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Realized Volatility in the Agricultural Futures Market 
 
 
 
 

1 Introduction 

Efficient estimation of market volatility is very important to financial research. 

However, because asset price volatility is not directly observable, much effort has been 

devoted to extracting volatility from other observable market activities. One common 

approach, which a voluminous literature has employed, is to estimate the latent volatility 

using time-varying volatility models. These time series models fall into one of two 

categories, the ARCH family, first introduced by Engel (1982), and the stochastic 

volatility (SV) family, which traces its roots to Clark (1973).  

Estimating ARCH models is relatively easy since ARCH models have closed-form 

likelihood functions in spite of variance being unobserved. However, it is often difficult 

to draw sharp distinctions between competing ARCH models. Andersen, Bollerslev, 

Diebold, and Labys (2001, ABDL, hereafter) claim that the existence of multiple 

competing models suggests misspecification and the robustness of the volatility measures 

based on these models is uncertain. Compared with ARCH models, stochastic volatility 

models are relatively difficult to estimate since closed-form likelihood functions don’t 

exist for stochastic volatility models.  

An alternative approach to measure market volatility is a model-free estimator, which 

uses simpler techniques to provide estimates of the ex post realized volatility. The daily 

squared return constitutes an unbiased estimator for the latent volatility factor. However, 

Andersen and Bollerslev (1998b) show that it is also a very noisy volatility estimator and 
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does not provide reliable inferences regarding the underlying latent volatility in daily 

samples.  

Most recently, the availability of intraday financial databases has had an important 

impact on research in financial market volatility. These intraday data, also called tick-by-

tick data, have been actively recorded in several exchanges, such as Chicago Board of 

Trade (CBOT), New York Stock Exchange (NYSE), American Stock Exchange (AMEX) 

or the National Association of Security Dealers Automated Quotation system (NASDAQ). 

Traditional financial databases usually provide daily or weekly data, but intraday data 

give much more information about the market and its associated characteristics. The 

availability of these new datasets has shed new light on the modeling of volatility. Taylor 

and Xu (1997) and Andersen and Bollerslev (1997, 1998a) provide thorough descriptions 

of intraday data and intraday volatility. They show that high frequency intraday returns 

contain valuable information for the measurement of volatility at the daily level.  

Based on these earlier studies, Andersen and Bollerslev (1998b) introduce a new and 

complementary volatility measure, termed realized volatility. Realized volatility 

estimates volatility by summing squared intraday returns. Andersen, Bollerslev, Diebold 

and Ebens (2001, ABDE, hereafter) show that volatility estimates so constructed are 

close to the underlying integrated volatility. Thus, the volatility of a price process can be 

treated as an observable process.   

Most of the recent research focuses on describing the distributional properties of 

realized volatility and modeling realized volatility. For example, ABDL (2000) study 

daily volatility of DM/$ and Yen/$ exchange rates; Ebens (1999) analyzes the Dow Jones 

Industrial Average (DJIA) index; ABDE (2001) examine 30 individual stocks; Areal and 
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Taylor (2002) study the distributional properties of FTSE-100 futures price; Thomakos 

and Wang (2003) consider four futures contracts: the Deutsche Mark, the S&P 500 index, 

US Bonds and the Eurodollar. Although these findings provide support for the realized 

volatility approach, there is an obvious void in the existing literature. Exchange and stock 

markets have drawn most researchers’ attention. Although there are several studies on 

futures market, no papers have explored the properties of realized volatility in non-

financial asset prices.  

The purpose of this paper is to address the above issue. The other aim is to compare 

distributional properties of realized volatilities of non-financial futures with the ones 

obtained on currency markets and financial futures markets. This study has five sections. 

The next section explains some theoretical background of realized volatility, describes 

the data and discusses the choice of sampling interval.  Section three introduces existing 

studies on distributional properties of realized volatilities and presents the results for 

soybean futures data. In section four, time series models are fitted to realized volatility 

measures and soybean futures daily returns. The final section concludes. 

 

2 Realized Volatility Measurement 

2.1 Theory 

The idea of using higher frequency data to generate measures of lower frequency 

volatility traces its origin to French, Schwert, and Stambaugh (1987), Schwert (1989, 

1990a) and Schwert and Seguin (1991). They construct monthly realized equity price 

volatilities by using squared daily returns. Schwert (1990b) use the standard deviations of 

intraday returns to study volatility. Schwert (1998) constructs daily stock market 
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volatilities relying on 15-minute returns. These studies lack formal justification and 

theoretical underpinnings for such measures. It was not until Andersen and Bollerslev 

(1998b) that realized volatility was formalized. 

Let  denote the time  logarithmic price at day t , where tnp , n Nn ,...,1= , and 

.  Assume it follows a continuous-time stochastic volatility diffusion,  Tt ,...,1=

tntntn dWdp ,,, σ=       (1) 

where denotes a standard Brownian motion. The discretely observed time series of 

returns with observations per day, or a return horizon of , is defined by 

tnW ,

n n/1

tntntn ppr ,1,, −−≡       (2) 

Given the sample path of variance,{ }
TtNntn ,...,1;,...,1, ==
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2 σσ       (3) 

And the sum of intraday squared returns, the realized volatility, is defined as 

∑
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Using the theory of quadratic variation, Andersen and Bollerslev (1998b) show that the 

quadratic variation of the returns in (4) converges to the integrated volatility of (3) almost 

surely for all t  as the sampling frequency of the returns increases, or , ∞→n

∞→n
plim =∑

=

N

n
tnr

1

2
,

2

1

2
, ttn dn σσ =∫

∞
     (5) 

