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I. INTRODUCTION

Soil is a capital asset and a renewable resource that requires continued maintenance to
ensure the sustainability of agricultural output in the long-run. Growers are continually
adjusting the soil’s productivity by adding and extracting soil nutrients, and modifying
the soil structure through cultivation. Given the small per unit cost of chemical
fertilizers, applications of these fertilizers are cost effective in the short run if
externalities are ignored. Farmers can add chemical fertilizers to temporarily increase
soil fertility and yields, but generally ignore technologies that maintain or build soil
quality. However, if soils are considered a renewable resource and a valuable capital
asset over the long term, profit-maximizing farmers should be interested in optimally
managing the long-run stock of soil resources.

Winter cover crops are one sustainable agricultural practice that farmers may use to
increase soil quality by building soil organic matter, reducing leaching of nutrients,
increasing nitrogen availability (using legumes), improving soil surface permeability, and
crop establishment. Agronomists at the University of California Cooperative Extension
have shown that in spite of the private benefits associated with the use winter cover
crops, farmers in the Central Valley of California have not as yet widely adopted this
technology (Mayo, G; per comm.).

In this paper we use two theoretical models, a short-run static profit maximizing
(SRSP) model and a long-run model is a mixed integer dynamic optimization (LRMD)
model. We propose five propositions that characterize the optimal use of cover crops.
Static proposition I, if the cost of chemical nitrogen is sufficiently low relative to the cost
of cover crop, then profit maximizing farm managers will not plant cover crops in crop
rotations in the short-run. Static Proposition II, A manager who observes that soil nitrates
levels are low will compensate for the low soil fertility by planting cover crops, unless
the cost of nitrogen fertilizer is low. Dynamic Proposition I, there exists a cost of
chemical nitrogen sufficiently low that profit maximizing farm managers will not plant
cover crops in the long-run. Dynamic Proposition II: while it is unprofitable to plant
cover crops in the short-run it may be profitable to plant them in the long-run. Dynamic

Proposition III, applying restrictions on the maximum applications of chemical nitrogen



increases the value marginal product of soil nitrates, and consequently the extent of cover

cropping.

2. BACKGROUND

The general form of the managers profit maximizing problem is identical for both
the SPSP and LRMD model: maximize total farm profits by selecting the level control
variables namely, chemical nitrogen and the management choice to plant a cover crop or
leave the ground fallow prior to planting the cash crop, subject to soil fertility levels.

Profits are generated as the difference between farm revenues from the sales of
the single seasonal cash crop and total input costs from the cash crop and/or cover crop.
Farm profits depend on the difference in farm revenues and the input costs from the cash
and/or cover crop. Total revenue per acre is a product of the market price and the per
acreage yields for the cash crop. Total per acre variable costs include the cost of
irrigation water, the cost of applying chemical nitrogen, and the costs of planting cover
crops. Other per acre costs of planting the cash crop (i.e. machine, labor,....) are not
included in total variable costs as they are constant and do not affect the marginal
conditions for optimization.

The cash crop general production function is quadratic functional form, which has
the usual concavity properties and diminishing marginal rates of substitutability between
the two inputs: chemical nitrogen and soil nitrates. The production function takes the

following form,

(1)
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Where ‘t’ is an index representing each season, Yt is the seasonal yield of the cash crop,
N, the seasonal application of chemical nitrogen, and NO 3 is the seasonal stock of soil

nitrates. Parameters o, and o, represent the linear effect of chemical nitrogen and soil

nitrates on yields which are positive. It is required that the quadratic term
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positive definite which implies that the determinant of this matrix is positive

(|A| = 2129y —Z1yZy >0 ) It is assumed that the direct effects z,,andz,, are
positive, which implies that the determinant of A is positive if z,, and z,, are negative or

have relatively small positive values. However, by agronomic reasoning the values of

z,, andz,, are restricted to be positive, as applications of chemical nitrogen and stocks

of soil nitrates are substitutes in production. This implies that the marginal impact of a

unit increase in the stock of soil nitrates reduces the marginal product of chemical

nitrogen (8MPNt / ONO 3 < Oj , and the marginal impact of an increase in the

application of chemical nitrogen reduces the marginal product of soil nitrates

(aMPNO3t / ON; < 0). Also by Young’s theorem of symmetry it is fair to assume that

7,y =Z,, SO we rewrite the condition as z;,z,, —2122 >0. In every season (t) at least

one cropping activity is conducted, first the manager has the option to plant cover crop or
leave the ground fallow and second the cash crop is planted. Chemical nitrogen is a
continuous control variable that may take any positive value. Soil fertility is represented
by the stock of soil nitrates that varies continuously and depends on the level of the
control variables each season. Input costs for the cash and cover crops are defined on a
per acreage basis for simplicity of presentation.

