squared pricing errors of Black’s model and SVJD model respectively; the unit of the
RMSEs is cent since soybean meal option prices are in cents;IVBlack is implied volatility from Black’s model;

√
V SVJD is the volatility

in SVJD model conditional on no jump occurring;IVSVJD is the implied volatility from SVJD model; andλ∗, k̄∗, δ, α, β∗, σv , andρ are
structural parameters in SVJD model.
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Table 3: Summary Statistics of Estimation for Soybean Meal Data

Mean Std Median Max Min
RMSEBlack 0.5737 0.2680 0.5196 1.5185 0.1499
RMSESVJD 0.4100 0.2032 0.3528 1.2601 0.1127
IVBlack 0.2175 0.0331 0.2090 0.3044 0.1614√

V SVJD 0.2181 0.0382 0.2080 0.3291 0.1574
IVSVJD 0.2257 0.0371 0.2166 0.3321 0.1674

λ∗ 0.5911 0.0790 0.5839 0.8786 0.2668
k̄∗ -0.0300 0.0385 -0.0396 0.1664 -0.1423
δ 0.0698 0.0186 0.0682 0.1420 0.0007
α 0.0982 0.0335 0.0884 0.2087 0.0172
β∗ 2.0418 0.0398 2.0381 2.1754 1.9252
σv 0.3804 0.0199 0.3798 0.4878 0.2837
ρ -0.5620 0.0237 -0.5635 -0.4597 -0.6387

Note: RMSEBlack andRMSESVJD are root mean squared pricing errors of Black’s model and SVJD model respectively; the unit of the
RMSEs is dollar since soybean meal option prices are in dollars;IVBlack is implied volatility from Black’s model;

√
V SVJDis the volatility

in SVJD model conditional on no jump occurring;IVSVJD is the implied volatility from SVJD model; andλ∗, k̄∗, δ, α, β∗, σv , andρ are
structural parameters in SVJD model.

Table 4: Out-of-sample Average Root Mean Squared Errors

Black SVJD

Corn 1.1604 0.8904
(0.4951) (0.3959)

Soybean Meal 0.6220 0.4980
(0.3050) (0.2703)

Note: Numbers in parentheses are standard deviations.

Table 5: Root Mean Squared Errors of Volatility Forecast for Corn Data

Horizon Black SVJD
1 0.0275 0.0250
2 0.0327 0.0288
4 0.0368 0.0322
8 0.0441 0.0358

12 0.0494 0.0381
26 0.0617 0.0524
52 0.0851 0.0737
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Table 6: Regression Analysis for Corn Data

Horizon Black SVJD
α β R2 α β R2

1 0.0197 0.1556 0.0039 -0.0077 0.9807 0.0910
(0.0071) (0.2024) (0.0086) (0.2531)

2 0.0311 0.1807 0.0073 -0.0056 0.9613 0.1210
(0.0085) (0.1717) (0.0102) (0.2116)

4 0.0311 0.4416 0.0609 -0.0110 1.0787 0.2118
(0.0099) (0.1416) (0.0116) (0.1699)

8 0.0532 0.3979 0.0709 -0.0065 1.0366 0.2808
(0.0116) (0.1176) (0.0131) (0.1355)

12 0.0711 0.3668 0.0756 0.0006 0.9827 0.3166
(0.0127) (0.1047) (0.0139) (0.1179)

26 0.1310 0.2539 0.0656 0.1005 0.4362 0.1129
(0.0140) (0.0782) (0.0174) (0.9982)

52 0.2655 -0.0567 0.0118 0.2864 -0.1442 0.0445
(0.0107) (0.0424) (0.0134) (0.0546)

Note: Numbers in parentheses are standard deviations.

Table 7: Root Mean Squared Errors of Volatility Forecast for Soybean Meal Data

Horizon Black SVJD
1 0.02097 0.02106
2 0.02284 0.02283
4 0.02318 0.02279
8 0.02474 0.02392

12 0.02689 0.02628
26 0.03883 0.03771
52 0.11213 0.10738
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Table 8: Regression Analysis for Soybean Meal Data

Horizon Black SVJD
α β R2 α β R2

1 -0.0059 1.0406 0.0505 -0.0074 1.0519 0.0664
(0.0111) (0.3674) (0.0101) (0.3211)

2 -0.0026 1.0134 0.0752 -0.0029 0.9843 0.0913
(0.0124) (0.2892) (0.0112) (0.2527)

4 -0.0042 1.0835 0.1522 -0.0040 1.0438 0.1818
(0.0126) (0.2081) (0.0113) (0.1802)

8 0.0152 0.8767 0.1769 0.0159 0.8397 0.2088
(0.0132) (0.1539) (0.0118) (0.1330)

12 0.0093 0.9850 0.2644 0.0190 0.8605 0.2597
(0.0140) (0.1337) (0.0129) (0.1182)

26 0.0534 0.7834 0.2340 0.0712 0.6443 0.2037
(0.0178) (0.1153) (0.0166) (0.1037)

52 0.0799 0.9332 0.1008 0.0861 0.8734 0.1136
(0.0495) (0.2269) (0.0450) (0.1986)

Note: Numbers in parentheses are standard deviations.

Figure 1: Volatility Forecast Performance for H=12
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