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Summary: 

 

The current literature on non-cooperative and strategic groundwater extraction assumes user behavior that 

conforms to the highly stylized assumption of time-additive separability of the individual’s objective 

criterion. This paper examines how the measured gains to management changes when this assumption is 

relaxed in favor of a recursive utility specification that takes path-dependency into account in modeling 

the behavior under both the non-cooperative and central management regimes. Application of this 

framework to the empirical case of Kern County, California shows that the difference in measured 

management gains is significantly larger than that which is measured under the assumption of time-

additive separability.  The paper also shows how the traditional method of calculating the benefits over 

time must be modified in order to properly account for these management gains.  
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1.  Overview 

1.1   Introduction 

The Natural Resource Economics literature on Common Property externalities in 

groundwater extraction is both rich in theoretical and empirical treatments, beginning with the 

article of Gisser and Sanchez (1980) which examined the loss of efficiency that occurs when a 

groundwater aquifer moves from a sole-owner extraction regime to one in which there is 

competition in pumping. Various other authors have addressed the efficiency problems that arise 

under competitive in groundwater pumping (Allen and Gisser, 1984; Feinerman and Knapp, 

1983; Kim et al., 1989), but Negri’s 1989 article placed the problem squarely in the realm of 

applied differential game theory. Other natural resource problems, such as that of fishing 

(Levhari and Mirman, 1980; Cave, 1987; Fisher and Mirman, 1992) have been characterized 

within the context of dynamic and differential games, however Negri’s article was the first to 

characterize groundwater problems as such and to describe the strategic externality that arises 

from the dynamic gaming of the competing agents. Dixon (1991) studied the possibility for 

trigger-strategies giving rise to an equilibrium in groundwater extraction, while Provencher and 

Burt (1993) re-cast Negri’s problem within a dynamic programming context, and went further to 

describe how risk might introduce yet another type of externality into the problem. 

While these authors have examined the losses that arise from non-cooperative 

groundwater extraction in some detail, they all maintain a rather severe assumption on inter-

temporal behavior that is widely maintained in economic models of dynamic behavior – namely, 

that of time-additive separability of the objective criterion. Following the original suggestion of 

Koopmans (1960), recent contributions to the literature have begun to examine the implications 

of relaxing this rather severe behavioral restriction on the inter-temporal felicity function, to 
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allow for more generalized inter-temporal specifications, such as the iso-elastic intertemporal 

utility aggregator suggested by Epstein and Zin (1989, 1991). Among the few papers that have 

examined the implications of introducing recursive utility specifications in the context of natural 

resource management are those of Knapp and Olson (1996) and Howitt et al. (2005). However, 

neither of these papers go beyond the single agent case and deal with the issue of non-

cooperative or strategic resource extraction behavior.   

 In this paper, we use the well-studied example of Kern County, California, to characterize 

the strategic interaction between two players pumping from the same aquifer. Several authors 

(Feinerman and Knapp, 1983; Dixon, 1991) have used this empirical example to illustrate the 

gains to groundwater management, and conjunctive use management (Knapp and Olson, 1996), 

while maintaining the assumption of time-additive separability in the objective criterion. By 

comparing the non-cooperative outcome to the central planner’s solution, with both recursive 

and non-recursive preferences, we demonstrate the extent to which the standard assumption of 

time-additive separability can affect the measured gains to resource usage coordination and 

management. Further policy insight into groundwater management might also be gained, once 

we observe how the potential gains to management change with the relaxation of this behavioral 

assumption.   

 The rest of this paper is designed as follows.  Following a brief description of the studies 

that have been done on groundwater management in Kern County, and a summary of their 

results, we present the dynamic game model that illustrates the strategic behavior between 

economic agents pumping from the same aquifer. The dynamic game will then be presented 

within in a recursive utility formulation, in order to illustrate the particular features of interest for 

this study.  The section which follows compares the gains to groundwater management under 
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both time-additive separability as well as under recursive preferences, using the central planner’s 

problem, as a benchmark of efficiency, under its corresponding formulations. This section is 

followed by a discussion of the results and their policy implications for the management of 

groundwater in Kern County, and a final section concludes the paper.  

 

1.2  The Literature on Groundwater Management in Kern County, California 

In the economic literature on water resources management, Kern County, California, has 

provided fertile ground for cultivating theoretical and methodological ideas on the optimal 

management of surface and groundwater resources. While this paper focuses specifically on 

groundwater management, the literature that has examined water management in Kern County 

has also considered the optimal conjunctive use of groundwater resources with stochastic surface 

water supplies, which has broadened the range of policy options and management issues to 

consider.  

Beginning with the paper of Feinerman and Knapp (1983), which forms the basis of this 

paper, Kern County was transformed into an experimental laboratory for the economic analysis 

of groundwater management, and for testing the magnitude of the gains to centralized optimal 

control of the underlying aquifer. In this paper, the authors examined the sensitivity of 

management gains to model specification, and also tested several alternative policy instruments 

to see how the welfare gains they generated compared to the gains realized under centralized 

management of the aquifer. In their study, they found that the realized gains of centralized 

management were less than ten percent, and that other types of economic instruments might 

achieve the same ends, albeit with varying consequences for welfare distribution. The 

conclusions of the paper echoed, to an extent, the earlier statements by Gisser and Sanchez 
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(1980), that the gains to centralized management may not be that large, especially when one 

takes the costs of management into account – which are rarely quantified in any economic 

analysis of natural resource management.  

