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Bayesian Inferences on Fourier Flexible Functional Form in Agricultural Production  

Hanas A. Cader and Allen M. Featherstone  

 

Abstract 

Flexible functional forms are used to examine the characteristics of production technologies.  

The Fourier functional form is capable of approximating any function globally, with the 

specified expansion. Unfortunately the exact form of the expansion is not known. The regularity 

conditions are likely to be violated without the exact form of expansion. In this paper we use a 

Bayesian approach to impose regularity conditions locally on a Fourier flexible functional from 

using agricultural production data.  Monotonicity, concavity, convexity and elasticities are 

compared.  
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Bayesian Inferences on Fourier Flexible Functional Form in Agricultural Production 

Hanas A. Cader and A. Featherstone 

1. Introduction 

In recent years flexible functional forms have been used to examine production technology.  

Duality theory facilitates the use of more “flexible” functional forms to accommodate the 

production of multiple outputs using many inputs. Either an indirect profit or cost function can 

be used to examine the underlying production technology of firms. Flexible functional forms are 

derived approximating the primary cost function to its second order Taylor series expansion. 

Among the alternative forms flexible functions used are the normalized quadratic (Diewert and 

Wales, 1987), translog (Christensen at el., 1971; O’Donnel and Woodland, 1995) and 

generalized Leontief (Diewert, 1972; Lopez 1980).  

 The Fourier function is capable of representing a multivariate function when the true 

functional form is unknown (Dym and McKean, 1972).  Mutually orthogonal sine and cosine 

functions help the functional form to behave as an n-vector linear combination of n-mutually 

orthogonal, function space-spanning basis vectors (Mitchell and Onvural, 1996). Though the 

Fourier functions can be expanded to have infinite sine and cosine terms, unbounded expansion 

is less useful because the parameters in the Fourier function have less economic interpretation, as 

the expansion increases and more importantly finite observation constrains such expansions. 

Therefore, the approximate level of expansion given the number of observations and other 

econometric considerations needs to be considered.   

 Gallant (1981) suggests that a second order polynomial in the explanatory variables can 

facilitate such approximation and infer the properties of the underlying function.  Validity and 

reliability of the estimates can be improved by adding trigonometric terms to the flexible 
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function. Limiting the expansion of the trigonometric terms may limit the theoretical properties 

of the functional form. Imposition of regularity conditions may help to solve the problem 

partially. It is well known that curvature restrictions can be imposed using Choleskey 

factorization and eigenvalue decomposition in certain flexible functional forms. Diewert and 

Wales (1987) reported that imposing global concavity in translog cost functions may result an 

upward bias among input substitutes and a similar imposition in Leontief cost functions 

eliminates complementarity between inputs, while Caves at el. (1980) have shown restriction of 

parameters in quadratic cost function may cause it to lose the flexibility of the functional form 

itself. 

 The complexity of imposing global regularity conditions in flexible functional forms 

without the loss of econometric properties can be overcome by imposing those conditions locally 

or in the region in which inferences will be drawn. Such methods are widely used in the 

econometric literature. For example Lau (1978), and Gallant and Golub (1984) used numerical 

methods, while Chalfant and Wallace (1992) and Terrell (1996) have used a Bayesian approach.  

 This paper aims at examining the regularity conditions of the Fourier flexible functional 

form. A system of seemingly unrelated cost and factor share equations will be analyzed using the 

Markov Chain Monte Carlo (MCMC) method. In the first step, the input and output elasticities 

will be estimated without the MCMC method for the Fourier extensions.  Following, the 

Metropolis-Hastings algorithm is used on the estimated coefficients to impose the regularity 

conditions and then elasticities are estimated.  

 

 

Fourier Functional Form  
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The first step of our analysis consists in modeling the cost function with a Fourier series. There 

have been a few applications of the Fourier series in the agricultural economics literature. 

Gallant (1981, 1982, 1984); Elbadawi, Gallant and Souza (1983) and Chalfant and Gallant 

(1985) discuss the functional form in greater detail, so we present a brief description here.  It is 

known that the production possibilities faced by a firm can be represented by a cost function.  A 

correctly specified cost function meets the known set of assumptions; nonnegative for all 

positive prices and output, monotonic, linearly homogenous in prices and, concave in input 

prices and convex in output prices.  

 The existing literature on Fourier series is embedded with a translog cost function in a 

classical statistical framework. Unfortunately, the flexibility of these functional forms is 

achieved with the cost of forgoing the global regularity conditions (Barnett at el., 1991). 

Gallant’s contribution of the Fourier series as a semi-parametric approach has reinvigorated the 

discussion of flexible functional forms which can attain the global flexibility property.  The 

Fourier extension gives a better approximation of the unknown “true” functional form than the 

translog form (McAllister and McManus, 1993; Mitchell and Onvural, 1996; Berger and Mester, 

1997). Further, Gallant also suggests that the approximation error can by minimized having 

fewer trigonometric terms along with a second order polynomial in the explanatory variable. The 

functional representation is translog when the second order polynomial is expressed as the log-

log funtion (1981).  

