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Bernoulli Regression Models: 

Re-examining Statistical Models with Binary Dependent Variables 

 

Abstract 

 

The classical approach for specifying statistical models with binary dependent variables 

in econometrics using latent variables or threshold models can leave the model 

misspecified, resulting in biased and inconsistent estimates as well as erroneous 

inferences. Furthermore, methods for trying to alleviate such problems, such as univariate 

generalized linear models, have not provided an adequate alternative for ensuring the 

statistical adequacy of such models. The purpose of this paper is to re-examine the 

underlying probabilistic foundations of statistical models with binary dependent variables 

using the probabilistic reduction approach to provide an alternative approach for model 

specification. This re-examination leads to the development of the Bernoulli Regression 

Model. Simulated and empirical examples provide evidence that the Bernoulli Regression 

Model can provide a superior approach for specifying statistically adequate models for 

dichotomous choice processes.  

 

Keywords: Bernoulli Regression Model, logistic regression, generalized linear models, 

discrete choice, probabilistic reduction approach, model specification
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Bernoulli Regression Models:  

Re-examining Statistical Models with Binary Dependent Variables 

 

1. Introduction 

The evolution of conditional statistical models with binary dependent variables 

has led to two interrelated approaches on how to specify these models. Powers and Xie 

(2000) refer to these two approaches as the latent variable or theoretical approach and the 

transformational or statistical approach. The latent variable approach assumes the 

existence of an underlying continuous latent or unobservable stochastic process giving 

rise to the dichotomous choice process being observed. The transformational approach 

views the observed dichotomous choice process as inherently categorical and uses 

transformations of the observed data to derive an operational statistical model (Powers 

and Xie, 2000).  

 The latent variable approach assumes the existence of a latent stochastic process 

{ }NiY iii ,...,1,|* == xX , where ( ) iii gY εθ += ;* X , the functional form of ( ).;.g  is 

derived from theory, iX  is a k-dimensional vector of explanatory (random) variables, θ  

is a set of estimable parameters, iε  is IID and ( ) 0=iE ε (Maddala, 1983). Given that *
iY  

is not directly observable, what is observed is another variable, iY , related to *
iY , such 

that ( )λ>= *
ii YY 1 , for some R∈λ , where ( ).1  is the indicator function. A statistical 

model is then specified based on the following probabilistic framework:  

( ) ( ) ( )( ) ( )( )λθλεθλ −=>+=>== ;;1 *
iiiii gFgYY XXPPP , 
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where ( ).F  is the cumulative density function (cdf) of iε  and assumed to be symmetric.1 

If iε  is distributed IID extreme value, then ( ).F  is the logistic cdf, and if iε  is IID 

normal, then ( ).F  is the normal cdf, giving rise to the binary logistic and probit 

regression models, respectively (Train, 2003). Given that the underlying latent process 

used to specify the model is unobservable, the assumptions concerning the distribution of 

iε  and the functional form of ( )θ;ig X  cannot be directly verified. If these assumptions 

are wrong, then the estimable model obtained is misspecified and the parameter estimates 

inconsistent (Coslett, 1983). 

 The transformational approach follows the theory of univariate generalized linear 

models developed by Nelder and Wedderburn (1972), except these models arise from 

conditional rather than marginal distributions.  Following Fahrmeir and Tutz (1994), let 

{ }NiY iii ,...,1,| == xX  be an independent stochastic process, such that 

)1,(~| iiii pbinY xX = . Now consider the linear predictor ( )ii t xβη ′= , where ( )it x  is a 

( )1×S  vector of transformations of ix and β  is a ( )1×S  vector of parameters. It is 

assumed that the linear predictor is related to ip  via the inverse of a known one-to-one, 

sufficiently smooth response function, i.e. ( )ii pl=η , where ( ).l  is referred to as the link 

function. Hence, the transformational approach attempts to specify a transformation or 

functional form for the link function to obtain an operational statistical model. If ( ).l  is 

the logistic (probit) transformation, then this approach gives rise to the traditional binary 

logistic (probit) regression model. In fact, the inverse of any one-to-one, sufficiently 
                                                 
1 When ( ).F  is symmetric: 

( )( ) ( )( ) ( )( ) ( )( )λθθλθλελεθ −=−−=−>=>+ ;;1;; iiiiii gFgFgg XXXPXP .  
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smooth cdf could provide a proper model under this approach. Kay and Little (1987) but 

the functional form of ( ) ( )ηη glpi == −1  is in fact determined by the probabilistic 

structure of the observed data. That is, the functional form of ( )iiii YEp xX == |  is 

dependent upon the functional form of ( )iiiYf xX =|  and can be specified using 

( ) 1,0for  | == jjYf iiX  (see also Arnold and Press, 1989). Again the wrong choice of 

( ).l  or η  will leave the model misspecified and the parameter estimates inconsistent. 

 In an attempt to deal with these functional form issues, the purpose of this paper is 

to re-examine the underlying probabilistic foundations of conditional statistical models 

with binary dependent variables using the probabilistic reduction approach developed by 

Spanos (1986,1995,1999). This examination leads to a formal presentation of the 

Bernoulli Regression Model (BRM), a family of statistical models, which includes the 

binary logistic regression model. This paper provides a more complete extension of the 

work done by Kay and Little (1987). Other issues addressed include, specification and 

estimation of the model, as well as, using the BRM for simulation. 

2. The Probabilistic Reduction Approach and Bernoulli Regression Model 

 The probabilistic reduction approach is based on re-interpreting the De Finetti 

representation theorem as a formal way of reducing the joint distribution of all observable 

random variables involved into simplified products of distributions by imposing certain 

probabilistic assumptions (Spanos, 1999). This decomposition provides a formal and 

intuitive mechanism for constructing statistical models, with the added benefit of 

identifying the underlying probabilistic assumptions of the statistical model being 

examined.  



  5 

 A statistical model is defined as a set of probabilistic assumptions that adequately 

capture the systematic information in the observed data in a parsimonious and efficient 

way. The primary goal of the probabilistic reduction approach is to obtain statistically 

adequate models, where the “adequacy of a statistical model is judged by the 

appropriateness of the [probabilistic] assumptions (making up the model) in capturing the 

systematic information in the observed data (Spanos, 1999; p.544).”  