The next detailed analysis of Kern County was done by Knapp and Olson (1995), when they 

examined the conjunctive use of both surface and groundwater resources under uncertainty, in 

order to expand the palette of policy options available – such as artificial recharge. In this paper, 

the authors expanded on the work of Tsur and Graham-Tomasi (1991) and Provencher and Burt 

(1993) to examine how management options for conjunctive use change when one considers 

artificial recharge of the aquifer from a surface source which is stochastic in nature. In their 

study, they also found that the gains to groundwater management are somewhat small, and that 

they are affected by the degree of risk-neutrality of the decision-maker. In particular, they noted 

that the gains that are realized from groundwater management may be increased under risk 

aversion. This statement speaks directly to the impact that behavioral assumptions have on the 

measured gains to management, and to the importance of taking them into serious consideration, 

when attempting to conduct any empirical analysis of natural resource management under 

uncertainty.  

The role of decision-maker preferences in dynamic economic was followed up further in the 

paper of Knapp and Olson (1996), which featured Kern County as a brief empirical example, 

among other examples of natural resource management. In this paper, the authors applied the 

recursive utility framework to a variety of natural resource management problems, to 

demonstrate the impact of relaxing the assumption of time-additive separability on the resulting 

decision-rules. While the sensitivity of the results to preference specification – both in terms of 

inter-temporal substitutability and risk aversion – were explored, no explicit calculations were 
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made to show their effect on the realized gains to management. This is the issue that is addressed 

in this paper, within a deterministic setting, so as to isolate the effect of inter-temporal 

substitutability on management gains, and to show its sensitivity to this parameter more clearly.     

Finally, the paper of Knapp et al. (2003) looked at Kern County within the context of out-of-

basin water transfers, and evaluated the operation of a possible water market, and its impacts on 

groundwater resources within the basin. This analysis was done using a standard specification of 

a dynamic economic model, with time-additive separability built into the objective criterion, so 

as to give more focus to the policy questions, rather than to the methodological components of 

the analysis. While they did find centralized management helped to mitigate the negative impacts 

of out-of-basin transfers and surface water cutbacks, the overall effect on net annual benefits was 

still found to be small. Once again, the policy laboratory of Kern County offers little 

contradiction to the original assertion of Gisser and Sanchez (1980) that the gains to centralized 

management are small, especially when compared to the potential cost of implementing it.  

 With this background literature in mind, we now proceed to examine if the introduction 

of recursive preferences into the analysis of groundwater management will have a significant 

impact on the gains that can be realized from centralized control. In the next section, the strategic 

interactions between two players pumping, non-cooperatively, from the Kern County Aquifer 

will be described, in detail, so as to lay out the theoretical basis for our empirical investigation.  
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2. Dynamic Game of Groundwater Pumping in Kern County  

 

2.1 Overview of Dynamic Game Model 

In this section we present a simplified dynamic game model to represent the strategic 

interaction between N identical players who are pumping from the Kern County aquifer, in a 

non-cooperative fashion. In this model, recharge is treated as deterministic, and the decisions of 

each of the N players are made under certainty. The basic structure of the model follows the 

formulation of Feinerman and Knapp (1983).  

The objective criterion of each of the N players is quadratic, with the marginal pumping 

costs dependent upon the depth to groundwater (h), according to the following equation 

 1
2( )i

i i i iB w a w b w eh w= ⋅ − ⋅ − ⋅  (2.1.1) 

where and b are, respectively, the intercept and slope of the demand curve for water, and are 

identical for each player. The parameter ‘e ’ is also common to both players, and is the unit cost 

of energy used in pumping groundwater for every foot of lift from the groundwater table. The 

equation of motion for depth-to-groundwater is given by the expression 

a

( )h

 ( ( 1) )i ih h w N w rγ+
−= + + − −  (2.1.2) 

where is the depth to groundwater in the next period, and which evolves from the current 

period according to the level of abstraction of the N players ( ) (denoted by for the i

h+

w i th player 

and  for the other N-1 players) and recharge into the aquifer (i− r ). The notation in (2.1.2) is 

condensed, with γ and r  representing the translation of volumetric aquifer recharge and net 

groundwater withdrawal, into units of lift, according to the definitions 
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 ( ) ˆ1(1 ) I r
r

As As
ξ θξθγ

− + +−
= =  (2.1.3) 

In these expressions, θ  represents the deep percolation into the aquifer, while A represents the 

areal extent of the aquifer, and is its specific yield. Recharge is given in terms of total inflow 

into the aquifer,

s

I , a base annual level of recharge , and a calibrating parameter r̂ ξ . The values 

of the model parameters are contained in Table 1, in the Appendix A of the paper. 