 In many cases with a large number of observations, it’s difficult to specify the correct 

expansion, which may result in the estimated models being inflexible and irregular.  The most 

appropriate approach would be to have global regularity conditions in the Fourier functional 

form with a fewer numbers of parameters. Often it is constrained by finite observation and 
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forgoing some of the other econometric properties.  However, it is possible to overcome the lack 

of global regularity by employing techniques that enable the function to attain the regularity 

condition locally at each observation.    

 Eastwood and Gallant (1991) suggest that the number of parameters to be included in the 

Fourier series expansion should equal to number of observations raised to the power two thirds 

for producing consistent and unbiased estimates. Further, the increased expansion has the 

potential to represent the unknown “true” cost function and more importantly to be consistent 

with the Sobolov norm. The Fourier function can be written as Gallant (1982, p.309);   

( ) ( ) ( ) ( )

8 2 8 8 2 2 8 2

1 1 1 1 1 1 1 1

1 1

1ln ln ln ( ln ln ln ln ) ln ln
2

2 cos sin 2 cos sin (1)
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= = = = = = = =
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⎡ ⎤ ⎡ ⎤− + −⎣ ⎦⎣ ⎦

∑ ∑ ∑∑ ∑∑ ∑∑

∑ ∑
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 Gallant and Golub (1984) used a restrictive form of the Fourier model to fit the model 

with observed data while restricting the Fourier function to satisfy the regularity conditions at 

those data points. Terrell (1996) used the translog, generalized Leontief and symmetric 

generalized McFadden flexible functional forms to estimate the posterior moments of elasticities 

imposing restrictions to the prior distribution. Since then there has been a growing literature on 

use of Bayesian inference with flexible functional forms.     

Bayesian Statistics 

Let β be the parameter vector to be estimated. The β can be represented as a probability 

distribution or density function, P(β). The likelihood of observing the data (y) conditional on the 

probability density function of β, P(y| β).  Based on Bayes theorem, one can express the 

probability of β as; 
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( | ) ( )( | ) (3)
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P y PP y
P y
β ββ =  

where P(y| β) is the posterior distribution and reflected jointly by the observed data and prior 

distribution P(β). Since our β is random and assuming P(y) is independent of β, the above 

equation 3) can be rewritten as  

( | )α ( | ) ( ) (4)P y P y Pβ β β  

where the posterior distribution [Py| β)] is proportional (α) to the product of conditional and 

prior distribution of β. [(Py| β) Py] is the probability of y averaged over the parameters of interest 

or marginal distribution of β. Py can be estimated as 

   
( ) = ( , ) (5)

= ( | ) ( ) (6)

P y P y d

P y p d

β β

β β β

∫
∫

 The likelihood principle asserts that the function, P(β), contains all relevant information. 

The advantage of this assertion is that the sample also contains the information about the data 

and the parameters. Though the function is of unknown parameters, one can specify the 

probability of the sample observed on the basis of known parameters. Using sampling literature, 

it is possible to specify the sampling distribution of the estimated parameter β as the function of 

observed data, ˆ ( ).f yβ =  The sampling procedure provides prior information about the 

parameter β before observing the data. Spall (2003) states that drawing samples from the density 

P(β) is not always feasible because the density may be complicated and often times analytically 

intractable. The Markov Chain Monte Carlo (MCMC) method offers an alternative to produce a 

dependent (y) sequence containing P(β) without sampling from P(β).  

     The Bayesian approach is based on drawing samples from a MCMC simulation. MCMC 

methods provide a criterion for generating samples from joint distributions based on conditional 
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distributions. In the past, the application of the Bayesian approach in econometric literature has 

increased considerably and the advancement computer technology has facilitated its use. The 

Gibbs sampler and Metropolis-Hastings algorithms are widely used in MCMC.  In our analysis, 

we use the Metropolis-Hastings algorithm, which is capable of producing a sequence of 

parameters 1 2 3( , , ...)β β β based on the some initial condition, 0.β  The next state of the parameter 

nβ is chosen from a point in an appropriate proposal distribution, which may be arbitrarily 

chosen by the researcher.       

Data 

The translog cost function consists of 2 aggregated outputs and 8 inputs. The inputs and outputs 

were defined based on physical input-output analysis. Data for the estimation was obtained from 

the Kansas Farm Management Association (KFMA) data base. A total of 2756 observations were 

used in the analysis. The outputs were aggregated into crops (y1) and livestock (y2) and the 

inputs were the prices of seed (w1), fertilizer (w2), pesticide (w3), feed (w4), energy (w5), labor 

(w6), land (w7), and machine (w8). Summary statistics for the raw data is found in table 1.   

Table 1: Summary Statistics of Raw Data 

  Variable Average Standard  deviation Minimum Maximum 

Crop - output  782.3624 662.1689 0.6434 5758.1200 
Livestock- output 598.7168 827.9419 0.0000 11537.6900 
Seed – input  140.2692 33.7729 64.0000 194.0000 
Fertilizer – input 129.9615 25.3203 56.0000 173.0000 
Pesticide – input 126.2692 28.0813 67.0000 173.0000 
Feed – input 120.5769 16.8512 86.0000 159.0000 
Energy – input 170.5385 50.7599 57.0000 234.0000 
Labor – input 160.0385 51.9691 69.0000 253.0000 
Land – input 24.3587 6.9783 9.5639 35.5000 
Machine – input 170.9615 59.8269 58.0000 271.0000 
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 Empirical Specification 

 The Fourier flexible functional form for 8 inputs and 2 outputs is specified in equation (1). In 

this paper the trigonometric expansion term (J) is arbitrarily set to 1. The multi-indices for the 

Fourier expansion is presented in table 1.   