In making a profit maximizing decision each season the manager considers the
stock of soil nitrates. An equation of motion estimates the seasonal adjustments in the
stock of soil nitrates, and is developed using the mass balance concept. Agronomists
have traditionally used mass balance equations to define the stock of nitrates in the root
zone as a function of the total nitrates entering and leaving the root zone (Powlson,

1993). The general form of a mass balance equation for soil nitrates is,
NO; = N, +CC,; x NFIX; —PKRN, + HUM, - YLN, (2)

Where the change in soil nitrates between seasons is NO; = NO3 t+1_NO3 .

NFIX; is nitrogen fixed by legume cover crops, YLN; is the nitrate removed in the cash

crop, PKRN; is the nitrate leached into ground water, and HUM; is the stock of soil



nitrates gained in demineralization or lost mineralization. The cover crop management

choice (CCt) is the second control variable. It is a binary variable that takes the value

one if cover crops are planted and zero if the ground is left fallow.
The mass balance equation above is simplified for the SPSP and LRMD models.
Legume cover crops may have two impacts on soil fertility and soil nitrate levels. They

may increase soil nitrate levels through fixing of nitrogen (CC; xNFIX,) or
demineralization of plant biomass (HUM,). These terms are aggregated into one term
a,CC, that represents the increase in soil nitrates from the adoption of a winter cover
crop. Parameter a, is positive and defines the proportionate increase in soil nitrates

from adoption of a cover crop at the beginning of the current season. Second, variations
in soil nitrates that result from applying of chemical nitrogen, leaching into ground water
supplies, and reduction in soil nitrates by uptake in yields, are aggregated into

—a;NO3¢;. It is assumed that —a, is negative, so the carryover of soil nitrates between

seasons is depreciated and soil nitrates decreased unless cover crops are planted. The

equation of motion or flows in the stock of soil nitrates for the SRSP model is,

N03t=(1—a1)N03t_1+a2CCt, and 3)

for the long-run or mixed integer dynamic model equation (3) is transformed by

subtracting the current level of soil nitrates (NO3,;) from both sides of equation (3) to

yield,

NO3t:—a1NO3t+a2CCt. (4)

3. SHORT-RUN STATIC ANALYSIS

In the SRSP optimization model is a one period optimization problem. The
manager maximizes farm profits in the first season by choosing the levels of chemical
nitrogen to apply on the cash crops and deciding whether to plant cover crops or leave the
ground fallow prior to planting the cash crop. The SRSP problem facing each manager is

as follows,
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The price of the cash crop is represented by the parameter p, cy is the constant per unit
variable costs of chemical nitrogen, and c is the constant per acre cost of planting cover

Crops.

Substituting the equation of motion for soil nitrates and yield function into the

profit maximizing equation results in the following modified problem,

21 75 || N
Max TI(.) = pyoy N; + OL2NO3t - [Nt NO3t NO
{N;,CC} “21 2 3td)°

—cn Ny -¢.CCy
subject to NO3;=(1-a,)NO3_;+ a,CCy.
Differentiating the above expression with respects to N and CC, to obtain the first

order conditions for the SRSP problem which results in the following,

o) _ ( )_
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W =playa, —Zleath —2222a2NO3t = C; (6a)
t <

NO3; = (1-2,)NO3_;+a,CC,. (7)

Recall that z|, =z,, and so the first order condition for equation (5) and (6a) have been

simplified by this assumption.



Equation (5) is the marginal condition on the application of chemical nitrogen,

which requires that the value marginal product of chemical nitrogen VMO is equal to
t

the marginal cost of chemical nitrogen. Re-arranging equation (5) to derive an
expression for the optimal allocation of chemical nitrogen (N;) as a function of soil

nitrates and other predetermined parameters.

- | - __N
N, = 77 [ocl 2212NO3t . j (8)

The switch condition for the static problem (equation (6a)) defines the point
where it is profitable or unprofitable to plant cover crops. This equation states that it is

profitable to plant cover crops if the value marginal product of soil nitrates (VMONO3t)

is greater than the marginal cost of cover crops (c, / a,). Alternatively, if the value

marginal product of soil nitrates is less than the marginal cost of cover crops, then it is
unprofitable to plant cover crops.

In summary the solution to the SRSP optimization problem is characterized by,

>
C
p(oc2 -2z, N, —2212N03t) = a_c (6a)
N 2
where NO3( = (1-a,)NO3_j +a,CC,, and (7)
1 °N
Nt —Tll(al - 22121\103t —?J . (8)

Static Proposition I: 1f the cost of chemical nitrogen is sufficiently low then profit

maximizing farm managers will not plant cover crops in crop rotations in the short-run.

Two steps are required to address static proposition I. First determine the impact
of decreasing the cost of chemical nitrogen on the application of chemical nitrogen.
Second, define the impact of changing the application of chemical nitrogen on the value

marginal product of chemical nitrates.



To determine the impact of the cost of chemical nitrogen on applications of
chemical nitrogen differentiate equation (8) with respects to the cost of chemical
nitrogen,

ON; -1

ocy - 2z,.p

<0. )

All terms in the denominator of equation (9) are positive and so the cost of chemical
nitrogen increases the total application of chemical nitrogen.