It follows, therefore, that by using intradaily returns, nonparametric, model-free 

estimates of volatility can be constructed.  
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2.2 Data Source and Construction 

Intraday Chicago Board of Trade soybean futures prices were obtained from the 

Futures Industry Institute. The data are time and sales transaction prices, recorded by the 

exchange. The full sample consists of 4,949,175 high frequency prices from January 2, 

1990 through July 31, 2001 for all futures maturities. From 1990 to 1999, the data specify 

the transaction time to an accuracy of one second-- for the final two years, only to an 

accuracy of one minute. The price record covers the full CBOT floor trading from 9:30 

a.m. to 1:15 p.m. (Central Standard Time).  

Dates on which there was a span of at least 25 minutes without trades were omitted. 

Since most trading activity is usually concentrated in the contract nearest to delivery, the 

calculation of the returns is based on the nearby futures contract over consecutive 

intervals. However, returns are calculated from the second nearby contract when the 

nearby contract is in the delivery month. In order to calculate a continuous sequence of 

futures returns, an interpolation method is employed. Specifically, returns are calculated 

using the last recorded logarithmic price before and the consecutive price after each five-

minute mark. This interpolated average is weighted linearly by the inverse relative 

distance to each time mark. The first return for the trading day is deleted since it is an 

overnight return. For example, the returns from 9:30 a.m. to 9:35 a.m. are deleted when 

calculating 5-min returns. 

All in all, these corrections result in a sample of 2909 days. One normal trading day 

consists of 44 intraday 5-minute returns or 23 intraday 10-minute returns or 15 intraday 

15-minute returns and so on. The realized volatility is calculated according to equation 

(4).  
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2.3 Selecting Time Interval 

The usefulness of realized volatility computed from high-frequency data depends on 

sampling frequency. The theory suggests that realized volatility is effectively an error-

free volatility measure provided that returns are sampled sufficiently frequently. However, 

market microstructure effects prevent sampling too frequently. Consequently, a problem 

arises: a reasonable choice of sampling frequency may not be simply the highest 

available. It may be some value that can balance the microstructure frictions and the 

measurement errors. Most of the existing studies focus on using 5-minute returns to 

obtain the daily realized volatility.  

ABDL (1999) develop a simple graphical diagnostic, the volatility signature plot. 

They propose that microstructure bias tends to manifest itself as sampling frequency 

increases by distorting the average realized volatility. Thus, plotting average realized 

volatility against sampling frequency may be useful in selecting the optimal frequency. 

Figure 1 shows the volatility signature plots. From this graph, average realized volatility 

remains stable as sampling frequency increases up to approximately 30-minute returns. 

Theoretically, the selection of 30-minute interval represents a reasonable tradeoff 

between the need of sampling at high frequencies and the cost of market microstructure 

biases. However, in practice, the open outcry session of soybean futures only spans from 

9:30 am to 1:15 pm. The total pit time is 225 minutes. If 30-minute returns are used to 

formalize the realized volatility, there are only 7 observations for each trading day. Thus, 

the realized volatility estimates may have measurement errors due to few observations.  

ABDL (1999) also suggest that high frequency return autocorrelations provide 

complementary information for constructing realized volatility intervals. The reason is 
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straightforward. Tick data are not regularly time-spaced. However, in order to calculate 

continuous returns series, interpolation methods are necessary for constructing regularly 

time-spaced data. ABDL (2001) conclude that irregular spacing of the data induces 

negative autocorrelation in the fixed-interval return series. Bid-ask bounce effects may 

exaggerate the spurious negative dependence. Thus, negative serial correlations signify 

the existence of measurement errors.  

Since one of the purposes of this study is to compare the properties of realized 

volatility of grain futures market with those in extant literature, where 5-minute intervals 

are frequently used, the remainder of this study will focus on 5-minute return series.  To 

check whether this is the proper frequency for computing realized volatility for the 

current dataset, autocorrelations of 5-minute returns are investigated.  

Ebens (1999) provides an approach to determine the negative effect that spurious 

correlations may induce. Applying the standard MA(q) model to the return series, 

tqntntnttnttntnr ,,,2,2,1,1,, ... −−− ++++= ξθξθξθξ    (6) 

where tn,ξ  is a white noise process, Ebens (1999) shows that the relationship between 

realized volatility and daily volatility can be expressed as, 

2

1

2
,

2 )1()( t

q

i
tirvE σθσ ∑

=

+=      (7) 

where denotes actual daily volatility.  2
tσ

From equation (7), it is obvious that spurious dependences between returns will result 

in larger estimates of the actual volatility. Given the fact that the first two sample 

autocorrelations are significant judged by the 95% confidence interval, applying an 

MA(2) model to soybean data obtains that -0.0240 and -0.0177. Equation (7) =1̂θ =2θ̂
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reveals that the measurement error induced by serial correlation is only 0.0009. In other 

words, the realized volatility estimate scales up the actual volatility by 1.0009. The order 

of magnitude is small and thus can be ignored. Hence, 5-minute return series are used in 

place of 30-minute returns for the remaining of this study.  