 Let { }NiYi ,...,1, =  be a stochastic process defined on the probability space 

( )( ).,, PS ℑ , where )1,(~ pbinYi  (Bernoulli), ( ) pYE i = and )1()( ppYVar i −=  for 

Ni ,...,1= . Furthermore, let ( ){ }NiXX iKii ,...,1,,..., ,,1 ==X  be a vector stochastic process 

defined on the same probability space with joint density function ( )2;ψXf , where 2ψ  is 

an appropriate set of parameters. Furthermore, assume that ( ) ∞<2
,ikXE for Kk ,...,1=  

and Ni ,...,1= , making { }NiYi ,...,1, =  and each { }Niik ,...,1,, =X , Kk ,...,1= , elements 

of ( )NL R2 , the space of all square integrable stochastic processes over NR .  The joint 

density function of the joint vector stochastic process ( ){ }NiY ii ,...,1,, =X  takes the form:  

);,...,,,...,( 11 φNNYYf XX ,    (1) 

where φ  is an appropriate set of parameters. 

All of the systematic (and probabilistic) information contained in the vector 

stochastic process ( ){ }NiY ii ,...,1,, =X  is captured by the Haavelmo Distribution, which 

is represented by the joint density function given by equation (1). Based on a weaker 

version of De Finetti’s representation theorem, by specifying a set of reduction 

assumptions from three broad categories: 

(D) Distributional, (M) Memory/Dependence, and (H) Heterogeneity, 
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concerning the vector stochastic process ( ){ }NiY ii ,...,1,, =X , the modeler can reduce the 

Haavelmo distribution or joint density function into an operational form, giving rise to an 

operational statistical model and probabilistic model assumptions. By specifying 

particular reduction assumptions, the modeler is essentially partitioning the space of all 

possible statistical models into a family of operational models (indexed by the parameter 

space) (Spanos, 1999).  

Assuming that the joint vector stochastic process ( ){ }NiY ii ,...,1,, =X  is 

independent (I) and identically distributed (ID), the joint distribution given by equation 

(1) can be reduced (decomposed) in the following manner: 

  ( ) ( )∏ ∏
= =

==
N

i

N

i
ii

ID

iiii

I

NN YfYfYYf
1 1

11 ;,;,);,...,,,...,( ϕϕφ XXXX , (2) 

where iϕ  and ϕ  are appropriate sets of parameters. The last component of the reduction 

in equation (2) can be further reduced so that: 

          ( ) ( ) ( )∏∏
==

⋅==
N

i
iii

N

i
ii

IID

NN fYfYfYYf
1

21
1

11 ;;|;,);,...,,,...,( ψψϕφ XXXXX ,  (3) 

where 1ψ  and 2ψ  are appropriate sets of parameters.  

It is the reduction in (3) that provides us with the means to define an operational 

statistical model with binary dependent variables. For the reduction in equation (3) to 

give rise to a proper statistical model, it is necessary that the joint density function 

( )ϕ;, iiYf X  exist. The existence of  ( )ϕ;, iiYf X  is dependent upon the compatibility of 

the conditional density functions, ( )1;| ψiiYf X   and ( )1;| ηii Yf X  (where 1η  is an 

appropriate set of parameters) (Arnold and Castillo, 1999), i.e. 

( ) ( ) ( ) ( )pYfYffYf iiiiii ;;|;;| 121 ⋅=⋅ ηψψ XXX = ( )ϕ;, iiYf X , (4) 
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where ( ) ii YY
i pppYf −−= 1)1(; .  

 Arnold et al. (1999;p. 17) state that a sufficient condition for the compatibility of 

( )1;| ψiiYf X  and ( )1;| ηii Yf X is that the ratio:  

( ) ( )
( ) ( )11

11

;1|;|0
;0|;|1
ηψ
ηψ

=⋅=
=⋅=

iiii

iiii

YfYf
YfYf

XX
XX

      

does not depend on iZ . Thus, using equation (4), the above ratio must be equal to 
p

p
−1

, 

implying the following condition must be met:  

( )
( )

( )
( )

( )
( )

( )
( )2

2

1

1

1

1

;
;

;|0
;|1

;0
;1

;0|
;1|

ψ
ψ

ψ
ψ

η
η

i

i

ii

ii

i

i

ii

ii

f
f

Yf
Yf

pYf
pYf

Yf
Yf

X
X

X
X

X
X

⋅
=
=

=
=
=

⋅
=
=

. (5) 

Assume that ( )1;| ψiiYf X  is a conditional Bernoulli density function with the 

following functional form: 

( ) ( ) ( )[ ] ii Y
i

Y
iii ggYf −−= 1

111 ;1;;| ψψψ XXX ,   (6)   

where ( ) [ ]1,0:; 11 →Θ×K
ig RX ψ  and 11 Θ∈ψ , the parameter space associated with 1ψ .2 

The density function specified by equation (6) satisfies the usual properties of a density 

function, i.e. following the properties of the Bernoulli density function (see Spanos, 

1999): 

(i) ( ) 0;| 1 ≥ψiiYf X  for 1,0=iY  and K
ii RxX ∈= , 

(ii) ( ) ( ) ( )( )∑
=

=−+=
1,0

111 1;1;;|
iY

iiii ggYf ψψψ XXX , and 

                                                 
2 This choice of functional form is based upon a similar functional form used by Cox and Wermuth (1992).  
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(iii) ( ) ( )
( )

( ) ,

1 and 1 if
1 and 0 if

1 and 10 if
10 and 0 if

0 and 0 if

0
1
;

;1
0

;|;| 1

1

11

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>>
≥≤
≥<<
<≤<

<<
−

=−

ba
ba

ba
ba

ba

g
g

aFbF i

i

ii ψ
ψ

ψψ X
X

XX  for ( ) R∈ba, , 

where (i) follows from the nonnegativity of ( )1;ψig X  and ( )1;|. ψiF X  represents the 

cumulative conditional Bernoulli density function, which takes the following functional 

form: 

   ( ) ( )
⎪
⎩

⎪
⎨

⎧

≥
<≤

<
−=

1for 
10for 

0for  

1
;1

0
;| 11

z
z

z
gzF ii ψψ XX  . 