To realize the impact of chemical nitrogen on the VMPNO3 differentiate the left
t

hand side of equation (6a) with respects to chemical nitrogen resulting in,
OVMPy,

—8Nt :—2212a2p<0. (10)

Given that application of chemical nitrogen and stocks of soil nitrates are substitutes and

thus z,, >0, the effect cover crops on cover crops on soil nitrates (a 5) is positive, and

the price of the crops p is positive, the derivative in equation (10) is negative, so

increasing the application of chemical nitrogen reduces the VMPNO3
t

Accordingly if the cost of chemical nitrogen decreases the application of chemical

fertilizer will increase, which reduces the VMPNO3 relative to the marginal cost of
t

cover cropping. Therefore reducing the cost of chemical nitrogen implies that the
manager will only plant cover crops at relatively lower per unit cost of cover cropping.

Static Proposition II: A manager who observes that soil nitrates levels are low will
compensate for the low soil fertility by planting cover crops, unless the cost of nitrogen

fertilizer is low.

From equation (6a) and (5) notice that decreasing the stock of soil nitrates

increases the VMPNo3t and VMPNt respectively.

OVMPy,
—————="2255a.p <0 (11)

ONO 3



OVMPy
— Y —"27 ap<0 (12)
8N03t 12 2

Recall that z,,, 255D and a, are all both positive parameters.

From equation (11) the marginal impact of soil nitrates on the VMPNO3 is
t

negative. Specifically, the affect of planting cover crops on stocks of soil nitrates (az) is

positive and (by substitution) parameter z,, is also positive. Therefore as the stocks of

soil nitrates decrease the VMPN03 increases relative to the cost of cover cropping.
t
From equation (12) decreasing the stock of soil nitrates increases the VMP relative to
t
the cost of chemical nitrogen.

When the stocks of soil nitrates decrease, equation (6a) the VMPNO3 may
t

become greater than the cost of cover cropping. In this situation there is an alternative
position that increases the manager profits and there are two techniques for reaching this
position.

First, equation (8) indicates that decreasing the stocks of soil nitrates will results
in an increase in the optimal application of chemical nitrogen. This may be seen by
differentiating equation (8) with respect to soil nitrates (see equation(13)).

N}

ONO 3

=-27,,<0. (13)

From equation (10) we show it was proven that increasing the application of chemical

nitrogen reduces the VMPN03 . Also by differentiating equation (5) we see that
t

increasing the application of chemical nitrogen decreases VMPNt , see equation (14)

below.

OVMPy
—t:—zpz11 <0 (14)
N



Alternatively, planting cover crops increases the stocks of soil nitrates though

equation (7), so reducing VMPNO3 and VMPNt .
t

Given two methods by which the manager may move closer to an optimal
solution through three possibilities: (i) increasing applications of chemical nitrogen,
planting cover crops, (ii) planting cover crops and, (iii) increasing applications of
chemical nitrogen. It is important to understand the conditions that determine which is
more desirable. Recall, that the decision to plant cover crops depends on the switch

condition equation (6a), so begin with this equation. In this condition the VMPNO3 may
t

be reduced by increasing the application of N or by planting cover crops and increasing

NO3t . After such increases, the VMPN03 may be less than the cost of cover cropping,
t

as expressed with inequality in equation (15a). Rearrange equation (15a) so that only the

application of chemical nitrogen is on the left hand side,

C
_ _ _C
oy ZleNt 2222NO3t < oa (15a)
2
CC
_2212Nt < pT+2Z22NO3t-(X2
2
Cc
N, > az———ZzzzNO (15b)
3t
2Z12 pa2

Equation (9) indicates that increasing the cost of cover cropping reduces the level

of chemical nitrogen that is required to make VMPNO3 less than the cost of cover
t

cropping. By the same token equation (9) indicates decreasing the cost of chemical
fertilizer increases the application of chemical nitrogen. Therefore, a manager that
observes low levels of soil nitrates will apply chemical nitrogen if, the cost of chemical
nitrogen is relatively lower than the cost of cover crop. Alternatively, if the cost of cover
cropping is relatively smaller than the cost of chemical nitrates, the manager will use

cover crops to increase soil quality.

4. DYNAMIC ANALYSIS

10



4.1 SYSTEMS OF DIFFERENTIAL EQUATIONS

The principal structure of the LRMD problem is identical to the SRSP problem.
The objective is still to maximize profits by selecting the level of the control variables:
chemical nitrogen and the management choice to plant winter cover crops or leave the
ground fallow, subject to adjustments in soil nitrate levels. The difference between the
static and dynamic models is that the level of soil nitrates stocks will vary each season
depending on decisions in the past season and each decision impacts farm profits. The

LRMD optimal control problem for all ‘t” seasons is,1

T
Max TII(.)= j.e_rt (p Y, - CNNt - CCCCt )dt

(Nt, CCt} :

subject to NOgt:—alNO3t+a2CCt,

zy) 2y ||NO

h Y =a,N NO [N NO ]Z” 22 || N

NO3(0):NO3O,
N, =20,NO >0,andCCt =1lor0.
3t

The current value Hamiltonian for this problem may be constructed as follows:

H() = N NO [N NO ]Z” Zip || No
(-)— p| %4 t+a2 3»[_ t 3t Zys NO

221 3t (16)

- CNNt - CcCCt }+ o\ - alNO3t +a,CCy
where ¢, 1is the costate variable for the LRDP problem, which denotes the value of the

stock of soil nitrates in each season.
According to the maximum principal first order conditions for the Hamiltonian

arc:

1 Three general references for material developed in the remainder of this paper include Léonard

and Long (1998), Kamien and Schwartz (2000), and Caputo (2005).