 

2.4 Price Limits 

Futures markets use price limits as one of the regulation tools to guarantee market 

integrity. Price limits restrict transaction prices to lie between a symmetric range around 

the previous day’s settlement price. The origin of such limits can be traced to the desire 

of authorities to reduce the default risk and lower the margin requirement. The Chicago 

Board of Trade formally applied daily limits in 1925. No trade can take place outside of 

the limit bounds. For some futures contracts, however, the price limits may be expanded 

or removed after the contract is locked limit. Also, limits are lifted 2 business days before 

the delivery month. Advocates of price limits believe that price limits decrease price 

volatility, reduce default risks and margin requirement, and do not interfere with trading 

activity. On the other hand, critics claim that price limits create higher volatility levels on 

subsequent days, prevent prices from reaching the equilibrium level and interfere with 

trading activities. There has been a large amount of empirical research related to price 

limits. However, empirical research does not provide conclusive support for either 

position.  

Hall and Kofman (2001) claim that price limits affect market participants’ 

expectation and decisions. Traders adjust their trading behavior by revising their order 

flow. Correspondingly, the volatility of prices is affected. As revealed in previous 
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sections, the effectiveness of realized volatility depends on its ability to capture the real 

price discovery process. If price limits affect the underlying generating process for the 

equilibrium prices or delay price discovery, realized volatility may be a biased estimator 

of the market volatility. Furthermore, while some of the markets previously studied in the 

realized volatility literature do have trading limits in place, such as the S&P 500, they are 

much less frequently invoked than in physical commodity markets. When the equilibrium 

price moves beyond the trading limits, trading ceases. Since no trades are recorded during 

these moves, trading limits naturally bias realized volatility downwards. Consequently, 

price limits should be taken into account in modeling realized volatility.  

To investigate whether price limits may lower the effectiveness of realized volatility, 

price limit days must be identified at first. Unfortunately, the dataset used in this study 

does not provide information about price limit days.  

A procedure is used in this article to mitigate the inadequacy of data. Three types of 

dates are defined as follows: (1) Touch days. A touch day occurs when the price limit is 

touched, but prices do not close at the limit. These are characterized by three conditions:  

|Ht-Ct-1| = ∆t or |Lt-Ct-1| = ∆t; ∆t >=30 cents; Mod(∆t, 5) = 0  

where Ht and Lt are high and low prices at day t; Ct-1 is the closing price at day t-1; ∆t is 

the price change which must be greater than 30 cents; Mod denotes the modulus.  (2) 

Closing days. On closing days, prices close at the limit price. They are identified using 

the three conditions for touch days plus the following condition: 

 Ct = Ht or Ct = Lt  

(3) Limit move days. Limit move days occur when all trades occur at the limit move 

price. It satisfies all of the characteristics of closing days, plus 
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Ot = Ct 

where Ot denotes the opening price at day t.  

Based on the above definitions, 34 touch days, 11 closing days, and 0 limit move days 

are found in the current sample. The ratios of three different types of days to the total 

number of observations are 1.17%, 0.38%, 0% respectively.  

To further check the effect of price limits on realized volatility, the relationship 

between realized volatility and conditional variances of the GARCH model is checked 

using the following equation, 

     (8) εσσσ ++++= 2
32

2
10

2
GARCHtouchtouchGARCHrv DaDaaa

where  denotes conditional variances estimated from the GARCH (1,1) model; 

 denotes dummy variables, =1 if touch day occurs and =0 otherwise. 

The estimates of , and are 0.402, 1.247 and -0.1 respectively. The first two 

estimates are highly significant and the estimate for is not significant. The regression 

results for closing days are similar to touch days except the fact that the estimate for the 

parameter , -0.432, is significant. The positive sign of  indicates that realized 

volatility and the conditional variances of the GARCH model have positive relationship. 

However, the negative sign of reveals that the GARCH model may have some 

information that realized volatility does not have.  

2
GARCHσ

touchD touchD touchD

1a 2a 3a

3a

3a 1a

3a

Given the fact that detailed information on price limits are insufficient and the 

proportion of price limit days in the whole sample is small, price limits are not considered 

in the rest of this essay. However, the simple analysis conducted in this section 

demonstrates the worthiness to study price limits. From the regression results in this 
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section, the effect of price limits on realized volatility in commodity markets is 

interesting for future research.  

 

3 Distributions of Realized Volatility and Returns 

3.1 Introduction 

Distributions of market volatilities have been studied extensively by researchers, 

traders and regulators. Clark (1973) uses a stochastic process to describe cotton futures 

volatility. He proposes that the distribution for daily variance may be described as 

lognormal and that daily returns standardized by daily variance are conditionally normal. 

Given these two properties, cotton futures returns have been modeled by a leptokurtic 

mixture distribution with fat tails. The distributional assumptions advocated by Clark are 

named as the Mixture-of-Distributions-Hypothesis (MDH). Several later studies 

concentrate on testing this hypothesis. However, as pointed out by Areal and Taylor 

(2002), “empirical investigation of Clark’s conjectures using daily returns has limited 

potential to provide decisive conclusions because daily volatility is then an unobservable 

latent variable.” Thus, the emergence of intraday realized volatility provides a promising 

way for modeling volatility distributions since daily volatility can be treated as observed 

by summing intraday returns sufficiently frequently.  