Substituting equation (6) into (5) and letting jj
j pp −−= 1)1(π  for 1,0=j  gives: 

  
( )
( )

( )
( )

( )
( )2

2

1

1

0

1

1

1

;
;

;1
;

;0|
;1|

ψ
ψ

ψ
ψ

π
π

η
η

i

i

i

i

ii

ii

f
f

g
g

Yf
Yf

X
X

X
X

X
X

⋅
−

=⋅
=
=

,   (7) 

which implies that: 

  ( ) ( )
( ) ( )1110

11
1 ;1|;0|

;1|
;

ηπηπ
ηπ

ψ
=⋅+=⋅

=⋅
=

iiii

ii
i YfYf

Yf
g

XX
X

X .  (8) 

Given the general properties of density functions and that ( )1,0∈jπ   for 1,0=j , the 

range of ( )1;ψig X  is [ ]1,0 , justifying the assumption that ( ) [ ]1,0:; 11 →Θ×K
ig RX ψ .  

A more intuitive and practical choice for ( )1;ψig X  can be found by using results 

from Kay and Little (1987). Using the identity ( ) ( )( ).lnexp. ff =  and after rearranging 

some terms, ( )1;ψig X  becomes: 

 ( ) ( ){ }
( ){ } ( ){ }[ ] 1

1
1

1
1 ;exp1

;exp1
;exp

; −−+=
+

= η
η

η
ψ i

i

i
i h

h
h

g X
X

X
X ,   (9) 
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where ( ) ( )
( ) κ

η
η

η +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
1

1
1 ;0|

;1|
ln;

ii

ii
i Yf

Yf
h

X
X

X  and ( ) ( )01 lnln ππκ −= . Written as the 

composite function, ( )( )1;ηihg X , ( ).g  represents the logistic cumulative density function 

(the transformation function) and ( ).;.h  represents the traditional index function. Equation 

(9) illustrates the functional relationship between 1ψ  and 1η  (i.e. ( )11 ηψ G= ), as well.3  

 The conditional distribution ( )1;| ψiiYf X  allows the modeler to define a 

statistical generating mechanism (SGM), which is viewed as an idealized representation 

of the true underlying data generating process (see Spanos, 1999). The SGM is usually 

characterized by a set of conditional moment functions of ( )1;| ψiiYf X , such as the 

regression function: 

    ( ) iiiii uYEY +== xX| ,    (10) 

where ( )iiiYE xX =|  represents the systematic component and iu  the nonsystematic 

component (the error term). The orthogonal decomposition in equation (10) arises when 

{ }NiYi ,...,1, =  and { }NiX ik ,...,1,, = are elements of 2L  for Kk ,...,1=  (see Small and 

McLeish, 1994 and Spanos, 1999). The SGM can contain higher order conditional 

moment functions when they capture systematic information in the data. These can be 

specified using iu , in the following manner: 

    ( ) siii
s
i

s
i vuEu ,| +== xX ,    (11) 

                                                 
3 Note, that in some cases one is able to reparametricize ( )1;ηih x , so that 

( ) ( )( ) ( )111 ;;; ψηη iii hGhh xxx == . In other cases, 11 ηψ =  (see section 3 for examples). 
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where s denotes the sth order conditional moment function. When 4or  3,2=s , equation 

(11) represents the skedastic (conditional variance), clitic (conditional skewness) and 

kurtic (conditional kurtosis) functions, respectively.  

Given that ( ) ∞<= iiiYVar xX| ,  the stochastic process { }NiY iii ,...,1,| == xX  

can be decomposed orthogonally giving rise to the following regression function: 

( ) ( ) ( ){ }[ ] iiiiiiiii uhuguYEY +−+=+=+== −1
11 ;exp1;| ηψ xxxX ,  (12) 

where the last inequality follows by substituting in equation (9).  The distribution of the 

error term, iu , is given by: 

iu  ( )1;1 ψig X− ( )1;ψig X−  
( )iuf  ( )1;ψig X  ( )1;1 ψig X−

 

where ( ) 0=iuE  and ( ) ( )( )11 ;1;)( ψψ iii gguVar XX −= . If iX  is discrete then ( )iuf  will 

be discrete, but if iX  is continuous then ( )iuf  will be a multimodal distribution. For 

example, consider the univariate case when ( )1,6.06.0~| iii YNjYX += , then ( )iuf  has 

the (simulated) bimodal distribution in Figure 1. 

Equation (12) represents the SGM for a family of statistical models known as the 

Bernoulli Regression Model, which is more formally specified in Table 1.4  The first 

three model assumptions, i.e. distributional, functional form and heteroskedasticity, arise 

from the derivations provided above. The homogeneity and independence assumptions 

are a result of the IID reduction assumptions made about the joint vector stochastic 

process ( ){ }NiY ii ,...,1,, =X .  

                                                 
4 The conditional variance (or skedastic function) and higher order moment functions are not included in 

the SGM because they are specified in terms of the conditional mean, ( )1;ψig x  
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The regression function given by equation (12) is similar to the traditional binary 

logistic regression model, but above derivations show that it arises naturally from the 

joint density function given by equation (1), suggesting it as an obvious candidate for 

modeling discrete choice processes when the dependent variable is distributed 

Bernoulli(p). Another important observation is that the functional forms for both 

( )1;ψig X  and ( )1;ηih X  are both dependent upon the functional form of ( )1;| ηii Yf X  

and in turn the joint distribution of iY  and iX . 

3. Model Specification 

  Kay and Little (1987) provide the necessary specifications for ( )1;ηih x  

when ikX , , Kk ,...,1=  (the explanatory variables) have distributions from the simple 

exponential family and are independent conditional on iY  of each other. When these 

conditions are not met, the model specification becomes more complex. Kay and Little 

(1987) provide examples involving sets of random variables with multivariate Bernoulli 

and normal distributions, but due to the complexity of dealing with multivariate 

distributions they advocate accounting for any dependence between the explanatory 

variables by including cross-products of transformations (based on their marginal 

distributions) of the explanatory variables. This paper builds on the model specification 

work initiated by Kay and Little (1987). 