11



SH(.) _ ( ) _
N ploy =2z N —2212NO3t —-cy =0 (17a)
t
OH(.) 3
@—_Cc‘i‘d)taz—o (18)
() =1, — H() =1, —p(oc2 -2z N -2z,,NO —al(l)t)
ONO 12 3t
3t (19a)
—(r+a,)9, —p(ocz -2z )N, —2z22NO3tj

NO 3¢ =—a1NO3t+aZCCt (20a)

To solve the LRDP problem we want to first develop a system of equations that
may be solved for this optimization problem. Using this system of equations we may be
able to understand the switching behavior of farmers in the long-run optimization model
and compare it to results from the static optimization model.

Equation (5) and (17a) are identical thus the optimal dynamic application is,

1
NtZZZ

‘N
» OLI—ZZIZNO3t —T . (17b)

Substituting equation (17b) into the equation (19a) yields,

dc() =[r+a ), +R +R NO_ (19b)
V4 C
where Rlz—p o, ——2q —N (21)
27, |1
11
2p 2
R, :_[222211 _212] (22)

211

From the concavity assumption on the production function, we have the follow restriction

(25,214 —2122) >0 and so R, is positive. The sign of R, is not so obvious, but it is

1
possible to prove this indirectly. Later when solving this dynamic system of equations, it

is necessary to identify a positive fixed point for the system of equations. This uses

12



equation (19b) and by setting d:() =0 which results in

oy = (RI -R 2NO3 j /(r + al) . Notice that as R, is positive then the only possibility of
t

obtaining a fixed point with a non-negative costate is if R

1 is negative. Given this

assertion take a closer look at what this implies for R1 from equation (21). If R1 is

negative, then from equation (21) it is required that,

2
le p
z c
o >L{oc ——N} (23)
27, I p
11

C

Also from the first order equation (17) it is obvious that o - N>o.

p
In conclusion the LRDP problem may be defined by the following system of

equations one for the stock of soil nitrates and anther for the costate variable.

NO3;=-a,NO3;+a,CC, (20a)
0. () =(r+a1)<|)t+R1+R2NO3t (19b)
z c
where R ——p[oc —ﬁ{a ——N}]<O (21)
1 2 1 p
11
2p 2
and R, =Z—[222211 —212]> 0 (22)
1
. ., . . >
and the switch condition is ¢, a, = c_. (18)
< C

The precise form of the equation of motion for soil nitrates (equation (20a)),

depends on the switch condition. If the marginal value of cover cropping (¢, a,) is

greater than the per unit cost of cover cropping then it is beneficial to plant cover crops,

13



CC;=1 and NO3;=-aNO3z;+a,. Alternatively, if the marginal value of cover

cropping is less than the per unit cost of cover cropping, then CC; =0 and

NO3¢=-2a,NO3;. From these statements we see that there are two distinctly different

systems of differential equations for the LRDP problem, which depend on the switch
conditions. In the literature of dynamic optimization this problem is termed a bang-bang
problem. The traditional bang-bang model results if the Hamiltonian is linear in a given
control variable. However, in our model the traditional bang-bang results as the control
is a binary variable. To analyze this problem we will first identify and characterize the
fixed points and steady states for the systems of linear differential equations: first where
the cover crop is not planted and second where the cover crop is planted. Next we will
estimate general and specific solutions for each case. Finally, the two solutions are
combined in phase diagrams using the switch condition and each of the dynamic

propositions are addressed.

4.2 CLASSIFICATION AND STABILITY OF THE FIXED POINT
4.2.1 WITHOUT COVER CROPS
First consider the set of dynamic equations where cover crops are not planted

(CC;=0) given that ¢, a, <c.. The system of equations are defined by following

equations,
NO3¢=-2a,NO3; (20b)
0. () =(r+a1)(|)t+R1+R2NO3t (19b)

Notice that this is a system of linear autonomous equations and so can use
theorems for linear systems of equations to characterize this solution, estimate the fixed
point, and a general and specific solution. First, identify the fixed point of this linear
system. Second, estimate the eigenvalues and eigenvectors of this linear system of

differential equations. Third, use the theorems for linear systems of equations to

14



determine the phase diagram a set of linear solutions to approximate the set of nonlinear
equations, and estimate a specific solution.