Table 1: Multi-indices for Fourier expansion  

Crop  1 0 0 0 0 0 0 0 0 0 
Livestock  0 1 0 0 0 0 0 0 0 0 
Seed  0 0 1 0 0 0 0 0 0 0 
Fertilizer 0 0 0 1 0 0 0 0 0 0 
Pesticide 0 0 0 0 1 0 0 0 0 0 
Feed 0 0 0 0 0 1 0 0 0 0 
Energy 0 0 0 0 0 0 1 0 0 0 
Labor 0 0 0 0 0 0 0 1 0 0 
Land 0 0 0 0 0 0 0 0 1 0 
Machine 0 0 0 0 0 0 0 0 0 1 
α 1 2 3 4 5 6 7 8 9 10 

 

 Since the translog cost function is nested in a Fourier series, the theoretical properties 

such as symmetry, homogeneity and concavity in input prices and convexity in output can be 

easily imposed in equation (1) by satisfying the conditions and examining the second order 

derivative of Hessian matrices for inputs and outputs.   

 a. , , , , (7)ij ji kl lk ik kii j k l and i kβ β γ γ λ λ= ∀ = ∀ = ∀  

 b.  
8 8 8

1 1 1
1; 0 ; 0 (8)i ij ik

i i i
j kβ β λ

= = =

= = ∀ = ∀∑ ∑ ∑

In the Fourier function the diagonal elements for the Hessian matrix for inputs and outputs are 

the function of the respective diagonal parameters and trigonometric expansion of the variable as 

well.  For example the diagonal element for the Hessian matrix for input price i is obtained by 

twice differentiating the log cost function with respect log input price. The resulted diagonal 
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element is presented in equation (11).  Using Shephard's lemma, the input demand for factor i is 

obtained by differentiating the cost function with respect to the input price of factor i. In a 

translog cost function factor share equations are obtained differentiating the log cost function 

with respect to log input price.

  ( , ) / / ( , ) (9)i i i is LnC w y Lnw w x C w y=∂ ∂ =

Bur for the Fourier series (nested translog) results the factor share equation is; 

   ( ) ( )
8 2

1 1 1
ln ln cos sin (10)i i ip p ik k ji i ji i

i k j
s w Y u jw v jwλ β λ

∞

= = =

⎡ ⎤= + + − −⎢ ⎦⎣
∑ ∑ ∑

where λi is defined in scaling procedure. 

 [ ( ) ( ) ]2 cos sin (11)iid i ii ji i ji iu jw v jwβ λ β= + −  

 A system of eight equations is to be estimated assuming the errors in the cost function 

and factor share equations are independently identically distributed. The eighth factor input share 

equation is dropped in recognizing the homogeneity condition and to avoid the singularity of the 

error covariance matrix.  Gallant (1980) suggests that the independent variables should be scaled 

as the Fourier series is a periodic function while the flexible cost function is continuous. The 

proposed scaling procedure by Gallant (1980) is similar to the scaling procedure used discussed 

in this paper except that the scaling factor λ is estimated as; 

 2 (12)
( : 1, 2,..., )iMax l i N

π ελ −
=

=
 

where li is the scaled input price and N is the number of inputs used in he cost function.  

 Further Gallant also has shown that the Fourier approximation can be made accurate in a 

desired region only when the variables are between 0 and 2π (1980). Further the scaling of the 

observations also reduces the approximation problems near the endpoints as discussed by Gallant 
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(1981). There are two scaling methods Gallant, (1982) and, Mitchell and Onvural, (1996) were 

used in the literature and we used the method proposed by Mitchell and Onvural (1996, p.188).  

This method is;  
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Table 2: Summary Statistics of Scale Data 

  Variable Average Standard  deviation Minimum Maximum 

o1 – Crop  4.4449 0.6179 0.0002 6.0000 
o1 – Livestock  4.0496 1.7372 0.0001 6.0000 
l1 – Seed  3.1210 1.1408 0.0010 4.6106 
l2 – Fertilizer 3.1167 0.8701 0.0009 4.2923 
l3 – Pesticide 2.6073 1.0193 0.0010 4.0732 
l4 – Feed  1.7162 0.7401 0.0012 3.2132 
l5 – Energy  3.9875 1.4470 0.0009 5.4351 
l6 – Labor  3.4301 1.5696 0.0010 5.6986 
l7 – Land  1.5885 0.6003 0.0004 2.3534 
l8 – Machine  3.9140 1.6115 0.0009 6.0000 
 

The price responsiveness of inputs can be measures by estimating the price elasticity of demand 

( ijη ). Huang and Wang (2001) discuss the elasticity estimation using the Fourier function. In 

our analysis the price elasticity of conditional demand ( ijη ) was estimated using the proposed 

method by Huang and Wang (2001, p.220).  