  

Taken together, we can now write the structure of the dynamic game problem for player 

i, as follows 

 ( ) ( ){ }1
2max ( ( 1) )

i

i i
i i i i iw

V h a w b w eh w V h w N w rβ γ −= ⋅ − ⋅ − ⋅ + + + − −  (2.1.4) 

where β is the common discount rate for all N players and ( )V i is the maximized value of the 

dynamic game problem, for each player, beginning with the current level of groundwater lift ( h ), 

and proceeding under the assumption that actions taken in subsequent periods are done optimally 

with respect to the groundwater lift in each period. This recursive relationship linking the 

implied optimality of behavior from period-to-period captures the essence of Bellman’s 

“Principle of Optimality” (Bellman, 1957), and holds within the context of a strategic game 

played dynamically by two (or more) players.  

The equilibrium concept used in this paper is based on the definition of a Markov 

strategy – also known as a closed-loop or feedback strategy – described by Dockner et al. (2000), 

in which the actions of each player depend on the past history of the ‘game’ only through the 

current value of the stock (Lockwood, 1996). As both Lockwood and Tsutsui and Mino (1990) 

note, the Markov equilibrium is the most interesting case to examine, and is the appropriate one 

to consider, when agents cannot pre-commit to a path of future actions (as in the ‘open-loop’ 



Msangi 10 Gains to Groundwater Management 

case). Clemhout and Wan (1991), also concur with the opinion that feedback strategies are more 

suitable for the analysis of common-property resource games, and as such, we do not consider 

any ‘open-loop’ equilibria in this paper, as other authors have done (Reinganum and Stokey, 

1985; Negri, 1989; Rubio and Casino, 2002; Caputo and Lueck, 2003). The Markov equilibrium 

that is characterized in this paper is sub-game perfect, by construction, due to the fact that each 

player is solving a discrete-time dynamic programming problem which, by definition of the 

principle of optimality, ensures that each player’s actions are optimal in each sub-period of the 

game, given the actions of the other player(s). Since the dynamic programming problem (and, 

hence, the resulting solution) of each player is independent of time, the optimal value functions 

and equilibrium policy functions will also be time-independent (autonomous) – which makes the 

resulting equilibrium strategy stationary, Markov and sub-game perfect.  

The solution method that is used to obtain the stationary Markov equilibrium for this 

problem differs from the continuous-time approach commonly employed by authors in the 

literature who solve infinite-horizon differential game problems using the continuous-time 

optimal control approach (Mehlmann, 1988; Dockner et al., 2000). We adopt a discrete-time 

dynamic programming approach similar to that of Levhari and Mirman (1980) and Eswaran and 

Lewis (1984), and adapted by Negri (1990) to the groundwater pumping problem, in order to 

obtain a recursive relationship that describes the evolution of the parameters of each player’s 

carry-over value function for groundwater stock, towards its infinite-horizon value. This allow 

one to, numerically, obtain the exact solution to the problem, and verify that the derived infinite-

horizon value function is consistent with the implied policy function that we obtain from the 

Euler (first-order) conditions of the dynamic problem.  
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For the sake of space, the full derivation of the infinite-horizon value function will not be 

shown, in this paper. The functional form, however is given as follows 

 ( ) ( ) ( )2V h a e h a e h= + − ⋅ + − ⋅A B C  (2.1.5) 

where the constants A, B and C are a function of all the parameters of the problem, and are 

found by computing a stationary value from a value-iteration process using  the ‘equation of 

motions’ defined by the following system of equations 

( ) ( )

( )

( )

2 22 2 21
1 1 1 12

2
1 1 2 2 1 2

2
1 2

221
2 2 2 22

2

2 2 2

2

2

er N e er b N e r e N

b N e er N e N e r

e N

b N e e N

β β β γϕ β ϕ β γϕ β ϕ γ

ϕ ϕ ϕ β β γϕ β β ϕ γ β γϕ

β ϕ ϕ γ

ϕ β ϕ β γϕ β γ ϕ

= + − + − − −

= − + − + − −

+

= + − − +

k+1 k k k k k k

k+1 k k k k k

k

k+1 k k k

A A B B C C C

B B B C C C

C

C C C C

 (2.1.6) 

where the constants 1ϕ  and 2ϕ  are also functions of the parameters, and defined as  

 [ ]
( )

[ ]
( )

1 22

2 1

2 2

e er e

b N e b N e

β γ β γ
ϕ ϕ

β γ β γ

− + −
= =
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

k k k

k k

C B C

C C 2

2

)+

 (2.1.7)  

at any stage, k, in the value iteration process. Numerically, this analytical expression can be 

approximated using orthogonal polynomial projection techniques (Judd, 1998), that are 

commonly employed in solving dynamic economic problems. Researchers have begun  to rely 

more heavily on numerical methods to solving dynamic problems, as an alternative to adopting 

the more restrictive assumptions of the linear-quadratic formulation (Miranda and Fackler, 

2002), and have applied them successfully to the solution of dynamic games, as well (Rui and 

Miranda, 1996).  