First, identify the fixed point(s) of the linear differential equations when cover

crops are not planted. In equation (20b) set NO3;=0 and in equation (19b) which

results in,
NO3 =0, and (24)
!
= 25
t (r+ a1 ) (23)

which is a potential steady state solution.

Second, estimate the Jacobian matrix for this linear systems of equations.

ONO;,  ONO;,
NO,, 0,

03 03 (— 7)
| ONO;, o, | IO

J| NO5,, 0 woR) "

= (26)
R ) (r+a1)
Third, begin identifying the eigenvalues and eigenvectors for the system of

differential equations. Calculate the eigenvalues for equation (26) by subtracting Al,

from the Jacobian matrix, taking the determinant of the resulting matrix, and setting this

value equal to zero.

Ivo. Lo ]-21,| = _0
[ 3 ¢t] 2 R, (a; +1) =24

:(—a1 —kX(al +I‘)—7\,)—OXR2 =0
The two eigenvalues are A; =—a; and A, =(a; +r). As one eigenvalue is negative and

the other positive, the fixed point is a saddle point. The associated eigenvectors for the

15



eigenvalue A, =—a, are Vi =—(2a, +r) and V12 =9, and for the eigenvalue A, =(a; +1)

2 2
are v{ =0 and v; =—(2a, +1).

We begin by plotting the two equations when the rate of change in soil nitrates

and the costate variable are constant. Previously, in equation (24) it was shown that
NO3¢=0 when (NO3;=0). Also if the rate of change in the costate variable equal to

Zero ((i)t(.) =0) this results in ¢, = —(R1 +R NO3 )/(r+a1). It may be observed that
t

2

these relationships are plotted in Figure (1). Also recall that the point where these two

equations intersect is the fixed point, previously calculated at (NOs,¢) (see equations
(24) and (25)).

Differential equations (20) and (19b) are used to determine the directions of
movement for the trajectories in Figure (1). These directions of movement for stocks of
soil nitrates are displayed by the horizontal arrows in Figure (1). The directions of
movement for the costate variable are illustrated by the vertical arrows in Figure (1).

Now to finalized drawing of the phase diagram let’s include the information from
the eigenvalues and eigenvectors. For a saddle point the positive eigenvalue

hy=(r+ a) represents the stable manifold and the negative eigenvalue A, = - is the

unstable manifold. The unstable manifold that is drawn from the fixed point in the

direction of the eigenvector V12 =0 and V% =—(2a, +r1), hence equation NO3; =a, / a

(NO3¢ =0) is the unstable trajectory. In Figure (1) this information is represented by the

darkened line with arrows pointing away from the fixed point: the unstable manifold.

The stable manifold is drawn from the fixed point in the direction of the eigenvector
Vi =—(2a; +r) and Vl2 =0 . In Figure (1) this is represented by the second bold line

with a negative slope, and the arrows on this line point towards the fixed point and so

represents the stable manifold.

16



Figure 1: Solution to the LRMD Model Without Cover Crops.

]

v

NO,

6=0

4.2.2 WITH COVER CROPS

Next consider the case where cover crops are planted (CC; =1). The system of

equations for this problem is as follows is similar to that for case 1, however in case 2 the

stock of soil nitrates is increased by a fixed factor a, (see equation (20c)).
NO3;=-a;NO3;+a, (20c)

6.() = (r+a,)d, +R | +R,NO_ (19b)

At this point if we calculate the Jacobian matrix for this linear system of equations then
we obtain the same matrix as that in equation (26). Therefore, the linear system of
differential equations for the case where cover crops are planted is a saddle point. In
addition, the systems of differential equations when cover crops are planted (equations
(20c) and (19b) have eigenvalues and eigenvector identical to the system of differential
equations when cover crops are not planted (equations (20b) and (19b)). The only

difference between these systems is they different fixed points.

17



The fixed point(s) of systems of linear differential equations when cover crops are
not planted are defined as follows. In equation (20c) set NO3; =0 and in equation which

results in equation (27) set ¢.(.)=0,

NO3 =a, /a, , (27)
N __RI_RZ(aZ/al) 28
(I)t_ r+a, ( )

If we follow through with the same techniques described in section 3.2.2a, for the
model without cover crops, then we are able to plot a phase diagram for the system of
differential equations where cover crops are planted. The solution is displayed below in

Figure 2.

Figure 2: Phase Diagram for LRMD Problem with Cover cropping.
(I) A

NO, =0
0=0 T—» 3 <—T

v

NO.
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4.3 SOLUTIONS FOR CASES
4.3.1 WITHOUT COVER CROPS
Recall that the system of equations for this case are equations (20c) and (19b).

Now lets’ proceed to solve this system of equations. Equation (20c) may be rewritten as,

NO3t+alNO3t:0.

t
Multiply both sides of this equation by the integrating factor el and integrate by parts,

to generate the general equation for this system of equations.
: at at at
J- NO3,e | +a1NO3te 1 dt:J-Oe " dt,

alt
NO_ e' =k,
3t

—a,t
NO 3t = ke 1
Evaluate this expression at time t=0 to give k =NO;(0)=NO 3 where NO 30 is the

initial stock of soil nitrates. Therefore the flow equation for soil nitrates may be re-

written as,

_ —a]t
NO, =NO3,e (29)

This means that when cover crops are not planted, the stocks of soil nitrates are
continually decreasing through time.