Although previous studies on realized volatility provide support for the realized 

volatility approach, there is an apparent void in the existing literature, that is, no papers 

have studied futures contracts of physical commodities. Agricultural futures markets, 

especially grain futures, are an important component of the CBOT. The trading of 

agricultural futures contracts has some distinct properties. For example, according to the 
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regulations of the Chicago Board of Trade (CBOT) the normal pit hours for financial and 

equity futures are from 7:20 a.m. to 2:00 p.m. and 7:20 a.m. to 3:15 p.m. respectively. By 

contrast, the market for CBOT grain futures contracts opens at 9:30 a.m. and closes at 

1:15 p.m. For financial and equity futures, macroeconomic news play an important role in 

trading activities, and most news is reported at 8:30 a.m. Thus, U.S. macroeconomic 

news is announced during the trading hours of the financial and equity futures. The 

important reports for the grain markets are released when trading is closed. Andersen and 

Bollerslev (1998a) demonstrate that macroeconomic announcements have an important 

effect on daily volatility. Different timing may result in different effects on the 

distributional properties of the realized volatility. Thus, measuring the realized volatility 

of agricultural futures contract will be a good extension of and compliment to the existing 

studies. 

 

3.2 Distributional Properties of Volatilities 

3.2.1 Unconditional Distributions 

In time series applications, volatility can be described by variance, standard deviation 

or logarithmic variance/standard deviation. In previous sections,  is used to present 

realized volatility. To avoid any confusion caused by this notation, stands for realized 

variance hereafter. 

2
rvσ

2
rvσ

rvσ and )log( rvσ denote the realized standard deviation and logarithmic 

realized standard deviation, respectively. Table 1 provides summary statistics of the 

unconditional distributions of the realized variances, standard deviations and logarithmic 

standard deviations.  
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The first column of the first panel in Table 1 provides mean, variance, skewness and 

kurtosis of the daily realized variance. The standard deviation indicates that the realized 

daily volatilities fluctuate significantly through time. Moreover, it is obvious that the 

distribution is right skewed with the coefficient 2.9108. Another obvious result is that the 

distribution is extremely leptokurtic with the kurtosis coefficient 16.6940.  

The summary statistics of the standard deviations also indicate that the distribution 

has fatter tails than the normal distribution and are skewed to the right. But both values 

are reduced, with the skewness coefficient 1.2613 and kurtosis coefficient 5.6652. Taken 

together, although it is a more easily explainable volatility proxy than the variance, the 

standard deviation still retains non-Gaussian properties. 

Also shown in Table 1 are the distributional characteristics for the realized 

logarithmic standard deviation. The sample skewness and kurtosis coefficient are 0.0410 

and 3.1106 respectively. Both numbers suggest the Normal distribution is a close 

approximation to the logarithmic standard deviation. The results obtained for the 

logarithmic standard deviation contrast sharply with those of realized variance and 

standard deviation.  

The second panel of Table 1 displays the Jarque-Bera test statistic. The small p-values 

resulted from the realized variance and standard deviation series and the larger value 

from the logarithmic series reveal same information as discussed above.   

In summary, the unconditional distributional characteristics of the realized variance, 

realized standard deviation and the logarithmic standard deviation for the soybean futures 

data are consistent with the findings from ABDL (2001) for the exchange rates, ABDE 

(2001) for the Dow Jones stocks and Thomakos and Wang (2003) for equity futures.  
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3.2.2 Temporal Dependence 

The existence of volatility clustering at different frequencies has been extensively 

documented in the finance literature. This high degree of volatility persistence suggests 

that financial market volatility is highly predictable. Previous studies usually rely on 

ARCH models to estimate variance, which is a latent process. As realized volatility is a 

direct measure of actual market volatility, it provides straightforward descriptions of the 

conditional dependence in volatility. 

Figure 2 displays the time series plots of the realized variance, realized standard 

deviation and the logarithmic standard deviation. The basic properties are in line with 

those implied by ARCH effects. The three volatility measures seem positively serially 

correlated and the strong persistence is evident for all three series. The visual impression 

of the strong clustering effect is confirmed by the highly significant Ljung-Box test 

statistics and small p-values reported in the upper panel of Table 2. The null hypothesis 

of no serial correlation is overwhelmingly rejected for all three series.  

Figure 3 provides autocorrelation functions for the realized variance, standard 

deviation and the logarithmic standard deviation. Except reinforcing the persistent 

correlations of the three series, Figure 3 also indicates that autocorrelations of realized 

volatilities tend to exhibit slow, hyperbolic decay.  For the variance series, the 

autocorrelation starts around 0.5 and decay very slowly to about 0.04 at lag 90. After that, 

the autocorrelations tend to fall in the 95% confidence interval. At the 200 day offset, the 

autocorrelation is 0.0311. Similarly, the realized standard deviation begins around 0.53 

and decreases to about 0.04 at the 100-day displacement. However, at some lags after 100, 

autocorrelations fall out of the 95% confidence band. At lag 200, the autocorrelation is 
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0.0724, out of the confidence interval.  Moreover, the decaying rate of the standard 

deviation is a little bit slower than that of the variance process.  

The correlogram of the logarithmic standard deviation tells a quite different story 

compared with the first two series. First, the autocorrelations are systematically greater 

than the 95% confidence level. There is no point where the series tends to fall in the 95% 

interval. Second, it is obvious that the realized logarithmic standard deviation decays 

more slowly than the realized variance and standard deviation. Finally, even at a lag of 

200, where the correlation value is 0.115, the series is still well above the 95% critical 

value.  

The results outlined above are different from the findings of Ebens (1999), in which 

both the variance and standard deviation have autocorrelations above the 95% bands. The 

pattern of the standard deviation is similar to the logarithmic variance instead of the 

variance.  