This numerical approximation to the infinite-horizon carry-over value function takes the 

form  , where is a coefficient which is fitted by iterative numerical ( ) (
1

ˆ ( ) ( )
n

n n
n

V x h a x hφ+

=

=∑ na
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algorithm, and ( )n xφ is a basis function for the orthogonal terms of the Chebychev polynomial 

we employ. Each basis function is defined over a domain x, which is restricted to the [-1,+1] 

interval, and onto which the state variable h+  must be mapped. Further description of other types 

of orthogonal polynomials and of the numerical algorithm that we implement to find the 

polynomial coefficients are deferred to the more detailed discussion in Judd (1998), Miranda and 

Fackler (1999, 2002), and Howitt et al.(2002).  

 

2.2 Dynamic Game in Groundwater with Recursive Preferences 

The dynamic game model that we now present exhibits similar non-cooperative behavior 

between the players, but relaxes the restrictive assumption of time-additive separability in their 

respective objective criteria. Using the iso-elastic formulation of the recursive Kreps and Porteus 

preferences, following Epstein and Zin (1991), we can embed the quadratic form of the net 

benefit function used in (2.1.1) within a nested functional that also includes the carry-over 

benefits, according to the following expression 

 ( )( ) ( )
1

( ) 1 ( ) ( )i i i
i iU w B w U w

α

i

α αβ β +
⎡= − +⎢⎣

⎤
⎥⎦

 (2.2.1) 

where , generically, represents the ‘felicity’ or benefit realized by the agent, as a function 

of  the immediate net benefit in the current period, and the carry-over benefit  realized in 

the next. By implication of the recursive nature of this formulation, the benefits in the next 

period also embed those realized in all subsequent periods, as well. The CES-formulation of this 

functional implies that there is substitution between the benefits realized in adjacent periods, and 

the parameter 

( )iU ⋅

( )iU ⋅

α determines the rate of substitution that occurs. β remains the subjective 

discount factor of the agent, while α is defined as a constant of ‘resistance’ to inter-temporal 
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substitution, which is less than one and non-zero. Using this parameter (α ), Epstein and Zin 

(1991) define the ‘elasticity of inter-temporal substitution’ as 1 [0, )
1

σ
α

= ∈ +∞
−

, which gives it 

a more intuitive interpretation – a high value representing a reluctance to trade-off benefits 

between adjacent periods (i.e. a high level of ‘resistance’ to inter-temporal substitution).  

Embedding this new formulation of the objective function within our groundwater 

extraction problem, we can now write the structure of the dynamic game problem for player i, as 

follows 

 ( )( ) ( )( )
1

1
2( ) max 1 ( ( 1) )

i

i i
i i i i iw

V h a w b w eh w V h w N w r
αα αβ β γ −

⎡ ⎤= − ⋅ − ⋅ − ⋅ + + + − −⎢ ⎥⎣ ⎦
(2.2.2) 

The recursive relationship of optimal period-to-period behavior implied by Bellman’s Principle 

of Optimality is maintained for each of the players in the strategic game, and the interpretation of 

the optimal carry-over value function remains unchanged from the time-additive separable 

case. However, given the more complex nature of the objective functional, the analytic solution 

of the problem becomes even more challenging.  

( )iV h

As before, a recursive system of equations can be derived and simulated to give the 

infinite-horizon value function. Omitting the details of their derivation, we present the final 

functional form of the infinite-horizon value function below  

 ( ) ( ) ( ) ( )
1

1
221V h h h hα

α ααβ ⎡ ⎤= − + ⋅ + ⋅ + + ⋅⎢ ⎥⎣ ⎦
A B C D E F  (2.2.3) 

where the constants A, B, C and D are a function of all the parameters of the problem, and arise 

from a similar recursive scheme to that of (2.1.6). As before, we approximate it by a numerical 

scheme that has a polynomial representation similar to that used in the previous section, for the 

time-additive separable case.    
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 Figure 1 shows the results that are created by simulating the central planner’s model with 

recursive preferences (2.2.2) under a fixed discount rate of 5%. From this figure, we see that the 

inter-temporal substitution parameter (α ) has a pronounced effect on the extraction path, as seen 

from the levels of groundwater lift. In this figure, we can see that a more negative α  value 

(which implies a lower elasticity of inter-temporal substitution) causes the extraction profile to 

‘flatten’ out, such that the groundwater stock is not mined as heavily in the initial periods. The 

extraction path which takes place under time-additive separability (TAS) is the ‘envelope’ that 

defines the outer bound of behavior, and represents the least level of ‘resistance’ to inter-

temporal substitution1, and in which the decision-maker is the most willing to forgo net benefits 

of consumption in the next period for the sake of realizing them sooner.  

Figure 2 shows the behavior of the model with strategic and non-cooperative extraction, 

under recursive preferences and an increasing number of players. As expected, the behavior of 

the model converges to that of the myopic extraction regime, as the number of players becomes 

large. Both Figures 3 and 4 show that the dynamic game model is affected in a similar way to the 

central planner’s model, when the elasticity of inter-temporal substitution is changed. Even 

though both the 2 and 10-player examples show that the degree of groundwater mining is 

bounded by the TAS case, the profiles become less distinguishable, as the number of players 

increases, and the strategic behavior of the players converges to that of myopic extraction. Negri 

(1989) showed this result, analytically, as , and we can also make a similar argument, 

based on the derived infinite-horizon policy rule for pumping as a function of depth. A brief 

exposition is given in Appendix B, for the benefit of the reader.  