Before continuing with the derivation of the costate equation and phase diagram,
consider the equation that determines that optimal application levels of chemical
nitrogen. Substitute equation (29) into equation (17b),
at €

N N
@, -22,NO3e | ——% (30)

1

N. =
t 2211

As is expected this equation provides some interesting information. First, the
application of chemical nitrogen decreases each season if cover crops are not planted.
Second, if there is no option to plant winter cover crops and the initial soil quality is low

(NO3) then initial applications of chemical nitrogen are high. Third, as the cost of

chemical nitrogen decreases then the application of chemical nitrogen is greater for all

19



seasons. Fourth, as the price of the cash crop increases the application of chemical
nitrogen increases.

To derive an equation for the costate variable, substitute equation (29) back into
—(r +a 1 )t

expression for the shadow value of soil nitrates.

equation (19b), multiply by e and integrate by parts to obtain the following

—alt
(I) _ 1{1 +R2 NO306
! (r+a1) —(r+2a1)

where k is the constant of integration. A visual analysis of the phase diagram for the

+k 31)

where cover crops are not planted indicates that the value of the costate in the final period
(T) may be zero or take the value of the switch point. If ¢(T)= 0, substitute this relation

into equation (31).

—alT
R R 2 NO 30 (S

k=——"1++
(r+2al)

(r+a,)

Next substitute the value of ‘k’ into equation (31) to obtain the specific solution for the

costate.

R, NO
- 30[ T —altJ
=——— € —-€ 32
b (r+2a,) [ (32)

The term in square brackets of equation (32) is negative and so the costate is positive. In
addition, by analyzing the derivative of equation (32) it is proven that the costate is
always increasing each season cover crops are not planted.

In conclusion the solutions to the system of differential equations when cover

crops are not planted is,

NO, =NO3e ™" (29)
1 —alt CN
Nt 2711 (11—2212N0306 —T (30)
R, NO —aT  —at
o =g 30 30[6 e } (32)
a, (r+2al)
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4.3.2 WITH COVER CROPS
The system of linear differential equations for the case where cover crops are

planted which is as follows,
NO3;=-a;NO3;+a, (20¢)

be() =(r+a;)p, +R +R,NO (19b)

Proceed in solving this system of linear equations. Equation (20c) is rewritten as,

NO 3¢+ alNO 3t = 3.2 .
Integrate to generate the general equation for this system of equations.

)
NO_. =—=%=+ke
3t a1

—at (33)

To determine the value of ‘k’ the constant of integration, evaluate the above equation at

time t=0. This yields k=a, / a; —NO 30° where NO 30 is the initial stock of soil nitrates.

Substitute the value of k back into equation (6a) obtain the solution of soil nitrates for the
case where cover crops are planted.
a a —a.t
NO :—2+{—2—N030]e "1 (34)

toa (a

This means that when cover crops are not planted, the stocks of soil nitrates are
continually decreasing through time.
By substituting the solution of soil nitrates into equation (30) the optimal

application of chemical nitrogen is determined.

2211 a, p a,

1 22108, oy [T27p8) —at

- e 2 N 1ls 2 1
N, Locl + +2212NO30 e (35)
This equation also points to some interesting results. First, the application of
chemical nitrogen converges to a stable positive value. Second, the greater is the initial
level of soil fertility the smaller is the optimal allocation of chemical nitrogen. Third, as

the cost of chemical nitrogen decreases, the application of chemical nitrogen is greater for
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all seasons. Fourth, as the price of the cash crop increases the optimal application of

chemical nitrogen increases.

frea )

Substitute equation (33) back into equation (19b), multiply by e , and
integrate by parts to obtain an expression for the shadow value of soil nitrates.
R R,a R a —-a,t
pp=—A——22 2 |72 _NO, |e | +k (36)
(r+a;) (r+apa; (r+2a)| a 30

where k is the constant of integration. To determine the value of the constant of
integration, consider the phase diagram in Figure 2 that indicates that the final value of

the costate may be the value of the switch point ¢(T)=c, / a, or some large value say
¢(T) = z. First, impose the constraint ¢(T)=c / a, inequation (36) so that,

272 + R2 a—2—NO e_alT

C R R
S A—
a

5 (r+a1) i (r+a1)a1 (r+2a1)

Next substitute this expression back into equation (36) which results in the following

specific equation.

c R2 a, —alt —alT
oy - +—= INO, ——=||e -e (37)
a (r+2a1) 30 ay
Equation (37) indicates that the rate of change in the costate for this case is always

decreasing. Second impose the constraint ¢(T) = z in equation (36) so that,

R R,a R a —a,T
-1 22 2 172 _No, le ! +k=z.
(r+a1) (r+a1)a1 (r+2a1)

o(T)

With similar manipulations as those completed for equation (37) this results in the

following specific solution.