The low first-order autocorrelations of the three series may indicate that they do not 

exhibit unit-roots. However, the slow decay may suggest the presence of a unit root. The 

Augmented Dickey-Fuller test, allowing for a constant with 10 lagged difference terms, 

routinely and soundly rejects the unit-root hypothesis. As shown in the lower panel of 

Table 2, the test statistics are -7.0267, -7.1378 and -7.6654 for three volatility measures 

and the 1% and 5% critical values are -3.4324 and -2.8623. Based on these results, the 

autocorrelations of the three series are best characterized by long memory processes. This 

assertion is consistent with the existing findings in exchange rates, stock index, and 

equity futures. 
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3.3 Distributions of Standardized Returns 

The daily returns series is constructed by taking the first difference of the last 

recorded prices for the whole sample. Then, this series is standardized to a mean zero 

process. The following analysis is based on the transformed returns, which are denoted 

as .  The first column of Table 3 presents a summary of the unstandardized returns. 

Consistent with previous findings, the unconditional distributions of the futures returns 

are approximately symmetric but highly leptokurtic, with the sample skewness -0.0341 

and the sample kurtosis 5.5787.  

tr

In time series applications, the daily returns are always described as: tttr ησ= , where 

tη ~iid(0,1) and tσ  is the conditional standard deviation of returns. If a time series model, 

ARCH or Stochastic Volatility model, is correctly specified, the standardized 

returns, ttr σ/ , should account for the tail thickness. However, it is well known that the 

standardized returns from ARCH models still display large kurtosis. The second column 

of Table 3 provides the sample moments of the standardized returns. Specifically, this 

series is calculated by dividing the unstardardized returns by estimates of standard 

deviations of Normal-GARCH (1,1) model. It is evident that the distribution appears fat-

tailed, although the value of the sample kurtosis has decreased to 4.6241. Moreover, the 

skewness coefficient is positive, which indicates a right-skewed curve.  

In contrast, the diagnostic statistics in the third column of Table 3 verifies that the 

distribution of the realized volatility standardized daily returns is more close to a standard 

normal. The coefficient of kurtosis has decreased to 3.7122, although it is still slightly 

leptokurtic.  
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In summary, the values of mean, standard deviation, and skewness for the three 

volatility measures are close. The differences in the sample kurtosis are significant. The 

result from the realized volatility standardized returns stands in sharp contrast to the 

unstandardized returns and GARCH standardized returns. The findings about the 

standardized returns largely correspond with extant literature. However, an interesting 

phenomenon is that the kurtosis coefficient of the standardized returns differs in value for 

different markets. For example, Ebens (1999) finds that the kurtosis estimate for DJIA is 

2.75; ABDL (2000) determine the coefficients are 2.406 and 2.414 for DM/$ and 

Yen/$ respectively. Those values indicate that the distributions appear platykurtic. 

Thomakos and Wang (2003) find that the sample kurtosis coefficients for DM, E-Dollar 

and S&P futures are 3.0147, 3.1579, and 3.0521 and only T-bonds futures is less than 3.  

All in all, except differences in magnitude with previous findings, the results in 3.2 

and 3.3 confirm that the Mixture-of-Distributions-Hypothesis (MDH) advocated by Clark 

is valid in the soybean futures market.  

 

3.4 Other Properties 

3.4.1 ARCH-M Effect 

In some financial applications, the expected return on an asset is related to the 

expected asset risk (volatility). This relationship has been widely explored in portfolio 

theory, for example, the Markowitz Portfolio analysis and the Capital Asset Pricing 

Model. Many argue that an increase in volatility results in an increase in the expected rate 

of return.  Engel, Lilien and Robbins (1987) propose the ARCH in mean (ARCH-M) 

model, where the conditional variance is included into the mean equation. Two variants 
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of the ARCH-M specification use the conditional standard deviation and the log variance 

(standard deviation) in place of the conditional variance. 

Figure 4 displays the relationships between daily returns, , and three different 

volatility measures. The straight line in each graph is obtained by regressing volatility on 

daily returns using least squares. Also shown in Figure 4 are the scatter plots of returns 

and three volatility measures. It reveals the non-linear relationship between returns and 

volatility. The three graphs have the similar pattern. The linear relationship between 

current daily returns and volatilities is not obvious. The coefficients of multiple 

determination,

tr

2R , are 0.0014, 0.0009 and 0.0005 for three regression lines respectively. 

These diagnostic statistics confirm that impression. Thus, the ARCH-M effect can be 

ignored for current data.  

 

3.4.2 Asymmetric Volatility 

In 3.4.1, the relationship between volatility and current returns was investigated. In 

time series applications, the asymmetric response of volatility to past returns is also of 

interest.  French, Schwert and Stambaugh (1987) and Schwert (1990b) find that stock 

volatility is negatively related to stock returns. Nelson (1991) argues that for equities, 

negative returns are followed by higher volatilities than positive returns of the same 

magnitude. This phenomenon is known as “leverage effect”. In most applications, 

leverage effects have been probed for stock returns. For futures data, since the leverage 

hypothesis can not be applied1 , the term “asymmetric volatility” is used to describe an 

asymmetry in the relation between volatility and returns. The Threshold ARCH 

                                                 
1 See Schwert (1990b) for details about two hypotheses of the leverage effects.  
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(TARCH) model is introduced independently by Zakoian (1990) and Glosten, 

Jagannathan and Runkle (1991) to describe asymmetric volatility. The following 

regression models are based upon the specification for the conditional variance of 