N →∞

                                                 
1 Using the definition of Epstein and Zin (1991), the elasticity of inter-temporal substitution becomes infinite in the 
case where α=1, which corresponds to time-additive separability.  
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3.  Measuring the Gains to Groundwater Management  

 In this section, we define a benchmark of allocative efficiency between the economic 

agents, with the groundwater extraction problem of the central planner. The central planner’s 

solution will be derived under both time-additive separable and recursive preferences, so that the 

gains to management can be measured against the respective game solutions and compared. The 

difference between the gains to management will then be evaluated under varying degrees of 

inter-temporal substitutability, in order to better understand the importance of this parameter on 

the magnitude of management gains that are realized.  

N

 

3.1 Central Planning under Recursive and Non-recursive Preferences 

 The problem facing the central planner is that of maximizing the combined welfare of all 

agents drawing from the aquifer, and maximizing the joint net present value of benefits that 

accrue over the planning horizon for all players. If the central planner were to operate under the 

standard assumption of time-additive separability, then his problem could be written as 

 ( )
{ }

[ ]
1

1
2

1 1
max

i N
i i

N N
CP CP

i i i i
w i i

V h a w b w eh w V h w rβ γ
=
= = =

⎧ ⎫⎛
= ⋅ − ⋅ − ⋅ + + −⎨ ⎬⎜

⎝ ⎠⎩ ⎭
∑ ∑ ⎞

⎟  (3.1.1) 

 where the inter-temporal optimization is carried out with respect to the pumping of all players in 

each period.  

 If, however, we were to relax the assumption of time-additive separability of the 

objective criterion for the central planner – then his problem could be re-written as  

{ }
( )

1...

1

1
2

1 1
( ) max 1

i i N

N N
CP CP

i i i iw i i
V h a w b w eh w V h w r

αα α

β β γ
= = =

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛⎢ ⎥= − ⋅ − ⋅ − ⋅ + + −⎜⎜ ⎟ ⎜
⎢ ⎥⎝ ⎠ ⎝⎝ ⎠⎣ ⎦

∑ ∑ ⎞
⎟⎟
⎠

 (3.1.2) 
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which retains the same basic structure as that of the individual optimization programs in the non-

cooperative dynamic game formulation. Likewise, the functional form of the optimal carry-over 

value functions remains the same as that for the non-cooperative case, and can be derived in the 

similar fashion. The numerical approximations to these functions shall be employed in this 

paper, in order to compare the gains to management under both time-additive separability and 

recursive preferences of the objective criteria. The results of these numerical simulations will be 

presented in the next sub-section.    

 

3.2 Comparing the Gains to Management  

  Now we compare the computed gains to groundwater management under both the 

recursive and non-recursive utility specifications, to see the effect of relaxing the assumption of 

time-additive separability. The gains to management are normally computed by comparing the 

net present value of the stream of maximized benefits that accrue to the players under centralized 

management of the aquifer and under de-centralized, non-cooperative extraction. This has been 

the standard approach to evaluating any stream of net benefits that accrue over time as a result of 

resource extraction, and is based upon common accounting practices which calculate financial 

gain (or loss) of any stream benefits (or costs) on the basis of discounted values which represent 

foregone opportunities in alternative investments.  

In order to calculate the gains to management, we add the total net benefits of each player 

to its discounted value for each period along both the competitive and cooperative solution paths. 

By calculating the difference between the cumulative net benefits that accrue over the path of 

each extraction regime 

{ } { } { } { }, ,1 1 1
, , ,

t T t T t T t TCP Game CP Game
i t i t t tt t t

w w h h
1t

= = = =

= = = =
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we can measure the gains that would be realized under central groundwater management, by 

making the following computation 

 
( )

( )

1 1
, , ,2

1

1 1
, , ,2

1

t T
t CP CP CP

i t i t t i t
t i

t T
t Game Game Game

i t i t t i t
t i

Gain a w b w eh w

a w b w eh w

β

β

=
−

=

=
−

=

⎡ ⎤
= ⋅ − ⋅ − ⋅⎢ ⎥

⎣
⎡ ⎤

− ⋅ − ⋅ − ⋅⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

⎦        (3.2.1) 

The percentage gains that we see in Table 2 match the values obtained by Feinerman and 

Knapp (1983), in their study of Kern County, California, when taken with respect to myopic 

extraction behavior – which is the only case they considered. Dixon (1991) considered the 

strategic extraction case in Kern County, and obtained percentage gains of close to 3.7%, which 

corresponds closely to the two-player level reported in Table 2. Furthermore, Dixon reported that 

the proportion of the management gains captured by strategic behavior is 75%, which also 

corresponds closely to the two-player results in this paper, and which is due to the fact that the 

closed-loop game, although non-cooperative in nature, still embodies forward-looking, dynamic 

behavior which accounts for a large proportion of the marginal user costs of resource extraction. 

As the number of players increases, however, the extent to which they can internalize the 

marginal user cost decreases, and their behavior approaches that of the myopically-extracting 

agent, as has been shown by Negri (1989), Provencher and Burt (1993).  