 

2

2 , (13)

, (14)

ij i jii i i
ii ij

i i j

ii i ii ij j ij

S SS S
S S S

and
S S

ββσ σ

η σ η σ

++ −
= =

= =
 

where σij is Allen-Uzawa partial elasticities of  substitutions. The Morishima elasticity of 

substitution can be estimated using 

ij ij iiM η η= −  

For detail derivation and discussion of elasticities in translog function refer Binswanger (1974) 

and Morishima elasticities Thomson and Taylor (1995). 

 The total number of simulations run was set to 350,000 and the acceptance rate was about 

58.06%.  About 30 percent of the simulations were set for initial burning period. After the 

burning period, if the candidate parameters hold the input and output curvature and monotonicity 

conditions then the parameters were retained for elasticity and substitution estimations.  
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Results 

The results from the empirical analysis are presented in two sections.  The first section discusses 

the results from estimates without the Bayesian analysis.  Results from the Bayesian MCMC 

analysis are presented section two.  Estimated parameter values and their significance, price 

elasticities and Morishima elasticities of substitutions are discussed in the both sections.  The 

model without the MCMC was estimated using the GAUSS OPTMUM procedure. The 

OPTMUM procedure minimizes the objective function choosing the parameter values. For 

Bayesian MCMC, the Seemingly Unrelated Regression (SUR) model was used in the estimation.   

In the Bayesian estimation significance of the parameters and the elasticities were estimated 

based on a 90% confidence interval.   The upper bounds of parameters/elasticities were estimated 

by trimming the top 5% of the sorted parameters/elasticities and bottom 5% of the 

parameters/elasticities in the Bootstrap framework. If the upper and lower bound values contain 

zero, then the parameter/elasticity is considered as not significant.   

The parameters for the cost function and factor share equations are reported in table 3. 

The parameter estimates of crops and livestock quantities were positive and significant, which is 

consistent with the economic theory. But the squared quantity of livestock was positive only for 

livestock. The estimated parameters of the input prices for land and feed and the squared input 

prices of seed, fertilizer, feed, and land were positive and significant, which is a violation of 

economic theory. The maximum eigen value of the Hessian matrix for the input prices was 

positive.  This indicates that the curvature condition (concavity) for the input prices was violated.  

Similarly the minimum eigen values of the Hessian matrix for the output quantities was negative, 

which is also violation of output curvature (convexity) condition.  
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Monotonicity of the function can be tested by examining the predicted factor shares. This 

regularity condition holds only if the predicted factor shares for all the factor share equations are 

positive. The predicted factor shares for pesticide and labor were negative, indicating that the 

monotonicity condition was not satisfied in the model.   

Table 4 presents the own and cross price elasticity for the inputs. All inputs were price 

inelastic at sample mean price, except pesticide.  The machine’s own price elasticity was 

positive, while for the other inputs it was negative. A percent increase in mean price of seed 

increases the use of fertilizer, feed and land, but for the other inputs it decreases the input use. A 

percent increase in mean price in fertilizer results in an increased use of seed by 0.74 percent, 

while a similar increase in pesticide price, results an increase in the seed use by 1.212 percent.  

Interestingly a percent increase in mean price in feed results an increase use of all the inputs. The 

change in energy price has negative impact on usage of other inputs except for fertilizer and 

feed. A percent increase in mean price of labor increase the use of seed by 1.95 percent.  Increase 

in land price is associated with decrease in use of fertilizer, pesticide and energy. A percent 

increase in mean price of machine likely to reduce the use of seed by about 3.92 percent and 

increasing the use of pesticide by 2.42 percent. 
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Table 3: Parameter Estimates without Bayesian Statistics 