An initial issue concerning specification of BRMs is that ( )1;| ηii Yf X  is not 

usually known and for many cases cannot be readily derived.5 A potential alternative is to 

assume that: 

                                                 
5 For help with such derivations, work by Arnold, Castillo and Sarabia (1999) may be of assistance. 
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( ) ( )( )iiii YfYf 11 ;;| ηη XX = .    (13) 

In this sense, one is treating the moments of the conditional distribution of iX  given iY  

as functions of iY . That is ( ) 1,0for ,11 === jjY ji ηη . Lauritzen and Wermuth (1989) 

use a similar approach to specify conditional Gaussian distributions, and Kay and Little 

(1987) use this approach to specify the logistic regressions models in their paper (see also 

Tate, 1954 and Oklin and Tate, 1961).  

Table 2 provides the functional forms for ( )1;ψixg  needed to obtain a properly 

specified BRM with one explanatory variable for a number of different conditional 

distributions of the form ( )jiXf ,1;η . Following Kay and Little (1987), all of the cases 

examined in Table 2 have index functions that are linear in the parameters. Examples of 

conditional distributions that give rise to nonlinear index functions include 

when ( )jiXf ,1;η  is distributed F, extreme value or logistic. In such cases, one option is to 

explicitly specify ( )jiXf ,1;η  and estimate the model using equation (9), which can be 

difficult numerically due to the inability to reparametricize the model, leaving both 0,1η  

and 1,1η in ( )jih ,1;ηx . Another option is to transform iX  so that it has one of the 

conditional distributions specified in Table 2. To illustrate this latter approach, consider 

the following example. 

Example 1: Let ( )jiXf ,1;η  be a conditional Weibull distribution of the form: 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⋅
=

−
γ

γ

γ

αα
γ

η
j

i

j

i
i

XX
Xf exp;

1

1 ,    (14)     
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where ( ) 2, +∈Rγα j  and 0>iX . That is ( )γα ,~| jii WjYX = . If ( )γα ,~ WX i  

then ( )αγ ExpX i ~  (i.e. exponential). Thus, ( )jii ExpjYX αγ ~| = , and using the results 

from Table 2:       

 ( ) { }[ ] 1
101 exp1; −

−−+= γββψ ii xxg ,    (15) 

where ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

1

0
0 ln

α
α

γκβ  and 
γγ

αα
β ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

10
1

11 . 

 If there is more than one explanatory variable, then a number of different 

approaches exist for model specification. The first approach is to explicitly specify the 

multivariate distribution ( )jif ,1;ηX . If ( )jif ,1;ηX  is multivariate normal with 

homogenous covariance matrix, then: 

   ( )
1

1
,01 exp1;

−

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−−+= ∑

K

k
ikki xg ββψx .     

On the other hand, if the covariance matrix exhibits heterogeneity (based on iY ), then: 

  ( )
1

1
,,,

1
,01 exp1;

−

= ≥= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+= ∑∑∑

K

j

K

jl
ilijlj

K

k
ikki xxxg βββψx  

(Kay and Little, 1987). Kay and Little (1987) state there are a limited number of other 

multivariate distributions that exist in the literature which would give rise to readily 

estimable and tractable BRMs. Three additional multivariate distributions that do suffice, 

include the binomial, beta and gamma distributions. The following example presents the 

case for a conditional bivariate gamma distribution.  

Example 2: Let ( )jii XXf ,1,2,1 ;, η  be a conditional bivariate gamma distribution, of the 

form: 
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  ( ) [ ] [ ] ( ) 1
,1,2

1
,1

,2,1

,2,1
,1,2,1

,2,1,2;, −−− −
ΓΓ

= jjij
iii

X

jj

jjj
jii XXXeXXf θθα

θθ
θθα

η , 

where [ ].Γ  is the gamma function, 0,1,2 ≥> ii XX  and ( ) 3
,2,1 ,, +∈Rjjj θθα  (Spanos, 1999). 

Then: 

( ) ( ) ( ){ }[ ] 1
,1,23,12,2101,2,1 lnlnexp1;, −−−−−−+= iiiiii xxxxxxg ββββψ , 

where 
[ ] [ ]
[ ] [ ] ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓ

ΓΓ
+=

1,21,10,20,10

0,20,11,21,11
0 ln

θθθθα
θθθθα

κβ , ( )101 ααβ −= , ( )0,11,12 θθβ −=  and 

( )0,21,23 θθβ −= . 

 Another approach for specifying a BRM when 1>K  is to decompose ( )jif ,1;ηX  

into a product of simpler conditional density functions. Following Kay and Little (1987), 

consider the case where the explanatory variables are independent of each other 

conditional on iY . Then, ( ) ( )∏
=

=
K

k
jkikji Xff

1
,,1,,1 ;; ηηX , making the index function  

( ) ( )
( ) κ

η
η

η +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

K

k kik

kik
i Xf

Xf
h

1 0,,1,

1,,1,
1 ;

;
ln;x . The results in Table 2 then can be used to 

specify ( )1,ηih x  by specifying the (sub) index functions, ( ) ( )
( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0,,1,

1,,1,
,1, ;

;
ln;

kik

kik
kik Xf

Xf
xh

η
η

η , 

(without κ ) for each ikX , . The difficulty here is assessing the conditional independence 

of the explanatory variables given iY , but results by Tate (1954) and Oklin and Tate 

(1961) may be some help. 
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 If some or none of the explanatory variables are independent conditional on iY , 

then another approach for decomposing ( )jif ,1;ηX  is sequential conditioning (Spanos, 

1999), i.e. 

 ( ) ( ) ( )∏
=

−=
K

k
jkiikikjiji XXXfXff

2
,,1,1,,1,1,1,1 ;,...,|;; ξηηX ,   

where jk ,ξ  is an appropriate set of parameters. Given the potential complexity of this 

approach, it can be combined with the previous approach to reduce the dimensionality 

and increase the tractability of the problem. To illustrate this alternative, consider the 

following example. 