TARCH models. They are used to investigate the asymmetric effects on the realized 

variance, the standard deviation and the log standard deviation. 

tttttrvtrv drr εγβασϖσ ++++= −−−− 1
2

1
2

1
2

1,
2

,    (9a) 

tttttrvtrv drr εγβασϖσ ++++= −−−− 1111,,    (9b) 

tttttrvtrv drr εγβσαϖσ ++++= −−−− 1111,, )log()log(   (9c) 

where  if  and 0 otherwise.  1=td 01 <−tr

In models (9a), (9b) and (9c), good news ( , and bad news ( , have 

different effects on the volatility. Good news has an impact of

)01 >−tr )01 <−tr

β , while bad news has an 

impact of ( γβ + ). If 0≠γ , asymmetric volatility exists. 

Table 4 reports the regression estimates with their standard errors. All estimates are 

significant at 1% level. The β  coefficients are positive and the γ  coefficients are 

negative for all three volatility measures. Thus, these results support the existence of 

asymmetric volatility. This parallels the findings of Thomakos and Wang (2003) for 

Deutsche Mark, Eurodollar and T-bonds futures contracts. And Ebens (1999) and ABDE 

(2001) all point toward the presence of asymmetries in stock returns. However, although 

statistically significant for all three volatility measures, the γ  coefficients are smaller in 

absolute magnitude.  

 

4 Modeling Realized Volatility and Daily Returns  
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4.1 ARMA and ARFIMA Models 

From the stylized facts depicted above, the long memory characteristics of realized 

volatilities, realized standard deviations and logarithmic standard deviations are obvious. 

This is a well-known fact in existing literature.  Related work includes ABDL (1999), 

Ebens (1999), Areal and Taylor (2002) and Thomakos and Wang (2003), among others. 

Given this fact, it is possible that standard parsimonious ARMA models may not account 

for the high order autocorrelations. Consequently, a fractionally integrated ARMA 

(ARFIMA) model may be applied to model the realized volatility series.  In contrast to 

ARMA models, which explain the typical exponentially decaying autocorrelations, 

ARFIMA models capture the stylized fact of long memory processes, which have slower 

decay of the autocorrelations.  Granger and Joyeux (1980) introduced the ARFIMA 

process. The general representation of the ARFIMA (p, d, q) model is, 

tqt
d

p LyLL ξϕφ )()1)(( =−      (10) 

where L is the lag operator; is the integration parameter; and are order 

parameters; and . This representation includes AR and 

MA processes as two special cases.  When 

1<d p q

i
p

i
ip LL ∑

=

=
1

)( φφ i
q

i
iq LL ∑

=

=
1

)( ϕϕ

1=d , equation (10) reduces to the ARIMA 

model. 

 

4.2 ARMA and ARFIMA Model Estimation Results 

Table 5 reports the estimation results of ARMA (5,4) and ARFIMA (5,d,4) models.2 

These two models are selected as representatives of two types of competing families. 

                                                 
2 All of the models (including ARFIMA and GARCH families) were estimated in OX. The corresponding 
packages include Arfima 1.0 and GARCH 3.0 (Doornik and Ooms (1998), Laurent and Peters (2002), and 
Doornik (2002)). 
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Various models have been tested based on log likelihood values and Q-tests. ARMA 

(5,4) and ARFIMA (5,d,4) balance the requirements of model fitting and parsimony. 

It is evident that the estimate for the fractional integration parameter is highly 

significant. The value of this parameter is 0.4593, which is consistent with the findings of 

ABDL (1999). ABDL (1999) suggest that the estimate of the fractional integration 

coefficient tends to be in the neighborhood of 0.4 for many realized volatilities.  

Compared with the ARMA (5,4) model, the ARFIMA (5,4) model has several 

advantages. First, most estimates are statistically significant, which indicates good in-

sample fitting. Second, the Q-test results are better. The p-values at Lag 35, 45, 55 and 65 

are 0.006, 0.020, 0.060, 0.050 for the ARMA (5,4) model. And the corresponding values 

for the ARFIMA (5,4) model are 0.023, 0.065, 0.163 and 0.110. Finally, less obvious, the 

log likelihood represents a small improvement.  

The higher order models described above are not coincidences. For example, 

Thomakos and Wang (2003) fit an ARFIMA (5,d,5) model to D/M, E-dollar, S&P 500 

and T-bonds futures data. However, Ebens (1999) finds that ARFIMA (0,d,0) model is 

good enough to capture a long memory process for DJIA data. Since the history of 

realized volatility is relatively short, it is still uncertain to conclude whether the higher-

order model reveals any special properties of futures data. 

 

4.3 GARCH Models 

Numerous findings have demonstrated the persistence of volatility in financial 

markets. Engle (1982) introduces ARCH model to capture this stylized fact. Bollerslev 

(1986) generalizes it to the GARCH case. The GARCH ( ) model is in the form of,  qp,
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where )1,0(~ iidtη .      

GARCH family has many extensions. Before choosing any model specifications, it is 

important to guarantee that candidate models can account for the facts outlined in Section 

3. Based on the results in the previous section, FIGARCH and FIEGARCH models are 

possible model specifications for the soybean data. FIGARCH-M model is also 

considered here to check whether this parametric model reflect the same pattern as the 

realized volatility approach. 