 Parameter Estimates Std. Error  Parameter Estimates Std. Error

a0 Constant -6.5678* 0.2362 b67 Labor/land 0.0026 0.002 
a1 Crops 6.1733* 0.1281 b77 Land/land 0.0490* 0.0029 
a2 Livestock 0.0430* 0.0152 ab11 Crop/seed 0.0001 0.0008 
b1 Seed 0.0081 0.0044 ab12 Crop/fertliz. -0.0011* 0.0005 
b2 Fertilizer 0.0021 0.0037 ab13 Crop/pesti. 0.0038* 0.0008 
b3 Pesticide -0.0236* 0.0045 ab14 Crop/feed 0.0002 0.0007 
b4 Feed 0.0112* 0.0037 ab15 Crop/energy -0.0016* 0.0008 
b5 Energy -0.0262* 0.0041 ab16 Crop/labor 0.0019* 0.0008 
b6 Labor -0.0462* 0.0048 ab17 Crop/land -0.0103* 0.0008 
b7 Land 0.1160* 0.0046 ab22 Livest./fertliz. -0.0015* 0.0006 
a11 Crops/crops -0.8830* 0.0305 ab23 Livest./pesti. -0.0041* 0.0006 
a12 Crops/livest. -0.3988* 0.0018 ab24 Livest./feed 0.0011* 0.0005 
b11 Seed/seed 0.0128* 0.0025 ab25 Livest./energy 0.0083* 0.0006 
b12 Seed/fertliz. 0.0110* 0.0017 ab26 Livest./labor 0.0013* 0.0006 
b13 Seed/pesti. 0.0188* 0.0013 ab27 Livest./land -0.0071* 0.0006 
b14 Seed/feed 0.0009 0.0008 c11 Sin. Seed 0.0016* 0.0007 
b15 Seed/energy -0.0023 0.0013 c12 Cos. Seed 0.0108* 0.0007 
b16 Seed/labor 0.0304* 0.0019 c21 Sin. Fertiliz. -0.0001 0.0005 
b17 Seed/land 0.0013 0.0019 c22 Cos. Fertiliz. 0.0144* 0.0007 
b22 Fertliz./fertliz. 0.0176* 0.0019 c31 Sin. Pesti. -0.0136* 0.0004 
b23 Fertliz./pesti. -0.0009 0.0012 c32 Cos. Pesti. 0.0042* 0.0005 
b24 Fertliz./feed 0.0004 0.0008 c41 Sin. Feed 0.0042* 0.0005 
b25 Fertliz./energy 0.0047* 0.0011 c42 Cos. Feed -0.0035* 0.0003 
b26 Fertliz./labor 0.0053* 0.0016 c51 Sin. Energy 0.0273* 0.0005 
b27 Fertliz./land -0.0035 0.0019 c52 Cos. Energy 0.0248* 0.0006 
b33 Pesti./pesti. 0.0053* 0.0013 c61 Sin. Labor -0.0239* 0.0008 
b34 Pesti./feed -0.0066* 0.0006 c62 Cos. Labor -0.0067* 0.0005 
b35 Pesti./energy 0.0188* 0.0011 c71 Sin. Land 0.0054* 0.0005 
b36 Pesti./labor -0.0186* 0.0013 c72 Cos. Land 0.0163* 0.0007 
b37 Pesti./land 0.0109* 0.0014 c81 Sin. Machi. -0.0388* 0.0014 
b44 Feed/feed 0.0099* 0.0008 c82 Cos. Machi. 0.2372* 0.0013 
b45 Feed/energy 0.0170* 0.0006 d11 Sin. Crops -0.6775* 0.0155 
b46 Feed/labor -0.0104* 0.0008 d12 Cos. Crops 0.3173* 0.0095 
b47 Feed/land 0.0020* 0.0008 d21 Sin. Livest. -0.3152* 0.0021 
b55 Energy/energy 0.0382* 0.0011 d22 Cos. Livest. -0.4005* 0.0051 
b56 Energy/labor 0.0198* 0.0013 a22 Livest./livest. 0.7391* 0.0051 
b57 Energy/land -0.0153* 0.0014 ab21 Livest./seed -0.0043* 0.0007 
b66 Labor/labor -0.0345* 0.0036     

* significant at 5% level  

 

 15



Table 4: Own and Cross Price Elasticities 

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine 

Seed -0.1429 0.7453 1.2165 0.0885 -0.0862 1.952 0.1502 -3.9236
Fertilizer 0.4655 -0.2553 -0.0544 0.047 0.2541 0.1757 -0.0786 -0.554
Pesticide -1.0393 0.0744 -1.3121 0.4008 -0.9919 0.9982 -0.548 2.418
Feed 0.0446 0.0379 -0.2362 -0.6432 0.6232 -0.3865 0.1284 0.4319
Energy -0.0212 0.1003 0.2862 0.3051 -0.3201 0.2776 -0.1827 -0.4452
Labor -0.6908 -0.0995 0.4135 0.2716 -0.3985 -0.2423 0.0035 0.7425
Land 0.0358 -0.03 0.153 0.0608 -0.1768 -0.0024 -0.1696 0.1291
Machine -0.0692 -0.0156 -0.0499 0.0151 -0.0318 -0.037 0.0095 0.1789

 

Table 5 presents the Morishima elasticities of substation. About 81% of the estimated elasticities 

were positive, indicating that most of the inputs are substitutable. All the inputs wre net 

substitutes for seed, fertilizer, pesticide, feed and labor except pesticide and labor for seed, and 

feed for labor. Although pesticide and labor were not net substitutes for energy, but other inputs 

were substitutable. Seed, fertilizer, feed, labor and machine were net substitutes for land, but for 

machine only pesticide, feed and labor were net substitutes.  

Table 5: Morishima Elasticities of Substitution 

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine

Seed --- 1.0006 2.5286 0.7317 0.2339 2.1943 0.3198 -4.1025 
Fertilizer 0.6084 --- 1.2577 0.6902 0.5742 0.418 0.0909 -0.7328 
Pesticide -0.8964 0.3297 --- 1.044 -0.6718 1.2405 -0.3784 2.2391 
Feed 0.1875 0.2932 1.0758 --- 0.9433 -0.1442 0.298 0.253 
Energy  0.1217 0.3556 1.5983 0.9483 --- 0.5199 -0.0132 -0.6241 
Labor -0.5479 0.1558 1.7256 0.9148 -0.0784 --- 0.173 0.5636 
Land 0.1787 0.2253 1.4651 0.704 0.1433 0.24 --- -0.0498 
Machine 0.0737 0.2397 1.2622 0.6583 0.2883 0.2053 0.1791 --- 
 