R a —at —a,T
o, —z+—2 INO, —-2||le 1 —¢ 1 (33)
(r+2a;) 30 a

Differentiating this specific solution with respects to time indicate that the costate is
always increasing.

Solutions for the system of differential equations when cover crops are planted is,
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a a _
NO. —-24 [—2 ~NO 30} e ! (34)

1 3
2z _a c -2z .a —at

N, _ 1 o 1272 "N | 122 ,, NO3, [e | (35)

2Z11 1 a, P a, 12
(/NO ) CC R2 NO a, —alt —alT .-
e 30>32/al):a_+(r+—zal) S| L (37)
(/ ) R2 an —alt —alT 38
(I)t (NO3O<32/31) :Z+(r+—2al) NO30—q c — ¢ ( )

4.4 THE COMBINED BANG-BANG SOLUTION

We combine the two cases where cover crops are planted and are not planted into
one phase diagram solutions. Phase diagrams and specific solutions, for soil nitrates and
the costate variable, developed in Section (3.3.2) and (3.3.3) are no integrated. The
switch point indicates points where the value marginal product changes from greater than
to less than the cost of cover cropping, defining when it is relatively profitable to plant

cover crops and not plant cover crops respectively. There are three cases that should be

considered where: (i) the fixed point and intercept of ¢; =0 is below the switch point,

-R C
¢, (39)
(r+a1) a

(11) the fixed point is below but the intercept of ¢; = 0 is above the switch point,

e R, _RI_RZ(a2/a1)’ (40)
a, (r+a1) (r+a1)
and (iii) the fixed point is above the switch point,
_Rl_Rz(az/a1)>C_c' (41)
(r+a1) a,

Consider case (1) and substitute the value of R, as defined in equation (39) into

1

the restriction defined above,
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pa z c
2 12 [pal _CN]< — (42)
(r+a1) (r+a1)211 a

The above equation will hold if the price of cash crop is low relative to the cost of the

cover crop. However, recall from equation (19b) that po, > ¢, therefore if the price of

the cash crop is low then the relative cost of chemical fertilizers is also low. Therefore
case (i) results when the price of the cash crops and cost of chemical nitrogen are
relatively smaller than the cost of cover crops.

Recall that this fixed point which represented by the intersection of the flow
equation where they are equal to zero and is placed below the switch point, represented

by the horizontal line at ¢, =c. /a, . Using information from Section 4.2 it is possible to

draw the follow phase diagram. Where the section below the switch point is taken from
Figure 1 and the diagram above the switch point is developed from Figure 2, and the
relevant trajectories were identified and discussed in Section 4.3. In the below graph it
may be seen that if the price of the cash crops and cost of chemical nitrogen are relatively
smaller than the cost of cover crops, then the manager is able to run out the stocks and
waits longer before the value of the costate moves above the switch point and cover crops
are planted. However, no matter how low are the cost of nitrogen and prices it is always
in the best interests of the farmer to plant cover crops in the long-run. Though there is
also a stable solution that where the stock of soil nitrates is completely exhausted, which

is represented by the stable manifold.
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Figure 3: Case (i): Price of Cash Crop and Cost of Chemical Nitrogen is Low
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As the value of the price of cash crops and the cost of nitrogen increase relative to
the cost of cover cropping then case (ii) and case (iii) result. To see this more closely

consider case (ii1) and substitute the value of R, and R, as defined by equation (21) and

1 2
(22) into the above equation (41).
2a z c
P 2 [ 2 } 12 [ ]J c 43
Oy ——=—| 2,2, — 27, |-——=—|pa, —c, ||>— (43)
2 22711 712 I °N
(r+al)( a2, (1r+al)z11 a,

From equation (43) it is clear that if the price of cash crop and the cost of nitrogen are
relatively larger than the cost of cover cropping the case (iii) results and the fixed point is
above the switch point. In the following phase diagram we graph this case. In this case

notice that the fixed point occurs above the switch point.

25



Figure 4: Case (ii): Price of Cash Crop and Cost of Chemical Nitrogen is high
Relative to the Cost of Cover Cropping.
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Figure 4 contains the phase diagram for case (iii) and is drawn with information
from Section 4.2. In the graph below it may be seen that if the price of the cash crops and
cost of chemical nitrogen are relatively smaller than the cost of cover crops, and the cover
cropping increases the stock of soil nitrates, then manager will always plant cover crops.
The costate is always above the switch point and the stock of soil nitrate converges to

a, / a, . The stable solution exists at the fixed point and may be reached if the manager is

on the stable manifold.

4.5 REVIEWING THE PROPOSITIONS

We begin with a briefly recap of solutions to the static propositions.

Static Proposition I: If the cost of chemical nitrogen is sufficiently low then profit

maximizing farm managers will not plant cover crops in crop rotations in the short-run.
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Static Proposition II: The manager who observes that soil nitrates levels are low will
compensate for the low soil fertility by applying larger applications of chemical nitrogen,

if the cost of nitrogen fertilizer is lower.