Example 3: Let 

  ( ) ( ) ( )jiijiijiiii XXfXXfXXXXf ,3,4,3,2,2,1,1,4,3,2,1 ;,;,;;,, ηηη ⋅= ,  

where iX ,1  and iX ,2  are independent conditional on iY  of iX ,3  and iX ,4 . Now assume 

that (i) iX ,1  given jYi =  is distributed bin(1, jρ ), (ii) iX ,2 given lX i =,1  ( )1,0=l  and 

jYi =  is distributed exponential, i.e.:  

( ) ,exp1;
,

,1

,
,,1,1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=

lj

i

lj
lji

X
Xf

θθ
ξ   

and  (iii) iX ,3  and iX ,4  given jYi =  are jointly distributed bivariate beta, i.e.: 

   ( ) ( )
( ) ( ) ( ) ( )[ ]1

,4,3
1

,4
1

,3,3,4,3 1;, −−− −−⋅⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓΓ

++Γ
= jjj

iiii
jjj

jjj
jii XXXXXXf γδα

γδα
γδα

η ,  

where 0,3 ≥iX , 0,4 ≥iX  and 1,4,3 ≤+ ii XX  for Ni ,...,1= ; ( ) 0,, >jjj γδα  for 1,0=j ; 

and ( ).Γ  is the gamma function (Spanos, 1999). Using these assumptions:  
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( ) ( ) ( )
( ) ii X

j

i

j

j

X

j

i

j

j

jjljjjjj

XX

XfXfXXf
,2,2 1

0,

,1

0,1,

,1

1,

,2,,1,1,2,2,1

exp
1

exp

;;;,
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=

⋅=

θθ
ρ

θθ
ρ

ρξη

 

(see Kay and Little, 1987), implying that:  

( ) {[ ( )
( ) ( )}] 1

,4,36,45

,34,2,13,22.1101

1lnln                               

lnexp1;
−−−−−

−−−−−+=

iii

iiiiii

xxx

xxxxxg

ββ

βββββψx
  

where 
( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+= λ

θρ
θρ

κβ ln
1
1

0,10

0,01
0 , ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0,10,0
1

11
θθ

β , 

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0,10

0,01

1,10

1,01
2 1

1
lnln

θρ
θρ

θρ
θρ

β , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−=

0,10,01,11,0
3

1111
θθθθ

β , 014 ααβ −= , 

015 δδβ −= , 016 γγβ −=  and 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )111000

000111

γδαγδα
γδαγδα

λ
ΓΓΓ++Γ
ΓΓΓ++Γ

= . 

Kay and Little (1987) provide a number of similar examples involving discrete and 

continuous variables. If the decomposition of ( )jif ,1;ηX  involved an unknown 

multivariate distribution conditional on iY  of continuous variables, then it becomes 

considerably more difficult to derive the specification of ( )1;ψig x . Guidelines and 

results presented by Arnold, Castillo and Sarabia (1999) provide a means for attempting 

these specifications, and are beyond the current scope of this paper.  

4.0 Model Estimation 

 In order to utilize all of the information present in the distribution of the sample, 

given by equation (1), the method of maximum likelihood should be used to estimate the 

parameters of the BRM (Spanos, 1999). Given the independence of the sample, the log-

likelihood function for the logistic form of the BRM is: 
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 ( )( ) ( )( )( ) ( ) ( )( )( )[ ]∑
=

−−+=
N

i
iiii hgyhgyL

1
11 ;1ln1;ln,;ln ψψϕ xxxy ,  (16) 

where ( ).g  is the logistic cdf  and ( ).,.h  is written as a function of 1ψ , the parameters of 

interest. Now let ih∂  denote the gradient of ( )1;ψih x  with respect to the vector 1ψ  

(e.g.β ), ih2∂  the Hessian, and ( ).g ′  the logistic probability density function. Then: 

( )( ) ( )( )
( )( ) ( )( )( ) ( )( )∑

=
⎥
⎦

⎤
⎢
⎣

⎡
∂′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

∂
∂ N

i
ii

ii

ii hg
hghg

hgyL
1

1
11

1

1

;
;1;

;,;ln hx
xx

xxy ψ
ψψ

ψ
ψ
ϕ , and  

( )( ) ( )( )
( )( ) ( )( )( ) ( )( )( ) ( )( )

( )( )
( )( ) ( )( )( ) ( )( )( )( ) ( )( )( )( ) .;;

;1;
;

;
;1;

;,,ln

1

2
1

T
1

11

1

1

T2
1

2

11

1

11

2

∑

∑

=

=

⎥
⎦

⎤
⎢
⎣

⎡
∂+∂∂′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂∂′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−=

′∂∂
∂

N

i
iiiii

ii

ii

N

i
iii

ii

ii

hghg
hghg

hgy

hg
hghg

hgyL

hxhhx
xx

x

hhx
xx

xxy

ψψ
ψψ

ψ

ψ
ψψ

ψ
ψψ

ϕ

 

When ( )1;ηih x  is nonlinear in the parameters estimation becomes more difficult, because 

the likelihood function may no longer be globally concave and many computer routines 

only estimate logistic regression models with index functions linear in the parameters 

(Train, 2003). In these cases, the researcher may need to write their own code and use a 

number of different algorithms to estimate the model. The asymptotic properties of 

consistency and asymptotic normality of the MLE estimates follow if certain regularity 

conditions are satisfied (see Gourieroux, 2000 and Spanos, 1999). 

5. Simulation 

A significant benefit of using the probabilistic reduction approach for developing 

the BRM is that it provides a mechanism for randomly generating the vector stochastic 

process, ( ){ }NiY ii ,...,1,, =X  using the relationship given by equation (4) for simulations 

involving the BRM. The process involves performing two steps:  
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Step 1: Generate a realization of the stochastic process { }NiYi ,...,1, =  using a binomial 

random number generator.  

Step 2: Using ( )jif ,1;ηX  generate a realization of the vector stochastic process, 

{ }Nii ,...,1, =X  using appropriate random number generators with the parameters given 

by 0,1,1 ηη =j  when 0=iY  and 1,1,1 ηη =j  when 1=iY .  