In this section, we present the results from Bayesian MCMC estimates.  Table 6 reports the 

parameter estimates based on imposing curvature on input prices, output quantities and 
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monotonicity.  The parameter estimates for squared output quantities for crop and livestock were 

negative and positive respectively, but for crop it was not significant. The coefficients of squared 

input prices of seed, fertilizer and land were positive, but for the other inputs it was negative. The 

mean, upper and lower bound values for the parameters are presented in appendix 1. Only about 

1.3 percent of the coefficients upper and lower bound parameter values contain zero, which 

indicates that about 98.7 percent of the parameters are significant at 5 percent level.  
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Table 6: Parameter Estimates with Bayesian Statistics 

Parameter Estimates Std. error Parameter Estimates Std. error 

a0 Constant -6.568* 0.2362 b67 Labor/land 0.003 0.0020 
a1 Crops 6.173* 0.1281 b77 Land/land 0.049 0.0029 
a2 Livestock 0.043 0.0152 ab11 Crop/seed 0 0.0008 
b1 Seed 0.008 0.0044 ab12 Crop/fertliz. -0.001 0.0005 
b2 Fertilizer 0.002 0.0037 ab13 Crop/pesti. 0.004 0.0008 
b3 Pesticide -0.024 0.0045 ab14 Crop/feed 0 0.0007 
b4 Feed 0.011 0.0037 ab15 Crop/energy -0.002 0.0008 
b5 Energy -0.026 0.0041 ab16  Crop/labor 0.002 0.0008 
b6 Labor -0.046 0.0048 ab17 Crop/land -0.01 0.0008 
b7 Land 0.116 0.0046 ab22 Livest./fertliz. -0.001 0.0006 
a11 Crops/crops -0.883* 0.0305 ab23 Livest./pesti. -0.004 0.0006 
a12 Crops/livest. -0.399* 0.0018 ab24 Livest./feed 0.001 0.0005 
b11 Seed/seed 0.013 0.0025 ab25 Livest./energy 0.008 0.0006 
b12 Seed/fertliz. 0.011 0.0017 ab26 Livest./labor 0.001 0.0006 
b13 Seed/pesti. 0.019 0.0013 ab27 Livest./land -0.007 0.0006 
b14 Seed/feed 0.001 0.0008 c11 Sin. Seed 0.002 0.0007 
b15 Seed/energy -0.002 0.0013 c12 Cos. Seed 0.011 0.0007 
b16 Seed/labor 0.03 0.0019 c21 Sin. Fertiliz. 0 0.0005 
b17 Seed/land 0.001 0.0019 c22 Cos. Fertiliz. 0.014 0.0007 
b22 Fertliz./fertliz. 0.018 0.0019 c31 Sin. Pesti. -0.014 0.0004 
b23 Fertliz./pesti. -0.001 0.0012 c32 Cos. Pesti. 0.004 0.0005 
b24 Fertliz./feed 0 0.0008 c41 Sin. Feed 0.004 0.0005 
b25 Fertliz./energy 0.005 0.0011 c42 Cos. Feed -0.003 0.0003 
b26 Fertliz./labor 0.005 0.0016 c51 Sin. Energy 0.027 0.0005 
b27 Fertliz./land -0.003 0.0019 c52 Cos. Energy 0.025 0.0006 
b33 Pesti./pesti. 0.005 0.0013 c61 Sin. Labor -0.024 0.0008 
b34 Pesti./feed -0.007 0.0006 c62 Cos. Labor -0.007 0.0005 
b35 Pesti./energy 0.019 0.0011 c71 Sin. Land 0.005 0.0005 
b36 Pesti./labor -0.019 0.0013 c72 Cos. Land 0.016 0.0007 
b37 Pesti./land 0.011 0.0014 c81 Sin. Machi. -0.039 0.0014 
b44 Feed/feed 0.01 0.0008 c82 Cos. Machi. 0.237* 0.0013 
b45 Feed/energy 0.017 0.0006 d11 Sin. Crops -0.678* 0.0155 
b46 Feed/labor -0.01 0.0008 d12 Cos. Crops 0.317* 0.0095 
b47 Feed/land 0.002 0.0008 d21 Sin. Livest. -0.315* 0.0021 
b55 Energy/energy 0.038 0.0011 d22 Cos. Livest. -0.4* 0.0051 
b56 Energy/labor 0.02 0.0013 a22 Livest./livest. 0.739* 0.0051 
b57 Energy/land -0.015 0.0014 ab21 Livest./seed -0.004 0.0007 
b66 Labor/labor -0.035 0.0036     

* significant at 5% level 

Table 7 presents the mean elasticity estimates based on Bayesian simulations. Own price 

elasticities pesticide, feed, energy and labor were elastic, for the other inputs it was inelastic. The 
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values of own price elasticities were higher compared to the previous estimates. A percent 

increase in mean price of seed results in an increase use of other inputs, except fertilizer and 

land. A percent in increase in mean price machine also increase the usage of all other inputs. 