Engle and Bollerslev (1986) consider a special class of GARCH models, in which 

. They name this type of models as integrated GARCH (IGARCH) 

models. As integrated in mean processes, a shock persists in the future variance for 

IGARCH processes. Baillie, Bollerslev, Mikkelsen (1996) extend IGARCH models to 

accommodate fractional integration. The new model is titled as FIGARCH. The variance 

equation of a FIGARCH (p,d,q) model is, 

∑∑
==

=+
q

i
i

p

i
i
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1βα

2112 ])1)(())](1[(1{)](1[ t
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where L is the lag operator; is the integration parameter; , 

, and . 
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The FIGARCH-M model has the same variance equation as the FIGARCH model 

specified above. The only difference is that the mean equation becomes, 

ttt cy εσ ++= 2        (13)  

Nelson (1991) proposes the EGARCH model to accommodate the leverage effect and 

the asymmetry in the conditional variance. Bollerslev and Mikkelsen (1996) refine the 

EGARCH model as follows, 

)()](1[)](1[ln 1
12

−
− +−+= tt gLL ηαβωσ     (14) 

where |]||[|)( tttt Eg ηηγθηη −+= . 

Combing the idea of fractional integration with EGARCH type of model, Bollerslev 

and Mikkelsen (1996) introduce the FIEGARCH model. The variance equation of 

FIEGARCH (p,d,q) is specified as follows, 

)()](1[)1()(ln 1
12

−
−− +−+= t

d
t gLLL ηαφωσ     (15) 

 

4.4 Model Estimation Results 

For the soybean futures returns, tt ry =  and the constant c is excluded from the mean 

equation since the daily returns has been demeaned prior to estimation. Table 6 reports 

the estimation results of FIGARCH (1,d,1) , FIGARCH-M (1,d,1) , and FIEGARCH 

(0,d,1) models. For FIGARCH and FIGARCH-M models, the ARCH innovations tη are 

the Student-t density; for FIEGARCH models, the innovations are the generalized error 

distribution (GED). 

Several regularities emerge from the estimates presented in Table 6. First, the 

parameter estimates of  are highly significant for all models. For FIGARCH (1,d,1) and d
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FIGARCH-M (1,d,1)models, the estimates are 0.4571 and 0.4585 respectively. Again, 

this magnitude is consistent with the assertion of ABDL (1999). For the FIEGARCH 

model, the value of is much higher, 0.5650. This is in line with the one reported by 

Ebens (1999), who finds =0.585 for the FIEGARCH model for the DJIA data.  

d

d

Second, consistent with the findings of previous sections, the ARCH-M effect is not 

obvious and thus can be ignored. This point is confirmed through comparison between 

the FIGARCH (1,d,1) and the FIGARCH-M (1,d,1) models. There are no significant 

differences in goodness-of-fit for both models as implied by several test statistics.  

Finally, as expected, the estimates of the two additional parameters in the 

FIEGARCH model are highly significant. And the sign of θ  is positive, which indicates 

that a positive correlation between the past return and subsequent volatility. This point is 

consistent with the result in previous sections. Compared with the FIGARCH model, the 

FIEGARCH is a more promising GARCH specification for characterizing daily returns 

and volatilities. The addition of two parameters is not only highly significant from the log 

likelihood ratios but is also preferred from AIC and SC perspective.  

All in all, the results from parametric models largely correspond with the findings in 

previous nonparametric analysis based on the realized volatilities. And the values of 

estimates are highly consistent with extant literature. 

 

5 Conclusion 

The use of intraday returns as a direct measure of market volatility is a relatively new 

field. Previous studies of realized volatility generally focus on equities or exchange rates. 
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The point of this study is not to offer a new theoretical approach for modeling volatility, 

instead, it is to investigate the properties of realized volatility in the grain futures market. 

The results indicate that realized volatility based on 5-minute returns largely 

correspond with existing literature. Specifically, the properties of the realized variance, 

the standard deviation and the log standard deviation have quite similar patterns as those 

observed in stock market or exchange rate market, although there are some discrepancies 

in magnitude. The findings of three volatility measures confirm that the Mixture-of-

Distributions-Hypothesis (MDH) advocated by Clark (1973) is valid in the soybean 

futures market.  

In contrast, the standardized daily returns display some different properties compared 

with stock and exchange rate data. The asymmetric effect exists and the news impact 

curves are more steeply sloped to the right of the origin, which indicates that a positive 

correlation between the past return and subsequent volatility.  

The long memory characteristics of realized volatilities, especially for the logarithmic 

standard deviations are obvious. Thus an ARFIMA model is used to describe the 

volatility process. And the results indicate that the ARFIMA model is better than the 

corresponding ARMA model. 

Moreover, the parametric GARCH models, FIGARCH, FIGARCH-M and 

FIEGARCH, reflect the patterns described by nonparametric analysis. The implication of 

this conclusion is that the existing time series models can provide good in sample fits and 

may result in good forecasts since the validity and usefulness of realized volatility has 

been thoroughly explored.  
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Realized 
Variance 

Realized Std. 
Deviation 

Logarithmic Std. 
Deviation 

Mean 0.8628 0.8686 -0.2071
Std. Deviation 0.7340 0.3294 0.3628
Skewness 2.9108 1.2613 0.0410
Kurtosis 16.6940 5.6652 3.1106
    
Jarque-Bera Test  26837.5600 1632.2530 2.2991
P-Value 0.0000 0.0000 0.3168

 
 

Table 1: Summary Statistics of Daily Realized Variance, Realized Standard Deviation and 
Logarithmic Standard Deviation 