It should be noted that no a priori theoretical interpretation is imposed on the generation 

process, it is purely statistical in nature.6 Furthermore, the parameters 1ψ  can be easily 

determined from the parameters j,1η , via ( )0,11,11 ,ηηψ G=  when conducting simulations. 

 To illustrate, consider the BRM given in Example 1. Let ( )1,6.0~ binYi  and 

jYX ii =|  have a conditional Weibull distribution with 10 =α , 4.11 =α and 3=γ . In 

this situation, the mapping ( )0,11,11 ,ηηψ G=  given in Example 1 gives 6040.00 −=β , 

6356.01 =β and 3=γ  for the parameters of the regression function given by equation 

(15). A Monte Carlo simulation using the above two-step procedure for randomly 

generating a binary choice process was used to examine the asymptotic properties of the 

parameters 0β , 1β and γ . A random sample of iY  ( 6.0=p ) was generated 1000 times 

and then was used to generate iX  100 times using equation (14) for 

5000and 2500,1000,500,250,100,50=N . For each run, the regression equation given 

by equation (15) was estimated using the log likelihood function given by equation (16) 

                                                 
6 This generation procedure is in contrast to procedures assuming the existence of an unobservable latent 

stochastic process (see Train, 2003). 
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and a derivative-free algorithm developed by Nelder and Mead (1965).7 The results of the 

simulation are reported in Table 3. Given the convergence of the mean to the true value, 

the decreasing standard errors, and convergence of the skewness and kurtosis towards 0 

and 3 respectively, as N  increases, it would seem that there is evidence for concluding 

that 0β , 1β and γ  are consistent and asymptotically normal. 

6. Empirical Example 

 Data was obtained from Al-Hmoud and Edwards (2004) from a study examining 

private sector participation in the water and sanitation sector of developing countries. 

Using there data a model was constructed examining this participation based on four 

explanatory factors. The dependent variable, total private investment (Y ), was binary, 

taking a value of ‘1’ if there was private investment in a given year and ‘0’ otherwise. Of 

the four explanatory variables used in the model, two were binary and two were 

continuous. The two binary variables were low renewable water resources ( 3X ) and 

government effectiveness ( 4X ). The two continuous variables were per capita GDP ( 1X ) 

and percent urban population growth ( 2X ). The dataset contained 149 observations for 

39 countries from 1996 to 2001, but data was not available for all countries for all years, 

resulting in an unbalanced panel (Al-Hmoud and Edwards, 2004). 

 Given that Y  is distributed Bernoulli, a BRM was chosen to model private sector 

participation in developing countries in the water and sanitation sector. To examine how 

                                                 
7 It was found that this algorithm provided the best convergence properties for the given problem. A 

potential problem with index functions nonlinear in the parameters is the difficulty algorithms using 

derivatives and Hessians may have in finding an optimal solution due to potentially highly nonlinear or 

large relatively flat regions of the objective surface.  
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to proceed with model specification, the sample conditional correlation matrix given 

Y was estimated using the sample correlation coefficients of the residuals from 

appropriate regressions of the explanatory variables on Y .8 The sample conditional 

correlation matrix was: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−−−
−

00.119.019.054.0
19.000.152.011.0
19.052.000.145.0

54.011.045.000.1

, 

which provided no determination on how to decompose ( )jiiii XXXXf ,1,4,3,2,1 ;,,, η  into 

independent components. Thus, sequential conditioning was used to give: 

  ( ) ( ) ( )jiilkjiijiiii XXfXXfXXXXf q;,;,;,,, ,4,3,,,1,2,1,1,4,3,2,1 ⋅′= ηη , (17) 

where ( )lXkXjY iiilkj ====′ ,4,31,,,1 ,,ηη  and 

  ( ) ( )( ) ( ) ( ) iiiiiiii XX
j

XX
j

XX
j

XX
jjii qqqqXXf ,4.3,4,3,4,3,4.3

1,1,
1

1,0,
1

0,1,
11

0,0,,4,3 ;, −−−−=q ,  (18) 

where 11,1,1,0,0,1,0,0, =+++ jjjj qqqq . That is, equation (18) is a multivariate 

Bernoulli( jq ) distribution conditional on jYi = . 

 After taking account of the heterogeneity in the continuous explanatory variables, 

it was assumed that iX ,1  and iX ,2  were jointly distributed bivariate normal conditional on 

lXkXjY iii === ,4,3  and ,  for 1,0,, =lkj , i.e. 

 ( ) ( ) ( ) ( ) ,
2
1exp2;, ,,

1
,,,,

2
1

,,
1

,,,1,2,1
⎭
⎬
⎫

⎩
⎨
⎧ −Σ′−−Σ=′ −−−

lkjilkjlkjilkjlkjii XXf µµπη XX (19) 

                                                 
8 For the binary explanatory variables, appropriate logistic regression models were estimated, while for the 

continuous explanatory variables normal linear regression models were used. 
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where ( )′= iii XX ,2,1 ,X , ( )′= lkjlkjlkj ,,,2,,,1,, ,µµµ  is a vector of conditional means, lkj ,,Σ  is 

the conditional covariance matrix, and .  signifies the determinant operator. Given 

equation (18), this implies that: 

( ) ( )[ ]( )( )

( )[ ] ( )

( )[ ]( )

( )[ ] (20)                                    .;,                                               

                                  ;,                                               

;,                                               

;,;,,,

,4,3

,4,3

,4,3

,4,3

1,1,,1,2,11,1,

1
1,0,,1,2,11,0,

1
0,1,,1,2,10,1,

11
0,0,,1,2,10,0,,1,4,3,2,1

ii

ii

ii

ii

XX
jiij

XX
jiij

XX
jiij

XX
jiijjiiii

XXfq

XXfq

XXfq

XXfqXXXXf

η

η

η

ηη

′⋅

×′⋅

×′⋅

×′⋅=

−

−

−−

 

Plugging equation (20) into ( )1;ηih x  and computing ( )jG ,11 ηψ = : 

( )