Many authors have reported very modest or non-existent gains to groundwater 

management, either under sole groundwater use (Gisser and Sanchez, 1980; Allen and Gisser, 

1984; Worthington et al., 1985; Nieswiadomy, 1985; Reichard, 1987) or within a conjunctive use 

setting (Knapp and Olson, 1995; Knapp et al., 2003). These results are summarized in Table 3, 

for comparison, and represent the gains to management as measured with respect to non-

cooperative and myopic extraction behavior. 
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By adopting the recursive-utility specification of equation (3.1.2), for the social planner, 

we can evaluate the effect that relaxing the assumption of time-additive separability has on the 

measured gains to management. By varying the inter-temporal substitution parameter,α , we can 

then re-calculate the difference shown in (3.2.1) to see how the gains to management change 

with an increasing degree of resistance to inter-temporal substitution, both from the perspective 

of each player and of the social planner. By doing so, we obtain the results shown in Table 4, 

which show that the gains to management decrease as the elasticity of inter-temporal substitution 

decreases (i.e., as α  becomes more negative).  

Given the fact that Figure 1 showed the steady-state groundwater level under decreasing 

levels of the inter-temporal elasticity, these results seem somewhat paradoxical, as they suggest 

that things are worsening, when in fact the long-run sustainability of the aquifer seems to be 

further enhanced when the central planner’s inter-temporal preferences deviate farther from 

time-additive separability. The reasons for this apparent contradiction are revealed when we 

compare Figures 5 and 6, which show the difference between the stream of net benefits realized 

under central planning and myopic extraction, both in the absence and presence of discounting, 

respectively. From Figure 5 we see that in the early part of the extraction horizon, the net 

benefits that accrue to the pumpers under myopic extraction exceed those realized under central 

planning – making the gains to management negative. This is due to the fact that myopic 

pumpers mine the groundwater resource early on, ignoring the inevitable future rise in pumping 

costs, which eventually results in the long-run net benefits being lower than those realized under 

groundwater management.  In Figure 5, the long-run gains realized under groundwater 

management are shown to be much larger when the social planner’s preferences exhibit lower 

levels of inter-temporal elasticity, when reported in terms of their nominal value. However, when 
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these values are discounted over time, the near-term losses begin to overwhelm the gains that are 

realized farther in the future under increasingly inelastic inter-temporal substitution, and the 

long-run benefits (in terms of lower pumping costs) are drastically under-stated, as seen in 

Figure 6.  

Considering that the net-present value from the stream of benefits over time corresponds 

to the time-additive calculation, below  

  (3.2.2) ( 1

1

t T
t

t
t

NBβ
=

−

=

⋅∑ )

its incongruity with the nature of the social planner’s objective function becomes apparent, as the 

planner’s objective criterion is now no longer strictly time-additive in nature. To date, the 

groundwater management literature has only considered the time-additive separable case, and 

has used the discount factor ( )β  as the sole inter-temporal preference parameter of relevance. 

Given the more generalized framework of the iso-elastic recursive utility functional, the way in 

which we calculate gains over time may also need to be more generalized with respect to both 

the pure rate of time preference and the elasticity of inter-temporal substitution, so that the 

accounting of management gains that accrue over time remains consistent with the nature of the 

inter-temporal preferences embedded within the structure of the optimal program which defines 

the new benchmark of allocative efficiency.   

 

3.3 Re-Calculation of the Gains to Management 

In order to account for the gains to management in a way that is consistent with the 

functional form of the social planner’s objective criterion, we should evaluate the stream of 

benefits that accrue over time with respect to both the discount factor and the elasticity of inter-

temporal substitution. In order to do this, we propose the calculation scheme shown below 

 ( )( ) ( )
1

11t t tV NB NBα α αβ β +
⎡= − +⎣

⎤
⎦  (3.3.1) 
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which shows the benefits in period t as a function of those that accrue from time t+1 forward, 

such that if we were to start from the last period t = T, the calculation for the last four periods can 

be written as  

 ( )( ) ( )( ) ( )( ) ( )

1
1

1

3 3 2 11 1 1T T T T TV NB NB NB NB

α α
α α

α α α α αβ β β β β β− − − −

⎡ ⎤⎛ ⎞
⎡ ⎤⎢ ⎥⎛ ⎞⎜ ⎟

⎡ ⎤⎢ ⎥⎢ ⎥= − + − + − +⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(3.3.2) 

This scheme can be extended, recursively, to include the entire planning horizon, starting from 

t=1, so that the accounting of benefits over time corresponds to the way in which the 

dynamically-optimizing social planner accounts for them at each point along the optimal 

consumption path.  

By adopting this scheme for both the calculation of benefits accruing to the groundwater 

users under myopic and centrally-managed extraction, we obtain the results shown in Table 5, 

which contrast sharply with those calculated previously. While the per-acre benefits appear in a 

different unit-of-measure than before2, they values increase in a manner that is consistent with 

our intuitive belief that higher steady-state groundwater levels (and lower levels of lift) 

correspond to greater social, long-run benefits. Given that the recursive scheme in (3.3.2), 

corresponds to the summation below  

 ( ) ( ) ( )
1

1
1

1
1

1
t T

t T
t t

t

V NB TNB
ααβ β β

= −
−

=
=

⎧ ⎫⎡ ⎤= − +⎨ ⎢ ⎥⎣ ⎦⎩ ⎭
∑ α

⎬  (3.3.3) 

the computed gains for the case where 1α = will equal those obtained from the simple present-

value calculation when the sum of present-value net benefits in the first T-1 periods are divided 

by the factor ( )1 β− 3.  