Lower and upper bound elasticities are presented appendix 2.  Own price elasticities at upper and 

lower bound was negative which indicates that those were significant and about 7.1 percent of 

the cross price elasticities contains zero, which implies that about 92.9 percent of the cross price 

elasticities were significant at 90 percent confidence interval..  

Table 7: Bayesian simulated input price elasticity 

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine 

Seed -0.7852 -0.0121 0.1361 0.0327 0.0241 -0.2768 0.3898 0.4916 
Fertilizer -0.0072 -1.1008 0.1040 -0.1026 0.0005 0.0675 0.3119 0.7267 
Pesticide 0.0784 0.1011 -1.0218 -0.0376 0.0615 0.0001 0.1199 0.6984 
Feed 0.0261 -0.1381 -0.0521 -0.9254 -0.0230 -0.1504 0.9930 0.2699 
Energy 0.0161 0.0006 0.0714 -0.0192 -0.9996 -0.0007 0.2140 0.7174 
Labor -0.2025 0.0832 0.0001 -0.1377 -0.0007 -1.2387 0.8059 0.6904 
Land 0.0822 0.1110 0.0439 0.2623 0.0675 0.2324 -0.8309 0.0316 
Machine 0.0112 0.0278 0.0275 0.0077 0.0243 0.0214 0.0034 -0.1232 

 

Table 8 presents the Morishima elasticities of substitution based in Bayesian simulation. Values 

of all the estimates were positive, indicating all the inputs were substitutable. 
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Table 8: Bayesian simulated Morishima elasticities of substitution  

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine 

Seed 0.0000 1.0887 1.1578 0.9580 1.0237 0.9619 1.2207 0.6148
Fertilizer 0.7780 0.0000 1.1258 0.8228 1.0001 1.3062 1.1427 0.8499
Pesticide 0.8636 1.2019 0.0000 0.8878 1.0611 1.2388 0.9508 0.8216
Feed 0.8113 0.9627 0.9696 0.0000 0.9766 1.0883 1.8239 0.3931
Energy 0.8013 1.1014 1.0932 0.9061 0.0000 1.2380 1.0449 0.8406
Labor 0.5827 1.1840 1.0219 0.7877 0.9989 0.0000 1.6367 0.8136
Land 0.8674 1.2118 1.0657 1.1877 1.0671 1.4711 0.0000 0.1548
Machine 0.7964 1.1286 1.0493 0.9330 1.0239 1.2601 0.8343 0.0000

 

Conclusion 

In this paper, we have used the Fourier flexible functional form to examine the regularity 

conditions and to estimate the elasticities.  Input and output curvature and the monotonicity 

conditions to hold with the Fourier expansion of one (J =1). We constrained the expansion of 

Fourier function in order to preserve the other econometric properties. The Bayesian theory 

provides an alternative methodology to impose the regularity conditions locally in all 

observations. The MCMC approach has the flexibility to impose the regularity condition, but 

also to produce other theoretically consistent estimates, such as negativity of own price 

elasticities. 
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Appendix 1:  