(21)                                                                                              ,                

                 

                 

                 

;

,4,3
2
,223

,4,3,2,122,4,3
2
,121,4,3,220,4,3,119

,4
2
,218,4,2,1174

2
,116,3

2
,215,3,2,114

,3
2
,113,4,312,4,211,4,110,3,29,3,18

2
,27,2,16

2
,15,44,33,22,1101

iii

iiiiiiiiiiiii

iiiiiiiiiii

iiiiiiiiiiii

iiiiiiiii

xxx

xxxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxh

β

ββββ

βββββ

ββββββ

ββββββββψ

++++

+++++

++++++

++++++++=x

 

which when plugged into equation (9) provides an estimable BRM. If Σ=Σ lkj ,, , then all 

the terms involving 2
,1 ix , ii xx ,2,1  and 2

,2 ix  would disappear, but this was not the case.9 

 Since the index function given by equation (21) is linear in the parameters, 

standard computer software packages with logistic regression models, were used to 

estimate the corresponding BRM. Estimation results for the logistic regression model 

using equation (21) and a more common specification found in the applied literature: 

   ( ) iiiii xxxxh ,44,33,22,1101; βββββψ ++++=x ,  (22) 

                                                 
9  Results of these analyses using the data are available from the authors upon request. 
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are presented in Table 4. Misspecification testing results for the BRM using equation (21) 

indicated the presence of heterogeneity across years, so fixed effects (using dummy 

variables) for the years 1996-1999 were incorporated into both models.10  

The two models were compared using a likelihood ratio test, with the null 

hypothesis being that the more common specification of the logit model using equation 

(22) with fixed effects across time was correct. The computed likelihood ratio test 

statistic was 69.3229 with an associated p-value of 0.0000, indicating that the more 

common formulation of the logistic regression model is misspecified. Further evidence 

that the BRM using equation (22) was superior to the more common specification of the 

logistic regression model is given by the higher R2 values, higher within-sample 

prediction and lower mean square error.11 

7. Conclusion 

 The latent variable approach and the transformational approach for specifying 

statistical models with binary dependent variables can result in statistical 

misspecification. Both approaches do not explicitly recognize that the functional form of 

( )iiiYE xX =|  depends on ( )1;| ηjYf ii =X  and in turn the existence of ( )ϕ;, iiYf X . 

Using the probabilistic reduction approach and results derived by Kay and Little (1987), 

                                                 
10 A likelihood ratio test was conducted in a Fisher testing framework to examine the BRM without fixed 

effects across time (see Spanos, 1999). The null hypothesis was no fixed effects and the likelihood test 

statistic was 34.1369 with an association p-value of 0.00001, indicating no support for the null hypothesis. 

Heterogeneity across regions was tested as well, but no evidence of this type of heterogeneity was found.  

11 Additional misspecification tests for functional form and dependence indicated that the functional form 

was not misspecified, but there may exist temporal and/or spatial dependence in the data. These tests and 

results are available from the authors upon request and will be explored further in a future paper.  
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this relationship is formally defined to derive the Bernoulli Regression Model. While 

specification of these models can be difficult at times, examination of the sample 

conditional correlation matrix of the explanatory variables given iY can help determine 

plausible decompositions of ( )1;| ηjYf ii =X  to arrive at operational BRMs. 

Furthermore, the model assumptions shown in Table 1 can be tested to verify that the 

BRM obtained is statistically adequate, thereby allowing the model to provide reliable 

statistical inferences and predictions. The theoretical and empirical examples provide 

evidence that the common use of logit and probit models with linear index functions both 

in the parameters and variables are suspect when the underlying model assumptions have 

not been verified.   

 The Bernoulli Regression Model can provide a parsimonious description of the 

probabilistic structure of conditional binary choice process being examined and imposes 

no a priori theoretical or ad hoc restrictions (or assumptions) upon the model, thereby 

providing a theory-free statistical model of the conditional binary choice process being 

examined. As noted by Spanos (1995), this freedom allows the modeler to conduct 

statistical inferences (if the statistical assumptions made about the underlying stochastic 

process are appropriate) that can be used to examine if the theory in question can account 

for the systematic information in the observed data.  
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Table 1: Bernoulli Regression Model 
SGM: ( ) iii ugY += 1;ψx , Ni ,...,1= ,  

where   (i) 

iu  ( )1;1 ψig X− ( )1;ψig X−  
( )iuf  ( )1;ψig X  ( )1;1 ψig X−  

 

             (ii) ( ) 0=iuE ; and 

             (iii) ( ) ( )( )11 ,1;)( ψψ iii gguVar XX −= . 

Assumptions 

Distributional: ( )( )1,,~| 1ψiiii gbinY xxX = , (conditional Bernoulli). 

Functional Form: ( ) ( ) ( ){ }[ ]11 ;exp1;| ηψ iiiii hgYE xxxX −+=== , where 

( ) ( )
( ) κ

η
η

η +⎥
⎦

⎤
⎢
⎣

⎡
=
=

=
1

1
1 ;0|

;1|
ln;

ii

ii
i Yf

Yf
h

X
X

x  and ( )11 ηψ G= . 

Heteroskedasticity: ( ) ( ) ( )( )11 ;1;| ψψ iiiii ggYVar xxxX −== . 

Homogeneity: ( )11 ηψ G=  is not a function of Ni ,...,1= . 

Independence: { }NiY iii ,...,1,| == xX  is an independent stochastic process. 
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Table 2: Specification of ( )1;ηixg  with one explanatory variable and conditional distribution, ( )jiXf ,1;η , for 1,0=j . 
Distribution of 

iX  given iY  
( )=jiXf ,1;η 2 ( ) =1;ψixg  

Beta1 
( )
[ ]jj

ii
jj XX

γα

γα

,
1 11

B

−− −
, where 

( ) .10 and , 2 ≤≤∈ + ijj XRγα  

( ) ( ){ }[ ] 1
210 1lnlnexp1 −−+++ ii xx βββ , where 

[ ]
[ ] ( ) ( ). and ,

,
,

ln 012011
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00
0 γγβααβ
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⎛
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Binomial1 ( ) ii Xn
j

X
j

iX
n −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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,...3,2,1 and 1,0,10 ==<< nX ijθ  

{ }[ ] 1
10exp1 −−−+ ixββ , where 
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θ

θ
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        Table 2 continued.  
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1 Source: Kay and Little (1987). 