 
 
 

  Realized Variance Realized Std. Deviation Logarithmic Std. 
Deviation 

Q-Test  
& P-Value    
Lag 1 709.31        0.0000 834.18        0.0000 870.59        0.0000
Lag 5 2540.10        0.0000 3247.40        0.0000 3484.70        0.0000
Lag 15 5197.80        0.0000 69996.7        0.0000 7677.00        0.0000
Lag 20 5910.80        0.0000 8097.20        0.0000 8997.00        0.0000
Lag 25 6419.80        0.0000 8995.50        0.0000 10171.00        0.0000
Lag 30 6740.50        0.0000 9625.20        0.0000 11065.00        0.0000
Lag 35 6945.50        0.0000 10094.00        0.0000 11799.00        0.0000
  
ADF Test* 
& P-Value -7.6654        0.0000 -7.1378        0.0000 -7.0267        0.0000

* The 1% and 5% critical values for the ADF test are -3.4324 and -2.8623. 
 
 

Table 2: Ljung-Box and Augmented Dickey-Fuller Test Statistics 
 
 
 

 tr * GARCHtr σ/  rvtr σ/  
Mean 0.0000 0.0130 -0.0085 
Std. Deviation 1.1942 1.0000 1.2634 
Skewness -0.0341 0.0015 -0.0497 
Kurtosis  5.5787 4.6241 3.7122 

* The return series is multiplied by 100. 
 
 

Table 3: Descriptive Statistics for Daily Returns 
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 Estimates and Standard Errors* 
 ϖ  α  β  γ  

 
Variance 

 
0.4380 0.0256 0.4403 0.0282 0.0489 0.0110 -0.0332 0.0125

Std. 
Deviatio

n 
 

0.4057 0.0200 0.4863 0.0221 0.0627 0.0118 -0.0930 0.0177

Log Std. 
Deviatio

n 
 

-0.1391 0.0112 0.5072 0.0214 0.0569 0.0101 -0.0848 0.0161
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The table reports the ordinary least squares regression for the model (9). Standard errors are based on 
Newey-West heteroscedasticity and autocorrelation consistent estimators.  
* All estimates are significant at 1% level. 
 
 

Table 4: News Impact Function Estimates 
 

  
 

 ARMA 
 

ARFIMA 

d-parameter 
 

AR-1 
AR-2 
AR-3 
AR-4 
AR-5 
MA-1 
MA-2 
MA-3 
MA-4 

***-1.0170          0.2335
***0.6735          0.2023
***1.1362          0.1941

0.1532          0.2261
***-0.0626          0.0306

1.2801          0.2322
-0.1898          0.2586

*-0.9004          0.1013
-0.2391          0.1853

***0.4593          0.0283 
 

***-0.2675          0.0769 
***1.0272          0.0776 
***0.2916          0.0665 

***-0.7616          0.0743 
***-0.0936          0.0312 

0.0695          0.0586 
***-1.1006          0.0562 

*-0.1174          0.0618 
***0.8260          0.0582 

 
Q-test & P-value 
Lag 35 
Lag 45 
Lag 55 
Lag 65 

47.400          0.006
55.504          0.020
61.754          0.060
74.516          0.050  

 
41.000          0.023 
48.425          0.065 
54.218          0.163 
68.163          0.110 

  
Log likelihood -386.822 -383.156 

       *, **, *** significant at 10%, 5% and 1%. 
 
 

Table 5: ARMA and ARFIMA Model Estimates 
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  FIGARCH (1,d,1)## FIGARCH-M (1,d,1) FIEGARCH (0,d,1) 
ω  
α  
β  

Figarchd −  
 
ARCH-in-mean 
 
θ  
γ  

 

**0.1101          0.0475
*0.1313          0.0675

***0.5688          0.1168
***0.4571          0.0906

 

**0.1094          0.0470
*0.1305          0.0668

***0.5694          0.1157
***0.4585          0.0904

-0.0096          0.0139

0.1304          0.1136

***0.7728          0.0926
***0.5650          0.0809

***0.0406          0.0131
***0.1089          0.0221

AIC 
SC 
Log-likelihood 

3.0311
3.0413

-4402.162

3.0316
3.0439

-4401.930

3.0276
3.0399

-4396.144
Skewness 
Kurtosis 
Q-test & P-Value# 
Lag 10 
Lag 15 
Lag 20 
 

-0.0078
4.7133

11.975          0.287
16.132          0.373
21.669          0.359

-0.0090
4.7148

11.993          0.285
16.093          0.376
21.647          0.360

-0.0492
4.5396

11.921          0.290
15.854          0.392
21.581          0.364

 

                     *, **, *** significant at 15%, 5% and 1%. 
         # Q-test for the standardized residuals. 
         # #The ARCH innovations tη are conditional on the student-t distribution for the FIGARCH and FIGARCH-M models and  

Table 6: FIGARCH, FIGARCH-M and FIEGARCH Estimation Results 

  the innovations are conditional on GED for the FIEGARCH model. 
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Figure 1:  Volatility Signature Plot for Different Time Intervals 
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Realized Variance 

 
 

Realized Std. Deviation 

 
 

Log Std. Deviation 

 
 
 

Figure 2: Time Series Plots of Daily Realized Volatilities 
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Figure 3: Autocorrelation Functions of Daily Realized Volatilities  
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Figure 4: Realized Volatilities Vs.  Daily Returns 
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