Dynamic Proposition I: There exists a cost of chemical nitrogen sufficiently low that
profit maximizing farm managers will not plant cover crops in the long-run.

Assume for the moment that cover crops are planted. In which case take the
partial derivative of the left hand side of equation (43) with respects to the cost of
nitrogen (cy),

OLHS  Zqp

= >0. (44)
6CN (r+ al)z1 |

This derivative indicates that as the cost of nitrogen decreases then the right hand side of
equation (43) decreases. So as the cost of nitrogen decreases at some point this will
ensure that the fixed point falls below the cost of cover cropping, and so it is relatively
undesirable to plant cover crops. Furthermore, if the cost of nitrogen is low relative to a
the price of the cash crop, then fixed point will be less than the cost of cover cropping
(the switch point). By Figure 4 it may be seen that in this case the manager is less likely

to plant cover crop.

Dynamic Proposition II: Even if it is unprofitable to plant cover crops in the short-run it
may be profitable to plant cover crops when maximizing long-run profits.
Return to the static solution and substitute equation (8) into the switch condition

equation (6a).

o, ~22| — o —2, NO - N||l_2, No, = Se
S PZ 0 G s E A T 27 3t pa,
<
>
Zy Cx Zy Cc
oy —[—[al ——j]+2NO {—le -z J =
Zy p M z,, 22 - pa,
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>
NO
z c c
o, —[L[al ——ND—2 3t (222211 —2122) = —¢ (45)

z p Zy pa
11 < 2

Next substitute equation (7) the equation that defines the stock of soil nitrates into
equation (45). Recall that from this equation it may be concluded that cover crops are
only planted if the value marginal product of soil nitrates are greater than the cost of
cover cropping. Assume for the moment that cover crops are not planted and so the
switch condition holds with equality.

2(1-a,)NO
av! °N ! 3t—1( 2 )_ c
p Zy pa,

Where NO3t . is the initial stock of soil nitrates and is the identical to NO30 in the

LRMD model. From equation (46) it may be asserted that,
z c
o _ﬁ(al ——NJ . S @)
p pa,
Equation (42) defines the condition in the LRMD model the manager is less likely
to plant cover crops, as the cost of nitrogen and the price of the crop are relatively low.

Recall this equation,

pa z c
2 __ 12 [pa, —cN]<—°. (42)
(r+a1) (r+al)z11 a

However, as equation (42) is true when it is less likely that cover crops are planted in the
short-run. It must be that in the long-run model we are at either case (ii) or (iii),
equations (41) and (42) respectively. So it is possible that the manager will switch to

cover cropping in the long-run when they were not adopted in the short-run.

Dynamic Proposition I11: Applying restrictions on the maximum applications of
chemical nitrogen (increases the value marginal product of cover crops) at low nitrogen
costs.

First consider the SRSP model. If the maximum application of chemical nitrogen
is restricted, at N, = N, below the optimal application of chemical nitrogen.

Differentiate the static switch condition equation (6a) with respects to the application of
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chemical nitrogen. To determine the impact of reducing the application of chemical

nitrogen on the decision to plant cover crops. Recall equation (6a) is,

>
or() ( ) _
W_pazaz—Zleath—2212a2N03t = C; (6a)
t <
OLHS
N, T P 4o

The derivative in equation (48) is negative, therefore if the application of chemical
nitrogen decreases then the value marginal product of soil nitrates increases and the
relative switch point for planting cover crops declines. It may be concluded that in the
short-run restricting the maximum applications of chemical nitrogen below the optimal
application of chemical nitrogen, increases the value marginal product of soil nitrates and
reduces the switch point where the manager will plant cover crops.

Next consider the LRMD problem if the maximum application of chemical
nitrogen is set at N =N, below the optimal application of chemical nitrogen. Recall

equation (19a)

<i>t(.)=(r+al)¢t —p((xz ~22,,N, —2222N03tj (19a)

Differentiating equation (19a) with respects to the application of chemical nitrogen

20, (.)

aNt

=2pz, -
This equation states that decreasing the application of chemical nitrogen decreases the

value of ¢.(.) and only results if the stock of soil nitrates is increasing and cover crops

are planted.

5. CONCLUSIONS
With a growing interest in sustainable agriculture this paper attempts to derive
theoretical conditions that define when and how cover cropping is used. We are aware of

the simplifications required to obtain analytical theoretical results for this problem, but
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think that theoretical conclusions may be adapted to other systems of sustainable
agriculture systems and more realistic production function specifications. The results
demonstrate the importance of analyzing sustainable agriculture as producing capital
assets. We believe that the resulting conditions explain observed farm managers’
behavior more accurately than static myopic approaches. Such models can be used to
provide theoretical foundation for an empirical model of cover crops which is developed
in associated research. In addition, the theoretical model suggests that policies such as the
recently introduced TMDL regulations on nitrogen runoff will influence the decisions to

adopt cover crops.
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