2 Source: Spanos (1999). [ ]B  represents the beta function and [ ]Γ  represents the gamma function. 
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Table 3: Monte Carlo Simulation Results for Example 1 
Parameter Number of 

Observations (N) 
Mean Standard 

Deviation 
Skewness Kurtosis Minimum Maximum 

True Value = -0.6040 

N = 50 -1.3818 2.8420 -6.2629 51.0895 -30.5758 0.8559 

N = 100 -1.1167 2.2610 -7.7925 78.1452 -29.5084 0.4964 

N = 250 -0.6592 0.4495 -1.9983 11.9573 -4.3456 0.2839 

N = 500 -0.6179 0.2515 -0.5588 3.8758 -1.6702 0.0973 

N = 1000 -0.6212 0.1785 -0.5503 3.7557 -1.4291 -0.1987 

N = 2500 -0.6101 0.1131 -0.2670 2.9358 -0.9543 -0.2819 

0β  

N = 5000 -0.6085 0.0789 -0.0278 3.1540 -0.9131 -0.3112 

True Value = 0.6356 

N = 50 1.3637 2.9204 6.0719 48.3619 0.0000 31.1302 

N = 100 1.1422 2.3355 7.4744 72.7571 0.0001 29.9172 

N = 250 0.6832 0.4959 2.2396 13.0258 0.0005 4.8237 

1β  

N = 500 0.6435 0.2791 0.8397 4.5379 0.0514 2.0420 
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Table 3 continued. 
Parameter Number of 

Observations (N) 
Mean Standard 

Deviation 
Skewness Kurtosis Minimum Maximum 

N = 1000 0.6506 0.1992 0.7351 4.1469 0.1581 1.6016 

N = 2500 0.6421 0.1269 0.3445 2.9474 0.2739 1.0701 1β  

N = 5000 0.6376 0.0895 0.0660 2.9984 0.3223 0.9763 

True Value = 3.0 

N = 50 4.6698 4.3463 2.4179 11.6444 -6.6156 36.2235 

N = 100 4.1471 3.5111 2.6295 13.0030 0.0824 28.0070 

N = 250 3.5300 1.7017 2.5781 16.4192 0.4513 17.7591 

N = 500 3.2363 0.9155 1.2591 6.8497 1.1333 9.1500 

N = 1000 3.0825 0.5811 0.6526 4.3230 1.6281 6.1177 

N = 2500 3.0361 0.3655 0.2861 2.9450 2.1125 4.2341 

γ  

N = 5000 3.0250 0.2609 0.3726 3.2808 2.2855 4.1462 
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Table 4: Estimation Results for the Empirical BRM and Traditional Logit Models 
BRM using Equation 

(21) 
Traditional Logit using 

Equation (22) Variable 
Coefficient Estimate 
(Standard Error)1 

Coefficient Estimate 
(Standard Error)1 

Intercept -24.6608 
(17.2947) 

-1.6690 
(0.7677) 

Dummy 1996 -5.8496 
(1.3295) 

-2.5791 
(0.6876) 

Dummy 1997 -3.8065 
(1.0811) 

-1.9291 
(0.6536) 

Dummy 1998 -2.8882 
(1.0222) 

-1.7267 
(0.6620) 

Dummy 1999 -1.9274 
(0.9624) 

-1.0273 
(0.6615) 

iX ,1  0.0041 
(0.0060) 

0.0004 
(0.0001) 

iX ,2  12.7504 
(7.8883) 

0.4738 
(0.1436) 

iX ,3  24.2342 
(18.5156) 

1.0485 
(0.4706) 

iX ,4  -27.9374 
(75.4572) 

0.5495 
(0.4884) 

2
,1 iX  0.0000 

(0.0000) 
--- 

ii XX ,2,1  -0.0019 
(0.0014) 

--- 

2
,2 iX  -1.3945 

(0.8552) 
--- 

ii XX ,3,1  -0.0067 
(0.0097) 

--- 

ii XX ,3,2  -11.5153 
(8.0715) 

--- 

ii XX ,4,1  0.0024 
(0.0255) 

--- 

ii XX ,4,2  9.4477 
(32.8429) 

--- 

ii XX ,4,3  14.8636 
(76.3755) 

--- 

ii XX ,3
2
,1  0.0000 

(0.0000) 
--- 

iii XXX ,3,2,1  0.0010 
(0.0016) 

--- 

ii XX ,3
2
,2  1.6699 

(0.9339) 
--- 
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Table 4 continued. 
BRM using Equation 

(21) 
Traditional Logit using 

Equation (22) Variable 
Coefficient Estimate 
(Standard Error)1 

Coefficient Estimate 
(Standard Error)1 

ii XX ,4
2
,1  -0.0000 

(0.0000) 
--- 

iii XXX ,4,2,1  0.0022 
(0.0058) 

--- 

ii XX ,4
2
,2  -0.9815 

(3.5851) 
--- 

iii XXX ,4,3,1  0.0053 
(0.0268) 

--- 

iii XXX ,4,3,2  -0.5565 
(33.2265) 

--- 

iii XXX ,4,3
2
,1  -0.0000 

(0.0000) 
--- 

iiii XXXX ,4,3,2,1  -0.0033 
(0.0059) 

--- 

iii XXX ,4,3
2
,2  -0.5530 

(3.6362) 
--- 

Other Statistics 

Log-Likelihood -45.3512 -80.0127 

McFadden’s Pseudo R2 0.5466 0.2001 

Estrella’s R2 0.6543 0.2590 

Percent Correctly Predicted 87.25 67.79 

Mean Square Error 3.7833 5.5505 

1 The standard errors are calculated using the estimate of the asymptotic information 

matrix. 
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Figure 1: Simulated Density Plot for a Bernoulli Regression Model with One Explanatory 

Variable Conditionally Distributed Normal Given jYi = . 

 