                                                 
2 They are now expressed in units of the utility function, rather than in monetary terms 
3 The reader can easily verify that the value of 8 utility units corresponds to the value given for the simple 
discounted sum, when divided by 1-β, for β = 0.952 (r = 5%). 
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The results in that last column of Table 5 now show much larger percentage gains to 

centralized management than those that were shown in Table 3, which represent the results from 

studies that have all imposed the assumption of time-additive separability on the inter-temporal 

preferences of the decision-maker. Perhaps if we were to introduce a greater degree of 

groundwater modeling sophistication, following the suggestion of Brozovic (2002) and Brozovic 

et al. (2003), or by addressing the risk externalities that might be present when considering 

stochastic surface water supplies (Provencher and Burt, 1993) – the gains to management that are 

reported here might be weakened, somewhat. However, given the severe restrictions that time-

additive separability on inter-temporal behavior, it is likely that a more plausible set of inter-

temporal preferences for the central planner would create management gains that would remain 

sizeable, even under attenuation by the factors mentioned above. This will remain, however, a 

question for further empirical research.     

 

4. Conclusions 

In this paper, we have extended the basic dynamic groundwater extraction model of 

Feinerman and Knapp (1983) to incorporate both strategic behavior and variable degrees of 

‘resistance’ to inter-temporal substitution. By relaxing the assumption of time-additive 

separability in the model, we have found that the impact of changing the rate of inter-temporal 

substitution to have a significant effect on the path of groundwater extraction, under both central 

planning and non-cooperative and strategic extraction. Furthermore, when evaluating the gains to 

centralized groundwater management, we also found that changing the rate of inter-temporal 

substitution increases the realized gains to centralized groundwater management, provided that 
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these gains are measured with a criterion which is consistent with the functional form of the 

objective criterion.  

While many authors, beginning with Gisser and Sanchez (1980), have asserted that the 

gains to management are small, compared to the potential costs of its implementation, they have 

restricted themselves to the time-additive separable case. Using the empirical case of Kern 

County, we have found reason to question these long-held beliefs, and argue that the case for 

management might be greatly strengthened if one uses a more generalized functional form to 

represent inter-temporal preferences. As it seems unlikely that a groundwater manager’s 

behavior would conform to the case of strict time-additive separability, the case for re-

examination of the gains to groundwater management in the empirical literature is strengthened.  

The results of this paper show the need for researchers to look more closely into the 

behavioral assumptions embedded in the resource modeling tools that are commonly employed 

to investigate policy options in natural resource management. The relaxation of time-additive 

separability on the inter-temporal objective criterion has dramatic effects both on the path of 

resource extraction as well as on the calculation of gains to groundwater management, and 

should be taken investigated in all analyses that rely on the result of dynamic models. Even 

though dynamic optimization techniques have been at the disposal of resource economists for 

over 40 years, the implications of relaxing such a severe restriction on inter-temporal behavior 

have not been fully investigated, and warrant further examination if we are to continue to rely on 

dynamic resource management models for insight and guidance in answering important policy 

questions. 
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Appendix A: Figures and Tables 

Figure 1: Comparison of Groundwater Lift Under Central Planning  
(TAS and Recursive Preferences, r = 5%) 

 
 
Figure 2: Comparison of Groundwater Lift under Non-Cooperative Extraction 

 (Recursive Preferences, α = 0.5, r = 5%) 
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Figure 3: Comparison of Groundwater Lift under 2-Player Non-Cooperative Extraction 
 (TAS and Recursive Preferences, r = 5%) 

 
Figure 4: Comparison of Groundwater Lift under 10-Player Non-Cooperative Extraction 

 (TAS and Recursive Preferences, r = 5%) 
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Figure 5: Profile of Un-Discounted Management Gains over Time 
 (TAS and Recursive Preferences, r = 5%) 

 
 

Figure 6: Profile of Un-Discounted Management Gains over Time 
 (TAS and Recursive Preferences, r = 5%) 
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Table 1: Parameters for Kern County Model 

 

Parameter Description Value 

   
A Area Overlying aquifer  1.26 (million acres) 

s Specific Yield of Aquifer 0.1 

θ  Deep percolation coefficient 0.2 

e Energy cost per unit pumping lift $0.09 acre-ft/ft 

h1 Initial lift (depth-to-water) 220 ft 

r̂  Reference level for aquifer recharge 1410 ft 

ξ  Calibrating parameter for recharge eqn 0.7 

I Average annual surface water inflow 1.90 (million acre-ft) 

a Demand curve intercept $92.7/acre-ft 

b Demand curve slope $0.0000175/(acre-ft)2

i 

( β ) 
Real interest rate 

(discount factor) 

0.05 

(0.952) 
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Table 2: Gains in Cumulative Net Benefits to Adopting Centralized Management of 

Groundwater over Non-Cooperative Allocation   

 