Bayesian simulated confidence intervals for parameters  

  Parameter Mean Lower bound Upper bound 
a0 Constant 7.4157 6.7322 8.1415 
a1 Crops 0.8418 0.5459 1.0900 
a2 Livestock -0.4372 -0.9374 0.0011 
b1 Seed 0.0244 0.0229 0.0263 
b2 Fertilizer 0.0240 0.0180 0.0296 
b3 Pesticide 0.0277 0.0269 0.0288 
b4 Feed 0.0460 0.0425 0.0494 
b5 Energy 0.0180 0.0171 0.0191 
b6 Labor 0.0235 0.0222 0.0247 
b7 Land 0.1302 0.0775 0.1855 
a11 Crops/crops 0.2099 0.1553 0.2883 
a12 Crops/livest. -0.2105 -0.2294 -0.1883 
b11 Seed/seed 0.0020 0.0008 0.0033 
b12 Seed/fertliz. -0.0003 -0.0009 0.0002 
b13 Seed/pesti. 0.0017 0.0014 0.0023 
b14 Seed/feed 0.0002 0.0001 0.0004 
b15 Seed/energy -0.0002 -0.0005 0.0001 
b16 Seed/labor -0.0054 -0.0059 -0.0049 
b17 Seed/land 0.0064 0.0050 0.0075 
b22 Fertliz./fertliz. -0.0057 -0.0067 -0.0039 
b23 Fertliz./pesti. 0.0018 0.0013 0.0023 
b24 Fertliz./feed -0.0019 -0.0038 0.0000 
b25 Fertliz./energy -0.0008 -0.0013 -0.0004 
b26 Fertliz./labor -0.0013 -0.0032 0.0010 
b27 Fertliz./land 0.0074 0.0056 0.0087 
b33 Pesti./pesti. -0.0014 -0.0018 -0.0010 
b34 Pesti./feed -0.0013 -0.0017 -0.0010 
b35 Pesti./energy 0.0007 0.0005 0.0010 
b36 Pesti./labor 0.0004 -0.0005 0.0011 
b37 Pesti./land -0.0001 -0.0010 0.0010 
b44 Feed/feed -0.0006 -0.0019 0.0007 
b45 Feed/energy -0.0007 -0.0011 -0.0002 
b46 Feed/labor -0.0026 -0.0038 -0.0016 
b47 Feed/land 0.0152 0.0112 0.0200 
b55 Energy/energy -0.0001 -0.0007 0.0008 
b56 Energy/labor -0.0007 -0.0012 -0.0003 
b57 Energy/land 0.0040 0.0024 0.0052 
b66 Labor/labor -0.0057 -0.0071 -0.0034 
b67 Labor/land 0.0144 0.0093 0.0170 
b77 Land/land 0.0014 -0.0086 0.0107 
ab11 Crop/seed -0.0001 -0.0004 0.0000 
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ab12 Crop/fertliz. 0.0010 0.0008 0.0013 
ab13 Crop/pesti. -0.0011 -0.0013 -0.0010 
ab14 Crop/feed -0.0040 -0.0050 -0.0029 
ab15 Crop/energy 0.0011 0.0007 0.0014 
ab16 Crop/labor 0.0009 0.0007 0.0011 
ab17 Crop/land 0.0018 -0.0007 0.0040 
ab22 Livest./fertliz. 0.0013 0.0002 0.0026 
ab23 Livest./pesti. 0.0015 0.0012 0.0017 
ab24 Livest./feed -0.0027 -0.0038 -0.0014 
ab25 Livest./energy 0.0011 0.0006 0.0017 
ab26 Livest./labor -0.0021 -0.0027 -0.0015 
ab27 Livest./land 0.0180 0.0076 0.0311 
c11 Sine Seed -0.0044 -0.0046 -0.0042 
c12 Cosine Seed -0.0037 -0.0039 -0.0035 
c21 Sine Fertiliz. -0.0045 -0.0054 -0.0031 
c22 Cosine Fertiliz. 0.0012 0.0009 0.0014 
c31 Sine Pesti. -0.0003 -0.0006 0.0000 
c32 Cosine Pesti. 0.0004 0.0000 0.0007 
c41 Sine Feed 0.0046 0.0041 0.0057 
c42 Cosine Feed -0.0033 -0.0054 -0.0016 
c51 Sine Energy -0.0024 -0.0028 -0.0019 
c52 Cosine Energy 0.0009 0.0006 0.0011 
c61 Sine Labor -0.0023 -0.0029 -0.0017 
c62 Cosine Labor -0.0013 -0.0022 -0.0007 
c71 Sine Land -0.0277 -0.0395 -0.0121 
c72 Cosine Land 0.0164 0.0109 0.0203 
c81 Sine Machi. -0.1813 -0.1983 -0.1655 
c82 Cosine Machi. -0.0085 -0.0482 0.0257 
d11 Sine Crops -0.1146 -0.1672 -0.0624 
d12 Cosine Crops -0.0058 -0.0697 0.0366 
d21 Sine Livest. -0.3597 -0.4245 -0.2943 
d22 Cosine Livest. -0.4323 -0.6186 -0.2672 
a22 Livest./livest. 0.7740 0.6055 0.9750 
ab21 Livest./seed -0.0956 -0.1199 -0.0753 

  

 24



Appendix 2 

Bayesian simulated upper bound input price elasticity 

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine 

Seed -0.7852 -0.0121 0.1361 0.0327 0.0241 -0.2768 0.3898 0.4916 
Fertilizer -0.0072 -1.1008 0.1040 -0.1026 0.0005 0.0675 0.3119 0.7267 
Pesticide 0.0784 0.1011 -1.0218 -0.0376 0.0615 0.0001 0.1199 0.6984 
Feed 0.0261 -0.1381 -0.0521 -0.9254 -0.0230 -0.1504 0.9930 0.2699 
Energy 0.0161 0.0006 0.0714 -0.0192 -0.9996 -0.0007 0.2140 0.7174 
Labor -0.2025 0.0832 0.0001 -0.1377 -0.0007 -1.2387 0.8059 0.6904 
Land 0.0822 0.1110 0.0439 0.2623 0.0675 0.2324 -0.8309 0.0316 
Machine 0.0112 0.0278 0.0275 0.0077 0.0243 0.0214 0.0034 -0.1232 

 

Bayesian simulated lower bound input price elasticity 

Price 

Quantity Seed Fertilizer Pesticide Feed Energy Labor Land Machine 

Seed -0.9397 -0.0198 0.1060 0.0225 -0.0015 -0.3078 0.3766 0.4680
Fertilizer -0.0114 -1.1960 0.0728 -0.1100 -0.0161 -0.0780 0.2867 0.7209
Pesticide 0.0630 0.0720 -1.0318 -0.0351 0.0422 0.0074 0.0719 0.6408
Feed 0.0208 -0.1434 -0.0473 -1.0730 -0.0244 -0.1460 0.6820 0.2744
Energy -0.0010 -0.0192 0.0503 -0.0211 -1.0006 -0.0242 0.2251 0.6278
Labor -0.2196 -0.0905 0.0092 -0.1378 -0.0245 -1.2698 0.4902 0.6961
Land 0.0662 0.0805 0.0210 0.1023 0.0433 0.0940 -0.9359 -0.0355
Machine 0.0105 0.0267 0.0266 0.0073 0.0211 0.0211 -0.0035 -0.2399
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