Total Gains from Centralized GW Management  
(% gains) 

Number of 
Agents 

Strategic Behavior Myopic Behavior 
% of Management 
Gains Captured by 
Strategic Behavior 

    

2 $ 49/acre $ 166/acre 71% 

 (3.3 %) (12.2 %)  

10 $ 140/acre $ 166/acre 16 % 

 (10.1 %) (12.2 %)  

20 $153/acre $ 166/acre 8 % 

 (11.2 %) (12.2 %)  

50 $ 161/acre $ 166/acre 3 % 

 (11.8 %) (12.2 %)  

100 $ 163/acre $ 166/acre 2% 

 (12.0 %) (12.2 %)  
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Table 3: Reported Gains to Groundwater Management in Literature 
 

Authors Percentage Gain in Benefits over Unregulated 
Base Case 

  
GW Use Only  

Bredehoeft and Young (1970) (roughly) 14-16% 
Gisser and Sanchez (1980) Nearly zero 

Feinerman and Knapp (1983) Up to 14% 
Allen and Gisser (1984) Nearly zero 
Worthington et al. (1985) Up to 34% 

Nieswiadomy (1985) 0.16% to 6.5% 
Reichard (1987) 11.5% 

  
GW and SW Usage  
Noel, Gardner and Moore (1980) (roughly) 20% 

Knapp and Olson (1995) 2.6% 
Knapp et al. (2003) 5% to 11% 

  
 

 

Table 4: Gains to Groundwater Management under Recursive Preferences 

 

 Total Gains from Centralized GW Management  
 (% gains) 

Inter-temporal 
Substitution Parameter 

( )α  

Elasticity of 
Inter-temporal 
Substitution 

Strategic Behavior 
( N = 20) 

Strategic Behavior 
( N = 50) 

Myopic Behavior 

     

1 ∞  $ 152/acre $ 161/acre $ 166/acre 

  (11.2 %) (11.8 %) (12.2 %) 

0.5 2 $ 149/acre $ 157/acre $ 163/acre 

  (10.9 %) (11.6 %) (12.0 %) 

-1 0.5 $110/acre $ 118/acre $ 123/acre 

  (8.0 %) (8.9 %) (9.1 %) 

-2 0.33 $ 77/acre $ 85/acre $ 91/acre 

  (5.6 %) (6.3 %) (6.7 %) 
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Table 5: Revised Calculation of Gains to Adopting Centralized Management  

(over Myopic Extraction of Groundwater) 

 

  Total Gains from Centralized GW Management  
(% gains) 

Inter-temporal 
Substitution Parameter 

( )α  

Elasticity of 
 Inter-temporal 

Substitution 

Simple Sum of Discounted 
Net Benefits 

Value Measured With 
Recursive Scheme1

    

1 ∞  $ 166/acre  8 units/acre 

  (12.2 %) (11.4 %) 

0.5 2 $ 163/acre  10 units/acre 

  (12.0 %) (16.6 %) 

-1 0.5 $ 123/acre  22 units/acre 

  (9.1 %) (47.7 %) 

-2 0.33 $ 91/acre  30 units/acre 

  (6.7 %) (83.0 %) 
 

1 – these numbers are expressed in terms of the units of the utility function, rather than dollar values per acre 
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Appendix B: Optimal Policy Rule 

 

For the dynamic game, we have the optimal policy rule, which can be derived from taking the 

first-order conditions of the maximization problem embodied in the Bellman equation (2.1.4) for 

the ith player. The optimal policy rule takes the following form 

 

   *
1 2 (iw aϕ ϕ= + − )eh

\where the parameters 1ϕ and 2ϕ  are defined by the relationships in (2.1.7). For the case of 

myopic extraction, the agent simply equates the marginal benefits of water with the marginal 

pumping cost of groundwater, such that we have 

 *
ia b w eh− ⋅ =  

Which ignores the carry-over value of water, which is embodied in the ‘marginal user cost’ that 

comes from the derivative of (2.1.5) with respect to the pumping variable4. As such, the optimal 

pumping level, under myopic groundwater extraction is  

*
i

a ehw
b
−

=  

whereas the pumping rule suggests that it should be  

 ( ) [ ]
( )

[ ]
( )

*
2 2

1 2 2

2 2
i

e e
w a eh

b N e b N e

β γ β γ

β γ β γ

− +
= − −

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

C B

C C

erC
 

As N becomes larger, it is easy to see that the second term becomes small, however the first term 

needs to be re-arranged as follows    
( ) [ ]1 2

1 2

ea eh
b Nee

b

β γ
γβ γ

−−
⋅
⎡ ⎤⎛ ⎞− ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

C

C
 

So that it can be shown that the term Ne
b
γ⎛

⎜
⎝ ⎠

⎞
⎟

                                                

 approaches 1 as N gets large. In so doing, the first 

term approaches the value of the myopic extraction rule, and the strategic, non-cooperative, 

dynamic game converges to a myopic extraction regime with many agents.  

 
4 Once the variable h in equation (2.1.5) is replaced with the ‘carry-over’ value of ( ( 1) )i ih w N w rγ −+ + − − , 

this derivative can be taken with respect to  iw
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